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Abstract

In reinforcement learning (RL), the consideration of multivariate reward signals
has led to fundamental advancements in multi-objective decision-making, transfer
learning, and representation learning. This work introduces the first oracle-free and
computationally-tractable algorithms for provably convergent multivariate distribu-
tional dynamic programming and temporal difference learning. Our convergence
rates match the familiar rates in the scalar reward setting, and additionally provide
new insights into the fidelity of approximate return distribution representations
as a function of the reward dimension. Surprisingly, when the reward dimension
is larger than 1, we show that standard analysis of categorical TD learning fails,
which we resolve with a novel projection onto the space of mass-1 signed measures.
Finally, with the aid of our technical results and simulations, we identify tradeoffs
between distribution representations that influence the performance of multivariate
distributional RL in practice.

1 Introduction

Distributional reinforcement learning [DRL; MSK+10, BDM17b, BDR23] focuses on the idea of
learning probability distributions of an agent’s random return, rather than the classical approach
of learning only its mean. This has been highly effective in combination with deep reinforcement
learning [YZL+19, BCC+20, WBK+22], and DRL has found applications in risk-sensitive decision
making [LM22, KEF23], neuroscience [DKNU+20], and multi-agent settings [ROH+21, SLL21].

In general, research in distributional reinforcement learning has focused on the classical setting
of a scalar reward function. However, prior non-distributional approaches to multi-objective RL
[RVWD13, HRB+22] and transfer learning [BDM+17a, BHB+20] model value functions of mul-
tivariate cumulants,1 rather than a scalar reward. Having learnt such a multivariate value function,
it is then possible to perform zero-shot evaluation and policy improvement for any scalar reward
signal contained in the span of the coordinates of the multivariate cumulants, opening up a variety of
applications in transfer learning, and multi-objective and constrained RL.

Multivariate distributional RL combines these two ideas, and aims to learn the full probability
distribution of returns given a multivariate cumulant function. Successfully learning the multivariate

1Cumulants refer to accumulated quantities in RL (e.g., rewards or multivariate rewards)—not to be confused
with statistical cumulants.
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reward distribution opens up a variety of unique possibilities, such as zero-shot return distribution
estimation [WFG+24] and risk-sensitive policy improvement [CZZ+24].

Pioneering works have already proposed algorithms for multivariate distributional RL. While these
works all demonstrate benefits from the proposed algorithmic approaches, each suffers from separate
drawbacks, such as not modelling the full joint distribution [GBSL21], lacking theoretical guarantees
[FSMT19, ZCZ+21], or requiring a maximum-likelihood optimisation oracle for implementation
[WUS23]. Concurrently, the work of [LK24] analyzed algorithms for DRL with Banach-space-
valued rewards, and provided convergence guarantees for dynamic programming with non-parametric
(intractable) distribution models.

Our central contribution in this paper is to propose algorithms for dynamic programming and temporal-
difference learning in multivariate DRL which are computationally tractable and theoretically justified,
with convergence guarantees. We show that reward dimensions strictly larger than 1 introduce new
computational and statistical challenges. To resolve these challenges, we introduce multiple novel
algorithmic techniques, including a randomized dynamic programming operator for efficiently
approximating projected updates with high probability, and a novel TD-learning algorithm operating
on mass-1 signed measures. These new techniques recover existing bounds even in the scalar reward
case, and provide new insights into the behavior of distributional RL algorithms as a function of the
reward dimension.

2 Background

We consider a Markov decision process with Polish state space X , action space A, transition kernel
P : X ×A →P(X ), and discount factor γ ∈ [0, 1). Unlike the standard RL setting, we consider
a vector-valued reward function r : X → [0, Rmax]

d, as in the literature on successor features
[BDM+17a]. Given a policy π : X → P(A), we write the policy-conditioned transition kernel
Pπ(· | x) =

∫
P (· | x, a)π(da | x).

Multi-variate return distributions. We write (Xt)t≥0 for a trajectory generated by setting X0 = x,
and for each t ≥ 0, Xt+1 ∼ Pπ(·|Xt). The return obtained along this trajectory is then defined by
Gπ(x) =

∑∞
t=0 γ

tr(Xt), and the (multi-)return distribution function is ηπ(x) = Law (Gπ(x)).

Zero-shot evaluation. An intriguing prospect of estimating multivariate return distributions is the
ability to predict (scalar) return distributions for any reward function in the span of the cumulants.
Indeed, [ZCZ+21, CZZ+24] show that for any reward function r̃ : x 7→ ⟨r(x), w⟩ for some w ∈ Rd,
⟨Gπ(x), w⟩=law

∑
t≥0 γ

tr̃(Xt) for X0 = x. Likewise, one might consider r(x) = δx, in which
case Gπ(x) corresponds to the per-trajectory discounted state visitation measure, and [WFG+24]
demonstrated methods for learning the distribution of Gπ to infer the return distribution for any
bounded deterministic reward function.

Multivariate distributional Bellman equation. It was shown in [ZCZ+21] that multi-return
distributions obey a distributional Bellman equation, similar to the scalar case [MSK+10, BDM17b],
and defines the multivariate distributional Bellman operator T π : P(Rd)X → P(Rd)X by

(T πη)(x) = E
X′∼Pπ(·|x)

[
(br(x),γ)♯η(X

′)
]
, (1)

where by,γ(z) = y + γz and f♯µ = µ ◦ f−1 is the pushforward of a measure µ through
a measurable function f . In particular, [ZCZ+21] showed that ηπ satisfies the multi-variate
distributional Bellman equation T πηπ = ηπ, and that T π is a γ-contraction in W p, where
W p(η1, η2) = supx∈X Wp(η1(x), η2(x)) and Wp is the p-Wasserstein metric [Vil09]. This sug-
gests a convergent scheme for approximating ηπ in W p by distributional dynamic programming, that
is, computing the iterates ηk+1 = T πηk, following Banach’s fixed point theorem.

Approximating multivariate return distributions. In practice, however, the iterates ηk+1 = T πηk
cannot be computed efficiently, because the size of the support of ηk may increase exponentially
with k. A variety of alternative approaches that aim to circumvent this computational difficulty have
been considered [FSMT19, ZCZ+21, WUS23]. Many of these approaches have proven effective in
combination with deep reinforcement learning, though as tabular algorithms, either lack theoretical
guarantees, or rely on oracles for solving possibly intractable optimisation problems. A more
complete account of multivariate DRL is given in Appendix A. A central motivation of our work
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is the development of computationally-tractable algorithms for multivariate distributional RL with
theoretically guarantees.

