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Physics-informed neural network for single-shot phase retrieval in cryo-EM
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1. Introduction
Cryo-electronmicroscopy (cryo-EM)has emerged

as a transformative imaging technique for structural
biology, enabling the visualization of macromolecu-
lar structures at near-atomic resolution [1]. However,
several challenges remain, particularly in the case of
small biomolecules such as biomolecular fragments.
Small particles impart only subtle phase shifts in the
incident electronwave, leading to low contrast in the
resulting images. This makes it challenging to ex-
tract meaningful structural information, especially
for particles that exhibit structural flexibility.
To enhance contrast, physical phase plates (PPP)

have been introduced in cryo-EM to modulate the
phase of the transmitted electron wave. Devices
such as the Zernike phase plate (ZPP), Volta phase
plate (VPP), and laser phase plate (LPP) provide
enhanced contrast by shifting phase information,
thereby improving the detectability of weakly scat-
tering biological specimens [2]. However, despite
their advantages, PPPs face several practical chal-
lenges, including fabrication complexity, beam-
induced contamination, and phase drift over time.
In recent years, computational phase retrieval

methods have become popular as an alternative,
aiming to estimate the underlying phase directly
from the detected observations via reconstruction
algorithms [3, 4]. Traditional phase retrieval meth-
ods, such as iterative optimization algorithms, often
suffer from slow convergence, sensitivity to noise,
and reliance on multiple frames or additional prior
knowledge. These limitations hinder the efficiency
and accuracy of structure determination, especially
in single-particle analysis.
In this work, we propose a physics-informed neu-

ral network (PINN) for single-shot phase retrieval in
cryo-EM, which embeds the fundamental physical
constraints of the imaging process within the neu-
ral network architecture to achieve accurate phase
retrieval. Through end-to-end training on a simu-
lated dataset, the proposed method is demonstrated
to have the potential to bridge the gap between the-
ory and experiments.

2. Method
2.1 The phase retrieval problem in cryo-EM
In cryo-EM, the detector cannot measure the

complex-valued field and only obtains an intensity
image 1, which can be expressed as:

g(x) = |ψexit(x)⊗ h(x)|2 + n, (1)
1See Appendix A for more details.

where ψexit(x) is the exit wave, h(x) represents the
complex-valued point-spread function of the micro-
scope,⊗ denotes the convolution operation, and n is
the observed noise.
The phase retrieval problem aims to estimate the

exit wave from the intensity measurement and usu-
ally involves solving an optimization problem:

ψ̂exit(x) = argmin
ψexit(x)

||g(x)− |ψexit(x)⊗ h(x)|2||22. (2)

2.2 Proposed physics-informed neural network
To solve this ill-posed problem (2), we propose

a physics-informed neural network that leverages
the cryo-EM image formationmodel and data-driven
statistical priors. The overall architecture diagram
of the network is shown in Fig. 1.
The proposed network adopts a K-stage progres-

sive reconstruction framework, and each stage con-
tains two modules, i.e., physics informed module
and denoising & deicing module. The input of pro-
posed network is the defocused intensity measure-
ment collected by the detector and corresponding
cryo-EM system parameters, and the output is the
estimated phase of the exit wave. Specifically, the
mathematical expression of PINN is as follows:

ψ̂Kexit(x) = fPINN (g(x), h(x))

= [fUNet ◦ fPhysics]
K (g(x), h(x)) ,

(3)

where fPhysics and fUNet denote the operators of the
physics informed module and denoising & deicing
module, respectively.
Physics-informed module. This module aims to

fully exploit the acquired defocused intensity image
in conjunction with the corresponding cryo-EM im-
age formation model to iteratively refine the esti-
mated exitwave. Specifically, the current estimate of
the exit wave is forward-propagated to the detection
plane, where its amplitude is replaced with the ob-
served intensity-derived amplitude. Subsequently,
the updated wavefront is backpropagated to the exit
wave plane, mathematically expressed as:

fPhysics(ψ(x)) ≜

(
ψ(x)⊗ h(x)

|ψ(x)⊗ h(x)|
√
g(x)

)
⊗ h−1(x).

