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1 Additional Results

Below we present additional results for both video reconstruction and odometry. Please see accompa-
nying video for novel view synthesis results.
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1.1 Video Reconstruction

In figures 2 to 5, we plot random additional video reconstruction renderings from our model and all
baselines.

1.2 Pose Estimation

In Fig. 6, we plot additional comparisons with the Video Autoencoder in short-video odometry
(20 frames) on all datasets, and in Fig. 7, we plot additional comparisons with ORB-SLAM3 and
DROID-SLAM on longer videos (∼150 frames) from the CO3D 10-Category dataset. We also report
quantitative comparison with DROID-SLAM and ORB-SLAM3 on CO3D 10-category in Tab. ??.
As ORB-SLAM3 and DROID-SLAM predict a set of sparse poses per video, we evaluate only on the
temporal overlap of their predictions and the ground truth poses, as is standard in odometry evaluation.
Also note that for the “frame-density” metric reported in Tab. ??, we define a failed tracking for
a video as yielding less than 5 poses for that video, rather than measuring the pose density within
sequences.

In Tab. 1, we quantitatively measure our method after fine-tuning as well as BARF [1] and NoPe-
NeRF [2] on the Caterpillar sequence from the Tanks and Temples [3] dataset. In Fig. 1 we also plot
the poses for visual reference.

Table 1: Tanks and Temples’ Caterpillar Sequence

Ours RE10K Ours Fine-Tuned BARF NoPe NeRF
ATE 0.0543 0.0020 0.400 0.521

Table 2: Here we present additional quantitative pose estimation evaluations for the Tanks and Temples’s
“Caterpillar” trajectory for our zero-shot evaluation with out RealEstate10K-trained model, our model fine-tuned
on the “Caterpillar” sequence, BARF, and NoPe NeRF.

1.3 Pose Estimation Parameterization Ablations

in Tab. 3 we perform the following ablations to our model pipeline and report the corresponding
PSNR for the Hydrants dataset: pose regression via an MLP (no solver), not using flow weights
(non-weighted Procrustes), using bidirectional consistency flow weights (as opposed to flow weight
prediction), including a scale factor in the Procrustes solver, regressing depth via and MLP instead of
using the pixelNeRF’s depth estimate, using a pose solver based on 2D correspondences instead of
3D correspondences, and finally the full model formulation. We show here that all design choiecs are
critical, except for the depth estimation via rendering, which we show is comparable.

MLP Pose
Regression

No
Flow

Weights

Bidirectional
Consistency

Flow Weights

Scale
Adjusting
Procrustes

Depth
Regression

2D-Only
Pose

Solver

Full
Model

PSNR 18.50 17.87 18.68 11.93 23.56 16.63 23.64
Table 3: Ablations for parameterizing our model’s pose-prediction.

1.4 Intrinsics Source Ablations

In Tab. 4 we ablate different sources for camera intrinsics on the Hydrants dataset: a constant value
near the average of the dataset’s intrinsics, predicted values via a CNN, and the dataset-provided
ground-truth. Interestingly, our CNN-predicted intrinsics score higher for view-synthesis than using
the dataset’s intrinsics. We leave more extensive intrinsics-prediction evaluation and formulation to
future work.

Constant Predicted Ground Truth
PSNR 23.15 25.6 23.64

Table 4: Intrinsics-source ablations.
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1.5 Scale Ambiguity Illustration

In Tab. 5 we randomly scale the model’s estimated poses various amounts and report the corresponding
rendering quality on the Hydrants dataset to illustrate the difficulty posed by a scale discrepancy
between the coordinate system of the poses and that predicted implicitly by the scene representation.
Though pixelNeRF’s multiview rendering can partially compensate for scale perturbations, the
rendering quality is negatively affected by the scale magnitude.

Scale Range .10-10 .25-4 .5-2 .75-1.33
PSNR 18.71 19.23 19.47 20.56

Table 5: Scale ambiguity demonstration.

1.6 Additional Flow Weights and Tanks and Temples Pose Plots

In Fig. 1 we plot an example where our model’s flow mask prediction ignores a dynamic object. Note
that since our model only needs theoretically needs a few points to model camera motion, the weights
can be relatively sparse and do not explicitly correspond to "dynamic object" masks.