Maximum mean discrepancies. A core tool in the development of our proposed algorithms, as
well as some prior work [NTGV20, ZCZ+21], is the notion of distance over probability distributions
given by maximum mean discrepancies [GBR+12, MMD]. A maximum mean discrepancy MMDκ :
P(Y) ×P(Y) → R+ assigns a notion of distance to pairs of probability distributions, and is
parametrised via a choice of kernel κ : Y × Y → R, defined by

MMDκ(p, q) = E(Y1,Y2)∼p⊗p[κ(Y1, Y2)]− 2E(Y,Z)∼p⊗q[κ(Y, Z)] + E(Z1,Z2)∼q⊗q[κ(Z1, Z2)] .

A useful alternative perspective on MMD is that the choice of kernel κ induces a reproducing
kernel Hilbert space (RKHS) of functions H, namely the closure of the span of functions of the
form z 7→ κ(y, z) for each y ∈ Y , with respect to the norm ∥ · ∥H induced by the inner product
⟨κ(y1, ·), κ(y2, ·)⟩ = κ(y1, y2). With this interpretation, MMDκ(p, q) is equal to ∥µp−µq∥H, where
µp =

∫
Y κ(·, y)p(dy) ∈ H is the mean embedding of p (similarly for µq). When p 7→ µp is injective,

the kernel κ is called characteristic, and MMDκ is then a proper metric on P(Y) [GBR+12]. In the
remainder of this work, we will assume that all spaces of measures will be over compact sets Y ; thus
with continuous kernels, we are ensured that distances between probability measures are bounded.
When comparing return distributions, this is achieved by asserting that rewards are bounded.

We conclude this section by recalling a particular family of kernels, introduced in [SSGF13], that
will be particularly useful for our analysis. These are the kernels induced by semimetrics.
Definition 1. Let Y be a nonempty set, and consider a function ρ : Y ×Y → R+. Then ρ is called a
semimetric if it is symmetric and ρ(y1, y2) = 0 ⇐⇒ y1 = y2. Additionally, ρ is said to have strong
negative type if

∫
ρ d([p− q]× [p− q]) < 0 whenever p, q ∈ P(Y) with p ̸= q.

Notably, certain semimetrics naturally induce characteristic kernels and probability metrics.
Theorem 1 ([SSGF13, Proposition 29]). Let ρ be a semimetric on a space Y have strong negative
type, in the sense that

∫
ρd([p− q]× [p− q]) < 0 whenever p ̸= q are probability measures on a

compact set Y . Moreover, let κ : Y × Y → R denote the kernel induced by ρ, that is

κ(y1, y2) =
1

2
(ρ(y1, y0) + ρ(y2, y0)− ρ(y1, y2))

for some y0 ∈ Y . Then κ is characteristic, so MMDκ is a metric.

Remark 1. An important class of semimetrics are the functions ρα : Rd×Rd → R+ given by
ρα(y1, y2) = ∥y1 − y2∥α2 for α ∈ (0, 2). It is known that these semimetrics have strong negative
type, and thus the kernels κα induced by ρα are characteristic [SR13, SSGF13]. The resulting metric
MMDκα is known as the energy distance.

3 Multivariate Distributional Dynamic Programming

To warm up, we begin by demonstrating that indeed the (multivariate) distributional Bellman
operator is contractive in a supremal form MMDκ of MMD, given by MMDκ(η1, η2) =
supx∈X MMDκ(η1(x), η2(x)), for a particular class of kernels κ. Our first theorem generalizes
the analogous results of [NTGV20] in the scalar case to multivariate cumulants. The proof of
Theorem 2, as well as proofs of all remaining results, are deferred to Appendix B.
Theorem 2 (Convergent MMD dynamic programming for the multi-return distribution function). Let
κ be a kernel induced by a semimetric ρ on [0, (1− γ)−1Rmax]

d with strong negative type, satisfying

1. Shift-invariance. For any z ∈ Rd, ρ(z + y1, z + y2) = ρ(y1, y2).

2. Homogeneity. For any γ ∈ [0, 1), there exists c > 0 for which ρ(γy1, γy2) = γcρ(y1, y2).

Consider the sequence {ηk}
∞
k=1 given by ηk+1 = T πηk. Then ηk → ηπ at a geometric rate of γc/2

in MMDκ, as long as MMDκ(η0, η
π) ≤ C <∞.

Notably, the energy distance kernels κα satisfy the conditions of Theorem 2, and ρα(γy1, γy2) ≤
γαρ(y1, y2) by the homogeneity of the Euclidean norm, so T π is a γα/2-contraction in the energy
distances. This generalizes the analogous result of [NTGV20] in the one-dimensional case.
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While Theorem 2 illustrates a method for approximating ηπ in MMD, it leaves a lot to be desired.
Firstly, even in tabular MDPs, just as in the case of scalar distributional RL, return distribution
functions have infinitely many degrees of freedom, precluding a tractable exact representation. As
such, it will be necessary to study approximate, finite parameterizations of the return distribution
functions, requiring more careful convergence analysis. Moreover, in RL it is generally assumed
that the transition kernel and reward function are not known analytically—we only have access to
sampled state transitions and cumulants. Thus, T π cannot be represented or computed exactly, and
instead we must study algorithms for approximating ηπ from samples. We provide algorithms for
resolving both of these concerns—the former in Section 5 and the latter in Section 6—where we
illustrate the difficulties that arise once the cumulant dimension exceeds unity.

4 Particle-Based Multivariate Distributional Dynamic Programming

Our first algorithmic contribution is inspired by the empirically successful equally-weighted particle
(EWP) representations of multivariate return distributions employed by [ZCZ+21].

Temporal-difference learning with EWP representations. EWP representations, expressed by the
class CEWP,m, are defined by

CEWP,m = (C ◦
EWP,m)X , C ◦

EWP,m =

{
1

m

m∑
i=1

δθi : θi ∈ Rd

}
. (2)

For simplicity, we consider the case here where at each state x, the multi-return distribution is
approximated by N(x) = m atoms. We can represent η ∈ CEWP,m by η(x) = 1

m

∑m
i=1 δθi(x) for

θi : X → Rd. The work of [ZCZ+21] introduced a TD-learning algorithm for learning a CEWP,m

representation of ηπ , computing iterates of the particles (θ(k)i )mi=1 according to

θ
(k+1)
i (x) = θ

(k)
i (x)− λk∇θi(x)MMD2

κ

 1

m

m∑
i=j

δ
θ
(k)
j (x)

,
1

m

m∑
j=1

δ
r(x)+γθ

(k)
j (X′)

 (3)

for step sizes (λk)k≥0 and sampled next states X ′ ∼ Pπ(· | x), where θ = stop-gradient(θ(k))
is a copy of θ(k) that does not propagate gradients. Despite the empirical success of this method
in combination with deep learning, no convergence analysis has been established, owing to the
nonconvexity of the MMD objective with respect to the particle locations. In this section we aim to
understand to what extent analysis is possible for dynamic programming and temporal-difference
learning algorithms based on the EWP representations in Equation (2).