(4)
Denoising & deicing module. This module is de-

signed tomitigate the theory-experiment gap caused
by the ice layer and observed noise. To this end, we
employ a neural network (classical UNet architec-
ture) to perform both denoising and deicing on the
currently estimated real-valued projected potential.
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Fig. 1: Schematic diagram of the cryo-EM image acquisition and the proposed neural network architecture.

Fig. 2: Comparisons of reconstruction results using different methods.

Given an input phase profile (i.e., ψ′(x)), we mathe-
matically define the operation of this neural network
as fUNet(ψ′(x)).
To train the proposed network, we simulated

and constructed a paired dataset consisting of de-
focused observations and their corresponding exit
wave phases. The network parameters are up-
dated by minimizing the mean square error (MSE)
loss function between the predicted phases and the
ground truth phases.

3. Results and Discussions
3.1 Implementation details
We generated simulated defocused intensity im-

ages of the particle ‘5MAC’ [5] from various orien-
tations, along with their corresponding exit wave
phases, resulting in a dataset of 500 paired train-
ing samples. The imaging parameters were config-
ured as follows: electron beam energy of 200 kV,
amplitude contrast ratio of 0.1, defocus distance of
1000 nm, spherical aberration coefficient of 2 mm,
and pixel size of 1 Å. And we implemented the pro-
posed network on pytorch and empirically chose the
number of stages to be 10. The neural network was
trained for 500 epochs using a learning rate of 0.0001.

3.2 Compare with the existing methods
To assess the efficacy of the proposedmethod, we

conducted experiments on the particle ‘8HLP’ [6],
which is entirely distinct from the training dataset.

Fig. 2 presents a comparative analysis of the sim-
ulated observations, low-pass filtering results, re-
construction results using the iterative plug-and-
play (PNP) phase retrieval algorithm with the total-
variation denoiser [7], and reconstructions gener-
ated by the proposed PINN. For eachmethod, we dis-
play both the reconstruction from a single observa-
tion and the averaging results derived from 10 obser-
vations captured at the same projection angle.
Furthermore, we compute the Fourier Ring Cor-

relation (FRC) [8] curvebetweeneach reconstruction
and the ground-truth result as a quantitative evalu-
ation metric. The results indicate that, for single-
image reconstructions, the proposed method not
only enhances image contrast substantially but also
yields a marked improvement in quantitative FRC
measurements, as assessed by the 0.5 threshold cri-
terion. Furthermore, in the subsequent 2D classifi-
cation task, averaging 10 images processed with our
method leads to a further enhancement in the attain-
able resolution, again confirmed by the 0.5 FRC cri-
terion. We believe that the proposed PINN method
has the potential to bridge the gap between theory
and experiment and enhance single-particle recon-
struction in cryoEM.
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Appendix A. Image formationmodel in cryo-EM

In cryo-EM, the biological specimens usually as-
sume Humphrey’s prior [9], which can be defined as

Ṽ (x, y, z) =
√
1− α2V (x, y, z) + iαV (x, y, z), (A1)

where V is the real-valued scattering potential and α
denotes the amplitude contrast ratio.
By applying projection approximation [10], the 3D

complex-valued scattering potential of the sample at
a given orientation is projected along the z-axis:

Ṽz(x) =

∫
Ṽ (x, y, z)dz =

√
1− α2Vz(x) + iαVz(x).

(A2)
The influence of the sample on the incident beam

is expressed by the exit wave function as:

ψexit(x) ≈ exp[iσṼz(x)] = exp[(i
√
1− α2−α)σVz(x)],

(A3)
where σ is the interaction parameter.
Through the imaging system, the final image cap-

tured by the detector is expressed as:

g(x) = |ψexit(x)⊗ h(x)|2 + n, (A4)

where ⊗ denotes the convolution operation, n is the
observed noise, and h(x) represents the complex-
valued point-spread function of the microscope,
which is usually described by its Fourier transform:

H(k) = exp[−i2π(−1

2
∆fλk2 +

1

4
Csλ

3k4)], (A5)

where k = |k|, ∆f is the defocus distance, λ is the
wavelength of the incident electron beam, and Cs is
the spherical aberration constant.
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