2 Reproducibility

2.1 Hardware

We train our models on a single Tesla-V100 GPU (32GB memory).

2.2 Architecture Details

Our CNN image encoder follows [4] with a pre-trained ResNet34 feature pyramid encoder, though
we modify the first encoder’s first convolutional layer to accept optical flow channels as well as RGB.
Our renderer, which maps 3D query points and image features to density and color, is implemented
as 6 layer MLP with 64 hidden units, with FILM [5] conditioning in the first four layers instead
of concatenation. Also following pixelNeRF, we only use the feature-wise addition, as opposed to
scaling features as well. We train a separate linear conditioning layer mapping per network level. Our
renderer does not use any view-dependent conditioning. Our flow confidence predictor, which maps
concatenated image features to a confidence score for optical flow correspondence, is implemented
as a two-layer 128-unit MLP which accepts the concatenated CNN image features. Recall that the
purpose of this network is to assign weights to each scene flow vector for more robust pose solving.

Input  RGB

Flow-Weight Masked RGB

a) Flow Weight Mask Including Dynamic Objects b) Estimated Poses on T&T

Figure 1: In (a) we present an example where our model’s flow weights mask includes a bicyclist in motion. In
(b) we plot the poses estimated by our model and additional baselines on the Tanks and Temples Caterpillar
sequence.
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2.3 Training Details

We train each dataset for 1 to 2 days, using a constant learning rate of 0.0001 and the Adam optimizer.
The CO3D-10Category model is initialized with the Hydrants model. We first train with a batch size
of 2 and video length 6, and then train with a single batch of video length 12.

2.4 Dataset Details

For the two CO3D datasets (Hydrant and 10-Category), we use the second dataset release version,
and randomly skip 1 or 2 frames when training for larger baseline. On RealEstate10K, we skip 9
frames, and on KITTI, we do not skip any frames. We note that manually defining an “appropriate”
frameskip amount per dataset is not particularly scalable, and a more principled way to handle this
problem is to dynamically determine the frame skip, per sequence, via the average amount of optical
flow in the image. We employ this dynamic video definition on the YouTube and Ego4D videos.

3 Baseline Details

Below we describe model details for all model comparisons.

3.1 Video Autoencoder

For the Video Autoencoder, we initialize training with their RealEstate10K model and train with a
batch size of 7 videos of clip length 6 for 1 to 2 days. We tried offering optical flow as additional input
channels to their CNN encoders, but found training was unstable and just fine-tuned their pretrained
model.

3.2 RUST

Since no code release exists for RUST, We implement RUST by following their writeup and modifying
the endorsed code base for the Scene Representation Transformer [6]. Training is performed using a
batch size of 12 videos of length 9 frames for 1 to 2 days.

3.3 BARF

We use the official code base for BARF and optimize each scene for about 12 hours.

3.4 ORB-SLAM3

We use the official ORB-SLAM3 release and use the monocular RGB mode of operation. We found
that the default settings for running ORB-SLAM3 suffered in the low textured scenes in CO3D. We
therefore increased the number of features in ORB-SLAM3 to 4000 and initial and minimum fast
thresholds to 5 and 1 respectively to improve performance on low textured scenes.

3.5 DROID-SLAM

We use the official code base for DROID-SLAM and their pretrained model, i.e., we do not fine-tune
it on the CO3D datasets. We use two bundle-adjustment iterations (the default setting) per scene.
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Figure 2: Additional Results on CO3D Hydrants.
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Figure 3: Additional Results on CO3D 10Category.
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Figure 4: Additional Results on RealEstate10K.
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Figure 5: Additional Results on KITTI.
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Figure 6: Additional Odometry Comparisons with Video Autoencoder on 20 Frame Sequences Please zoom in to
individual sequences for easier viewing.
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Figure 7: Additional Odometry Comparisons with ORB-SLAM3 and DROID-SLAM on ∼ 150 Frame Sequences
Please zoom in to individual sequences for easier viewing.
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