Dynamic programming with EWP representations. As is often the case in approximate distri-
butional dynamic programming [RBD+18, RMA+24], we have T πCEWP,m ̸⊂ CEWP,m; in words,
the distributional Bellman operator does not map EWP representations to themselves. Concretely,
as long as there exists a state x at which the support of Pπ(· | x) is not a singleton, (T πη)(x) will
consist of more than m atoms even when η ∈ CEWP,m; and secondly, if P (· | x) is not uniform,
(T πη)(x) will not consist of equally-weighted particles.

Consequently, to obtain a DP algorithm over EWP representations, we must consider a projected
operator of the form ΠEWPT π , for a projection ΠEWP : P(Rd)X → CEWP,m. A natural choice for
this projection is the operator that minimizes the MMD of each multi-return distribution in CEWP,m,

(Πm
EWP,κη)(x) ∈ argmin

p∈C◦
EWP,m

MMDκ(p, η(x)). (4)

Unfortunately, even in the scalar-reward (d = 1) case, the operator Πm
EWP,κ is problem-

atic; (Πm
EWP,κη)(x) is not uniquely defined, and Πm

EWP,κ is not a non-expansion in MMDκ

[LB22, RMA+24]. These pathologies present significant complications when analyzing even the
convergence of dynamic programming routines for learning an EWP representation of the multi-return
distribution — in particular, it is not even clear that Πm

EWP,κT π has a fixed point (let alone a unique
one). Another complication arises due to the computational difficulty of computing the projection
(4): even in the case where η(x) has finite support for each state x, the projection (Πm

EWP,κη)(x) is
very similar to clustering, which can be intractable to compute exactly for large m [She21]. Thus, the
argmin projection in Equation (4) cannot be used directly to obtain a tractable DP algorithm.
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Randomised dynamic programming. Towards this end, we introduce a tractable randomized dy-
namic programming algorithm for the EWP representation, by using a randomized proxy BootProjπκ,m
for Πκ,mT π , that produces accurate return distribution estimates with high probability. The method
produces the following iterates,

ηk+1(x) = BootProjπκ,mηk(x) :=
1

m

m∑
i=1

δr(x)+γZi
, Zi ∼ ηk(Xi), Xi

iid∼ Pπ(· | x) (5)

A similar algorithm for categorical representations was discussed in concurrent work [LK24] without
convergence analysis.

The intuition is that, particularly for large m, the Monte Carlo error associated with the sample-based
approximation to (T πη)(x) is small, and we can therefore expect the DP process, though randomised,
to be accurate with high probability. This is summarised by a key theoretical result of this section; our
proof of this result in the appendix provides a general approach to proving convergence for algorithms
using arbitrary accurate approximations to (4) that we expect to be useful in future work.
Theorem 3. Consider a kernel κ induced by the semimetric ρ(x, y) = ∥x − y∥α2 with α ∈ (0, 2),
and suppose rewards are bounded in each dimension within [0, Rmax]. For any η0 such that
MMDκ(η0, η

π) ≤ D < ∞, and any δ > 0, for the sequence (ηk)k≥0 defined in Equation (5),
with probability at least 1− δ we have

MMDκ(ηK , ηπ) ∈ Õ

(
dα/2Rα

max

(1− γα/2)(1− γ)α
√
m

log

(
|X |δ−1

log γ−α

))
.

where ηk+1 = BootProjπκ,mηk and K = ⌈ logm
log γ−α ⌉, and where Õ omits logarithmic factors in m.

This shows that our novel randomised DP algorithm with EWP representations can tractably compute
accurate approximations to the true multivariate return distributions, with only polynomial depen-
dence on the dimension d. Appendix C illustrates explicitly how this procedure is more memory
efficient than unprojected EWP dynamic programming. However, the guarantees associated with this
algorithm hold only in high probability, and are weaker than the pointwise convergence guarantees of
one-dimensional distributional DP algorithms [RBD+18, RMA+24, BDR23]. Consequently, these
guarantees do not provide a clear understanding of the EWP-TD method described at the beginning
of this section. However, in the sequel, we introduce DP and TD algorithms based on categorical
representations, for which we derive dynamic programming and TD-learning convergence bounds.

The proof of Theorem 3 is hinges on the following proposition, which demonstrates that convergence
of projected EWP dynamic programming is controlled by how far return distributions are transported
under the projection map.
Proposition 1 (Convergence of EWP Dynamic Programming). Consider a kernel satisfying the
hypotheses of Theorem 2, suppose rewards are globally bounded in each dimension in [0, Rmax], and
let {Π(k)

κ,m}k≥0 be a sequence of maps Π : P([0, (1− γ)−1Rmax]
d)X → CEWP,m satisfying

MMDκ((Π
(k)
κ,mη)(x), η(x)) ≤ f(d,m) <∞ ∀k ≥ 0. (6)

Then the iterates (ηk)k≥0 given by ηk+1 = Π
(k)
κ,mT πηk with MMDκ(η0, η

π) = D < ∞ converge
to a set ηηηmEWP,κ ⊂ B(ηπ, (1 − γc/2)−1f(d,m)) in MMDκ, where B denotes the closed ball in
MMDκ,

B(η,R) ≜
{
η′ ∈ P(Rd)X : MMDκ(η, η

′) ≤ R
}
.

As an immediate corollary of Proposition 1 and Theorem 3, we can derive an error rate for projected
dynamic programming with Πm

EWP,κ as well.

Corollary 1. For any kernel κ satisfying the hypotheses of Theorem 3, and for any η0 ∈ CEWP,m for
which MMDκ(η0, η

π) ≤ D < ∞, the iterates ηk+1 = Πm
EWP,κT πηk converge to a set ηηηmEWP,κ ⊂

CEWP,m, where

ηηηmEWP,κ ⊂ B

(
ηπ,

6dα/2Rα
max

(1− γα/2)(1− γ)α
√
m

)
.
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5 Categorical Multivariate Distributional Dynamic Programming

Our next contribution is the introduction of a convergent multivariate distributional dynamic program-
ming algorithm based on a categorical representation of return distribution functions, generalizing
the algorithms and analysis of [RBD+18] to the multivariate setting.

Categorical representations. As outlined above, to model the multi-return distribution function in
practice, it is necessary to restrict each multi-return distribution to a finitely-parameterized class. In
this work, we take inspiration from successful distributional RL algorithms [BDM17b, RBD+18] and
employ a categorical representation. The work of [WUS23] proposed a categorical representation
for multivariate DRL, but their categorical projection was not justified theoretically, and it required a
particular choice of fixed support. We propose a novel categorical representation with a finite (possibly
state-dependent) support R(x) = {ξ(x)i}

N(x)
i=1

⊂ Rd, that models the multi-return distribution
function η such that η(x) ∈ ∆R(x) for each x ∈ X . The notation ξ(x)i simply refers to the ith
support point at state x specified byR, and ∆A denotes the probability simplex on the finite set A.
We refer to the mappingR as the support map2 and we denote the class of multi-return distribution
functions under the corresponding categorical representation as CR ≜

∏
x∈X ∆R(x).

Categorical projection. Once again, the distributional Bellman operator is not generally closed over
CR, that is, T πCR ̸⊂ CR. As such, we cannot actually employ the procedure described in Theorem
2 – rather, we need to project applications of T π back onto CR. Roughly, we need an operator
Π : P(Rd)X → CR for which Π|CR = id. Given such an operator, as in the literature on categorical
distributional RL [BDM17b, RBD+18], we will study the convergence of iterates ηk+1 = ΠT πηk.

Projection operators used in the scalar categorical distributional RL literature are specific to dis-
tributions over R, so we must introduce a new projection. We propose a projection similar to (4),

(ΠR
C,κη)(x) = arginf

p∈∆R(x)

MMDκ(p, η(x)). (7)

We will now verify that ΠR
C,κ is well-defined, and that it satisfies the aforementioned properties.

Lemma 1. Let κ be a kernel induced by a semimetric ρ on [0, (1− γ)−1Rmax]
d with strong negative

type (cf. Theorem 1). Then ΠR
C,κ is well-defined, Ran(ΠR

C,κ) ⊂ CR, and ΠR
C,κ|CR = id.

It is worth noting that beyond simply ensuring the well-posedness of the projection ΠR
C,κ, Lemma 1

also certifies an efficient algorithm for computing the projection — namely, by solving the appropriate
quadratic program (QP), as observed by [SZS+08]. We demonstrate pseudocode for computing the
projected Bellman operator ΠR

C,κT π with a QP solver QPSolve in Algorithm 1.

Algorithm 1 Projected Categorical Dynamic Programming

Require: Support mapR, kernel κ, transition kernel Pπ , reward function r, discount γ
Require: Return distribution function η ∈ CR

for x ∈ X do
(T πη)x ←

∑
x′∈X

∑
ξ∈R(x′) P

π(x′ | x)ηx′(ξ)δr(x)+γξ

Kx
i,j ← κ(ξi, ξj) for each (ξi, ξj) ∈ R(x)2

qxj ←
∑

ξ∈supp (T πη)x
(T πη)x(ξ)κ(ξj , ξ) for each ξj ∈ R(x)

p← QPSolve
(
minp∈R|R(x)|

[
p⊤Kxp− 2p⊤q

]
subject to p ⪰ 0,

∑
i pi = 1

)
(ΠR

C,κT πη)x ←
∑

ξi∈R(x) piδξi
end for
return ΠR

C,κT πη

Lemma 2. Under the conditions of Lemma 1, ΠR
C,κ is a nonexpansion in MMDκ. That is, for any

η1, η2 ∈ P([0, (1− γ)−1Rmax]
d)X , we have MMDκ(Π

R
C,κη1,Π

R
C,κη2) ≤ MMDκ(η1, η2).

Categorical multivariate distributional dynamic programming. As an immediate consequence of
Lemma 2, it follows that projected dynamic programming under the projection ΠR

C,κ is convergent;

2In many applications, the most natural support map is constant across the state space.
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this is because T π is a contraction in MMDκ and ΠR
C,κ is a nonexpansion in MMDκ, so the projected

operator ΠR
C,κT π is a contraction in MMDκ; a standard invokation of the Banach fixed point theorem

appealing to the completenes of MMDκ certifies that repeated application of ΠR
C,κT π will result in

convergence to a unique fixed point.
Corollary 2. Let κ be a kernel satisfying the conditions of Theorem 2. Then for any η0 ∈ CR, the
iterates {ηk}∞k=1 given by ηk+1 = ΠR

C,κT πηk converge geometrically to a unique fixed point.

Beyond the result of Theorem 2, Corollary 2 illustrates an algorithm for estimating ηπ in MMDκ

provided knowledge of the transition kernel and the reward function, which is computationally
tractable in tabular MDPs. Indeed, the iterates (ηk)k≥0 all lie in CR, having finitely-many degrees of
freedom. Algorithm 1 outlines a computationally tractable procedure for learning ηπC,κ in this setting.

We note that the work of [WUS23] provided an alternative multivariate categorical algorithm, which
was not analyzed theoretically. Moreover, our method provides the additional ability to support
state-dependent arbitrary support maps, while theirs requires support maps to be uniform grids.

Accurate approximations. We now provide bounds showing that the fixed point ηπC,κ from Corollary
2 can be made arbitrarily accurate by increasing the number of atoms.

To derive a bound on the quality of the fixed point, we provide a reduction via partitioning the space
of returns to the covering number of this space. Proceeding, we define a class of partitions PR(x),
where each P ∈PR(x) satisfies

1. |P | = N(x);
2. For any θ1, θ2 ∈ P , either θ1 ∩ θ2 = ∅ or θ1 = θ2;
3. ∪θ∈P θ = P([0, (1− γ)−1Rmax]

d);
4. Each element θi ∈ P contains exactly one element zi ∈ R(x).

For any partition P , we define a notion of mesh size relative to a kernel κ induced by a semimetric ρ,

mesh(P ;κ) = max
θ∈P

sup
y1,y2∈θ

ρ(y1, y2). (8)

The following result confirms that ηπC,κ recovers ηπ as the mesh decreases.
Theorem 4. Let κ be a kernel induced by a c-homogeneous and shift-invariant semimetric ρ
conforming to the conditions of Theorem 2. Then the fixed point ηπC,κ of ΠR

C,κT π satisfies

MMDκ(η
π
C,κ, η

π) ≤ 1

1− γc/2
sup
x∈X

inf
P∈PR(x)

√
mesh(P ;κ). (9)

Thus, for any sequence of supports {R(x)m}m≥1 for which the maximal space (in ρ) between
any two points in R(x)m tends to 0 as m → ∞, the fixed point ηπC,κ approximates ηπ to arbitrary
precision for large enough m. The next corollary illustrates this in a familiar setting.
Corollary 3. LetR(x) = Um, where Um is a set of m uniformly-spaced support points on [0, (1−
γ)−1Rmax]. For κ induced by the semimetric ρ(x, y) = ∥x− y∥α2 for α ∈ (0, 2),

MMDκ(η
π
C,κ, η

π) ≤ 1

(1− γα/2)(1− γ)α/2
dα/4R

α/2
max

(m1/d − 2)α/2
.

With α = 1 and d = 1, the MMD in Corollary 3 is equivalent to the Cramér metric [SR13], the
setting in which categorical (scalar) distributional dynamic programming is well understood. Our
rate matches the known Θ(m−1/2) rate shown by [RBD+18] in this setting. Thus, our results offer a
new perspective on categorical DRL, and naturally generalizes the theory to the multivariate setting.

Theorem 4 relies on the following lemma about the approximation quality of the categorical MMD
projection, which may be of independent interest.

Lemma 3. Let κ be kernel satisfying the conditions of Lemma 1, and for any finiteR ⊂ Rd, define Π :
P(Rd)→ ∆R via Πp = arginfq∈∆R

MMDκ(p, q). Then MMD2
κ(Πp, p) ≤ infP∈PR mesh(P ;κ).

At this stage, we have shown definitively that categorical dynamic programming converges in the
multivariate case. In the sequel, we build on these results to provide a convergent multivariate
categorical TD-learning algorithm.

7



Figure 1: Distributional SMs and associated predicted return distributions with the categorical (left)
and EWP (right) representations. Simplex plots denote the distributional SM. Histograms denote the
associated return distributions, predicted from a pair of held-out reward functions.

5.1 Simulation: The Distributional Successor Measure

As a preliminary example, we consider 3-state MDPs with the cumulants r(i) = (1− γ)ei, i ∈ [3]
for ei the ith basis vector. In this setting, ηπ encodes the distribution over trajectory-wise discounted
state occupancies, which was discussed in the recent work of [WFG+24] and called the distributional
successor measure (DSM). Particularly, [WFG+24] showed that x 7→ Law

(
G⊤

x r̃
)

for Gx ∼ ηπ(x)
is the return distribution function for any scalar reward function r̃. Figure 1 shows that the projected
categorical dynamic programming algorithm accurately approximates the distribution over discounted
state occupancies as well as distributions over returns on held-out reward functions.

6 Multivariate Distributional TD-Learning

Next, we devise an algorithm for approximating the multi-return distribution function when the
transition kernel and reward function are not known, and are observed only through samples. Indeed,
this is a strong motivation for TD-learning algorithms [Sut88], wherein state transition data alone is
used to solve the Bellman equation. In this section, we devise a TD-learning algorithm for multivariate
DRL, leveraging our results on categorical dynamic programming in MMDκ.

Relaxation to signed measures. In the d = 1 setting, the categorical projection presented above
is known to be affine [RBD+18], making scalar categorical TD-learning amenable to common
techniques in stochastic approximation theory. However, the projection is not affine when d ≥ 2;
we give an explicit example in Appendix D. Thus, we relax the categorical representation to include
signed measures, which will provide us with an affine projection [BRCM19]—this is crucial for
proving our main result, Theorem 6. We denote byM1(Y) the set of all signed measures µ over Y
with µ(Y) = 1. We begin by noting that the MMD endowsM1(Y) with a metric structure.

Lemma 4. Let κ : Y × Y → R be a characteristic kernel over some space Y . Then MMDκ :
M1(Y) ×M1(Y) → R+ given by (p, q) 7→ ∥µp − µq∥H defines a metric onM1(Y), where µp

denotes the usual mean embedding of p andH is the RKHS with kernel κ.

We define the relaxed projection ΠR
SC,κ :M1([0, (1−γ)−1Rmax]

d)X →
∏

x∈XM1(R(x)) =: SR,(
ΠR

SC,κη
)
(x) ∈ arginf

p∈M1(R(x))

MMDκ(p, η(x)). (10)

Note that (10) is very similar to the definition of the categorical MMD projection in (7)—the only
difference is that the optimization occurs over the larger class of signed mass-1 measures. It is also
worth noting that the distributional Bellman operator can be applied directly to signed measures,
which yields the following convenient result.

Lemma 5. Under the conditions of Corollary 2, the projected operator ΠR
SC,κT π : SR → SR is

affine, is contractive with contraction factor γc/2, and has a unique fixed point ηπSC,κ.

While we have “relaxed” the projection, the fixed point ηπSC,κ is a good approximation of ηπ .

Theorem 5. Under the conditions of Lemma 5, we have that
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1. MMDκ(η
π
SC,κ, η

π) ≤ 1
1−γc/2 supx∈X infP∈PR(x)

√
mesh(P ;κ); and

2. MMDκ(Π
R
C,κη

π
SC,κ, η

π) ≤ (1 + 1
1−γc/2 ) supx∈X infP∈PR(x)

√
mesh(P ;κ).

Notably, the second statement of Theorem 5 states that projecting ηπSC,κ back onto the space of
multi-return distribution functions yields approximately the same error as ηπC,κ when γ is near 1.

In the remainder of the section, we assume access to a stream of MDP transitions {Tt}∞t=1 ⊂
X ×A×Rd×X consisting of elements Tt = (Xt, At, Rt, X

′
t) with the following structure,

Xt ∼ P(· | Ft−1) At ∼ π(· | Xt) Rt = r(Xt) X ′
t ∼ P (· | Xt, At) (11)

where P is some probability measure and {Ft}∞t=1 is the canonical filtration Ft = σ(∪tt=1Tt). Based
on these transitions, we can define stochastic distributional Bellman backups by

T̂ π
t η(x) =

{
(bRt,γ)♯η(X

′
t) x = Xt

η(x) otherwise
, (12)

which notably can be computed exactly without knowledge of P, r. Due to the stronger convergence
guarantees shown for projected multivariate distributional dynamic programming, we introduce
an asynchronous incremental algorithm leveraging the categorical representation, which produces
iterates {η̂t}∞t=1 according to

η̂t+1 = (1− αt)η̂t + αtΠ
R
SC,κT̂ π

t η̂t (13)

for η̂0 ∈ CR, where {αt}∞t=1 is any sequence of (possibly) random step sizes adapted to the filtration
{Ft}∞t=1. The iterates of (13) closely resemble those of classic stochastic approximation algorithms
[RM51] and particularly asynchronous TD learning algorithms [JJS93, Tsi94, BT96], but with iterates
taking values in the space of state-indexed signed measures. Indeed, our next result draws on the
techniques from these works to establish convergence of TD-learning on SR representations.
Theorem 6. For a kernel κ induced by a semimetric ρ of strong negative type, the sequence {η̂t}∞t=1
given by (11)-(13) converges to ηπSC,κ with probability 1.

6.1 Simulations: Distributional Successor Features

To illustrate the behavior of our categorical TD algorithm, we employ it to learn the multi-return
distributions for several tabular MDPs with random cumulants. We focus on the case of 2- and
3-dimensional cumulants, which is the setting studied in recent works regarding multivariate distribu-
tional RL [ZCZ+21, WUS23]. Interpreting the multi-return distributions as joint distributions over
successor features [BDM+17a, SFs], we additionally evaluate the return distributions for random
reward functions in the span of the cumulants. We compare our categorical TD approach with a
tabular implementation of the EWP TD algorithm of [ZCZ+21], for which no convergence bounds
are known.
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Figure 2: Error of zero-shot return distribution predictions over random MDPs, measured by Cramér
distance, and showing 95% confidence intervals.

Figure 2a compares TD learning approaches based on their ability to accurately infer (scalar) return
distributions on held out reward functions, averaged over 100 random MDPs, with transitions drawn
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Figure 3: Distributional SFs and predicted return distributions with m = 400 atoms, in a random
MDP with known rectangular bound on cumulants. Left: Categorical TD. Right: EWP TD.

from Dirichlet priors and 2-dimensional cumulants drawn from uniform priors. The performance
of the categorical algorithms sharply increases as the number of atoms increases. On the other
hand, the EWP TD algorithm performs well with few atoms, but does not improve very much with
higher-resolution representations. We posit this is due to the algorithm getting stuck in local minima,
given the non-convexity of the EWP MMD objective. This hypothesis is supported as well by Figure
3, which depicts the learned distributional SFs and return distribution predictions.

Particularly, we observe that the learned particle locations in the EWP TD approach tend to cluster in
some areas or get stuck in low-density regimes, which suggests the presence of a local optimum. On
the other hand, our provably-convergent categorical TD method learns a high fidelity quantization of
the true multi-return distributions.

Naturally, however, the benefits of the poly(d) bounds for EWP suggested by Theorem 3 become
more present as we increase the cumulant dimension. Figure 2b repeats the experiment of Figure
2a with d = 3, using randomized support points for the categorical algorithm to avoid a cubic
growth in the cardinality of the supports. Notably, our method is the first capable of supporting such
unstructured supports. While the categorical TD approach can still outperform EWP, a much larger
number of atoms is required. This is unsurprising in light of our theoretical results.

7 Conclusion

We have provided the first provably convergent and computationally tractable algorithms for learning
multivariate return distributions in tabular MDPs. Our theoretical results include convergence
guarantees that indicate how accuracy scales with the number of particles m used in distribution
representations, and interestingly motivate the use of signed measures to develop provably convergent
TD algorithms.

While it is difficult to scale categorical representations to high-dimensional cumulants, our algorithm
is highly performant in the low d setting, which has been the focus of recent work in multivariate
distributional RL. Notably, even the d = 2 setting has important applications—indeed, efforts in safe
RL depend on distinguishing a cost signal from a reward signal (see, e.g., [YSTS23]), which can
be modeled by bivariate distributional RL. In this setting, our method can easily be scaled to large
state spaces by approximating the categorical signed measures with neural networks; an illustrated
example is given in Appendix F.

On the other hand, the prospect of learning multi-return distributions for high-dimensional cumulants
also has many important applications, such as modeling close approximations to distributional
successor measures [WFG+24] for zero-shot risk-sensitive policy evaluation. In this setting, we
believe EWP-based multivariate DRL will be highly impactful. Our results concerning EWP dynamic
programming provide promising evidence that the accuracy of EWP representations scales gracefully
with d for a fixed number of atoms. Thus, we believe that understanding convergence of EWP
TD-learning algorithms is a very interesting and important open problem for future investigation.
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A In-Depth Summary of Related Work

In Sections 1 and 2, we provided a high-level synopsis of the state of existing work in multivariate
distributional RL. In this section, we elaborate further.

Analysis techniques. Our results in this paper mostly drawn on the analysis of one-dimensional
distributional RL algorithms such as categorical and quantile dynamic programming, as well as
their temporal-difference learning counterparts [RBD+18, DRBM18, RMA+24, BDR23]. The proof
techniques in these works themselves are related to contraction-based arguments for reinforcement
learning with function approximation [Tsi94, BT96, TVR97].

Multivariate distributional RL algorithms. Several prior works have contributed algorithms
for multivariate distributional reinforcement learning, along with empirical demonstrations and
theoretical analysis, though as we note in the main paper, the approaches proposed in this paper
are the first algorithms with strong theoretical guarantees and efficient tabular implementations.
[FSMT19] propose a deep-learning-based approach in which generative adversarial networks are
used to model multivariate return distributions, and use these predictions to inform exploration
strategies. [ZCZ+21] propose the TD algorithm combing equally-weighted particle representations
and an MMD loss that we recall in Equation (3). They demonstrate the effectiveness of this algorithm
in combination with deep learning function approximators, though do not analyze it. [WUS23]
propose a family of algorithms for multivariate distributional RL termed fitted likelihood evaluation.
These methods mirror LSTD algorithms [BB96], iteratively minimising a batch objective function (in
this case, a negative log-likelihood, NLL) over a growing dataset. [WUS23] demonstrate that these
algorithms are performant in low-dimensional settings empirically, and provide theoretical analysis
for FLE algorithms, assuming an oracle which can approximately optimise the NLL objective at each
algorithm step. [SFS24] also propose a TD learning algorithm for one-dimensional distributional
RL using categorical support and an MMD-based loss. They demonstrate strong performance of
this algorithm in classic RL domains such as CartPole and Mountain Car, but do not analyze the
algorithm. Our analysis in this paper suggests our novel relaxation to mass-1 signed measures may
be crucial to obtaining a straightforwardly analyzable TD algorithm.
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Finally, the concurrent work of [LK24] studied distributional Bellman operators for Banach-space-
valued reward functions. Their work focuses on analyzing how well the fixed point of a distributional
finite-dimensional multivariate Bellman equation can approximate the fixed point of a distributional
Banach-space-valued Bellman equation. In contrast, our work only studies finite-dimensional
reward functions, but provides explicit convergence rates and approximation bounds when the
distribution representations are finite dimensional, unlike [LK24]. Moreover, [LK24] considers
a similar algorithm to that discussed in Theorem 3 but for categorical representations, though its
convergence is not proved. Furthermore, [LK24] did not prove convergence of any TD-learning
algorithms, although they did propose some TD-learning algorithms which achieved interesting
results in simulation.

B Proofs

B.1 Multivariate Distributional Dynamic Programming: Section 3

In this section, we will state some lemmas building up to the proof of Theorem 2. These lemmas
generalize corresponding results of [NTGV20] that were specific to the scalar reward setting. We
begin with a lemma that demonstrates a notion of convexity for the MMD induced by a conditional
positive definite kernel.

Lemma 6. Let (pa)a∈I ⊂ P(Y) and (qa)a∈I ⊂ P(Y) be collections of probability measures
indexed by an index set I. Suppose T ∈ P(I). Then for any characteristic kernel κ, the following
holds,

MMDκ(Ea∼T [pa] ,Ea′∼T [qa′ ]) ≤ sup
a∈I

MMDκ(pa, qa)

Proof. It is known from [Sch00] that characteristic kernels generate RKHSsH into which probability
measures can be embedded. As such, it holds that

MMDκ(p, q) = ∥µp − µq∥

where ∥ · ∥ is the norm in the Hilbert spaceH and µp is the mean embedding of p – that is, the unique
element ofH such that Ey∼p [f(y)] = ⟨f, µp⟩ for every f ∈ H, and where ⟨·, ·⟩ is the inner product
inH.

Let Tp ≜ Ea∼T [pa] and define Tq analogously. We claim that µTp = Ea∼T [µpa
] ≜ Tµp. To see

this, let f ∈ H, and observe that

E
y∼Tp

[f ] (y) =

∫
f(y)Tp(dy)

=

∫∫
f(y)T (da)pa(dy)

=

∫∫
f(y)pa(dy)T (da)

=

∫
⟨f, µpa

⟩T (da)

=

〈
f,

∫
µpa

T (da)

〉
= ⟨f, Tµp⟩,
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where the third step invokes Fubini’s theorem, and the penultimate steps leverages the linearity of the
inner product. Notably, T acts as a linear operator on mean embeddings. As a result, we see that

MMDκ(Tp, Tq) = ∥µTp − µTq∥
= ∥Tµp − Tµq∥

=

∥∥∥∥∫
I
(µpa − µqa)T (da)

∥∥∥∥
≤
∫
∥µpa − µqa∥T (da)

≤ sup
a∈I
∥µpa

− µqa∥

= sup
a∈I

MMDκ(µpa , µqa).

where the penultimate inequality is due to Jensen’s inequality, and the final inequality holds since
supa∈I ∥µpa − µqa∥ upper bounds the integrand, and the integral is a monotone operator.

Next, we show how the MMDκ under the kernels hypothesized in Theorem 2 behave under affine
transformations to random variables.
Lemma 7. Let κ be a kernel induced by a semimetric ρ of strong negative type defined over a
compact subset Y ⊂ Rd that is both shift invariant and c-homogeneous (cf. Theorem 2). Then for
any a ∈ Y and p, q ∈ P(Y),

MMDκ((ba,γ)♯p, (ba,γ)♯q) ≤ γc/2MMDκ(p, q).

Proof. It is known [GBR+12] that the MMD can be expressed in terms of expected kernel evaluations,
according to

MMD2
κ(p, q) = E [κ(Y, Y ′)] +E [κ(Z,Z ′)]− 2E [κ(Y,Z)] (Y, Y ′, Z, Z ′) ∼ p⊗ p⊗ q ⊗ q

= E

[
1

2
(ρ(Y, y0) + ρ(Y ′, y0)− ρ(Y, Y ′))

]
+E

[
1

2
(ρ(Z, y0) + ρ(Z ′, y0)− ρ(Z,Z ′))

]
−E [ρ(Y, y0) + ρ(Z, y0)− ρ(Y,Z)]

= E [ρ(Y,Z)]− 1

2

(
E [ρ(Y, Y ′)] +E [ρ(Z,Z ′)]

)
,

where the last step invokes the definition of a kernel induced by a semimetric, and the linearity of
expectation. Then, defining Ỹ , Ỹ ′ as independent samples from (ba,γ)♯p and Z̃, Z̃ ′ as independent
samples from (ba,γ)♯q, we have

MMD2
κ((ba,γ)♯p, (ba,γ)♯q) = E

[
ρ(Ỹ , Z̃)

]
− 1

2

(
E
[
ρ(Ỹ , Ỹ ′)

]
+E

[
ρ(Z̃, Z̃ ′)

])
= E [ρ(a+ γY, a+ γZ)]− 1

2

(
E [ρ(a+ γY, a+ γY ′)] +E [ρ(a+ γZ, a+ γZ ′)]

)
= E [ρ(γY, γZ)]− 1

2

(
E [ρ(γY, γY ′)] +E [ρ(γZ, γZ ′)]

)
= γcE [ρ(Y, Z)]− γc

2

(
E [ρ(Y, Y ′)] +E [ρ(Z,Z ′)]

)
= γcMMD2

κ(p, q),

where the second step is a change of variables, the third step invokes the shift invariance of ρ, and the
fourth step invokes the homogeneity of ρ.

Thus, it follows that MMDκ((ba,γ)♯p, (ba,γ)♯q) ≤ γc/2MMDκ(p, q).

We are now ready to prove the main result of this section.
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Theorem 2 (Convergent MMD dynamic programming for the multi-return distribution function). Let
κ be a kernel induced by a semimetric ρ on [0, (1− γ)−1Rmax]

d with strong negative type, satisfying

1. Shift-invariance. For any z ∈ Rd, ρ(z + y1, z + y2) = ρ(y1, y2).

2. Homogeneity. For any γ ∈ [0, 1), there exists c > 0 for which ρ(γy1, γy2) = γcρ(y1, y2).

Consider the sequence {ηk}
∞
k=1 given by ηk+1 = T πηk. Then ηk → ηπ at a geometric rate of γc/2

in MMDκ, as long as MMDκ(η0, η
π) ≤ C <∞.

Proof. We begin by showing that the distributional Bellman operator T π is contractive in MMDκ.
We have

MMDκ(T πη1, T πη2) = sup
x∈X

MMDκ(T πη1(x), T πη2(x))

= sup
x∈X

MMDκ

(
E

x′∼Pπ(·|x)

[
(br(x),γ)♯η1(x

′)
]
, E
x′′∼Pπ(·|x)

[
(br(x),γ)♯η2(x

′′)
])

.

We apply Lemma 6 with I = X and T = Pπ(· | x), yielding

MMDκ(T πη1, T πη2) ≤ sup
x∈X

sup
x′∈X

MMDκ

(
(br(x),γ)♯η1(x

′), (br(x),γ)♯η2(x
′)
)
.

Next, invoking Lemma 7 with the shift-invariance and c-homogeneity of κ, we have

MMDκ(T πη1, T πη2) ≤ γc/2 sup
x∈X

sup
x′∈X

MMDκ (η1(x
′), η2(x

′))

= γc/2 sup
x∈X

MMDκ (η1(x), η2(x))

= γc/2MMDκ(η1, η2).

It follows that MMDκ(ηk+1, η
π) ≤ γc/2MMDκ(T πηk, T πηπ) = γc/2MMDκ(T πηk, η

π), since
ηπ is a fixed point of T π. Continuing, we see that MMDκ(ηk, η

π) ≤ γkc/2MMDκ(η0, η
π) ≤

γkc/2C ∈ O(γkc/2) ⊂ o(1). Since MMDκ is a metric on P([0, (1 − γ)−1Rmax]
d)X for any

characteristic kernel κ, it follows that ηk approaches ηπ at a geometric rate.

B.2 EWP Dynamic Programming: Section 4

In this section, we provide the proof of Theorem 3. To do so, we prove an abstract, general
result, regarding any projection mapping that approximates the argmin MMD projection given in
Equation (4).
Proposition 1 (Convergence of EWP Dynamic Programming). Consider a kernel satisfying the
hypotheses of Theorem 2, suppose rewards are globally bounded in each dimension in [0, Rmax], and
let {Π(k)

κ,m}k≥0 be a sequence of maps Π : P([0, (1− γ)−1Rmax]
d)X → CEWP,m satisfying

MMDκ((Π
(k)
κ,mη)(x), η(x)) ≤ f(d,m) <∞ ∀k ≥ 0. (6)

Then the iterates (ηk)k≥0 given by ηk+1 = Π
(k)
κ,mT πηk with MMDκ(η0, η

π) = D < ∞ converge
to a set ηηηmEWP,κ ⊂ B(ηπ, (1 − γc/2)−1f(d,m)) in MMDκ, where B denotes the closed ball in
MMDκ,

B(η,R) ≜
{
η′ ∈ P(Rd)X : MMDκ(η, η

′) ≤ R
}
.

Proof. Let ∆k = MMDκ(ηk, η
π). Then we have

∆k = MMDκ(Π
(k)
κ,mT πηk−1, T πηπ)

≤ MMDκ(Π
(k)
κ,mT πηk−1, T πηk−1) +MMDκ(T πηk−1, T πηπ)

≤ f(d,m) + γc/2MMDκ(ηk−1, η
π)

∴ ∆k ≤ f(d,m) + γc/2∆k−1,
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where the first step invokes the identity that ηπ is the fixed point of T π (which is well-defined by
Theorem 2), the second step leverages the triangle inequality, and the third step follows by the
definition of f(d,m) and the contractivity of T π established in Theorem 2. Unrolling the recurrence
above, we have

MMDκ(ηk, η
π) = ∆k ≤ γck/2∆0 + f(d,m)

∞∑
i=0

γci/2

≤ γck/2D +
f(d,m)

1− γc/2
.

As such, as k →∞, we have that

lim
k→∞

MMDκ

(
ηk, B

(
ηπ,

f(d,m)

1− γc/2

))
= 0,

proving our claim.

Proposition 1, despite its simplicity, reveals an interesting fact: given a good enough approximate
MMD projection Πκ,m in the sense that f(d,m) decays quickly with m, the dynamic programming
iterates (ηk)k≥0 will eventually be contained in a (arbitrarily) small neighborhood of ηπ. The next
result provides an example consequence of this abstract result, and establishes that m ∈ poly(d) is
enough for convergence to an arbitrarily small set with projected distributional dynamic programming
under the EWP representation.

Finally, we can now prove Theorem 3, which we restate below for convenience.

Theorem 3. Consider a kernel κ induced by the semimetric ρ(x, y) = ∥x − y∥α2 with α ∈ (0, 2),
and suppose rewards are bounded in each dimension within [0, Rmax]. For any η0 such that
MMDκ(η0, η

π) ≤ D < ∞, and any δ > 0, for the sequence (ηk)k≥0 defined in Equation (5),
with probability at least 1− δ we have

MMDκ(ηK , ηπ) ∈ Õ

(
dα/2Rα

max

(1− γα/2)(1− γ)α
√
m

log

(
|X |δ−1

log γ−α

))
.

where ηk+1 = BootProjπκ,mηk and K = ⌈ logm
log γ−α ⌉, and where Õ omits logarithmic factors in m.

Proof. For each x ∈ X and k ∈ [K], denote by Ex,k the event given by

Ex,k =

{
MMDκ(BootProj

π
κ,mηk(x), T πηk(x)) ≤

2dα/2Rα
max

(1− γ)α
√
m

+
4dα/2Rα

max log δ
′−1

(1− γ)α
√
m

=: f(d,m; δ′)

}
,

for δ′ > 0 a constant to be chosen shortly. Moreover, with E = ∩(x,k)∈X×[K]Ex,k, it holds that
under E , MMDκ(BootProj

π
κ,mηk, T πηk) ≤ f(d,m; δ′) for all k ∈ [K]. Following the proof of

Proposition 1, we have that, conditioned on E ,

MMDκ(ηk, η
π) ≤ γαk/2D +

f(d,m; δ′)

1− γα/2

≤ 2dα/2Rα
max

(1− γ)α
√
m

+
f(d,m; δ′)

1− γα/2
.

Now, by [TSM17, Proposition A.1], event Ex,k holds with probability at least 1 − δ′, since each
(BootProjπκ,mηk)(x) is generated independently by sampling m independent draws from the distribu-
tion T πηk. Therefore, event E holds with probability at least 1− |X |Kδ′. Choosing δ′ = δ/(|X |K),
we have that, with probability at least 1− δ,

MMDκ(ηK , ηπ) ≤ 2dα/2Rα
max

(1− γ)α
√
m

+
1

1− γα/2

2dα/2Rα
max

(1− γ)α
√
m

(
1 + 2 log(|X |Kδ−1)

)
≤ 2dα/2Rα

max

(1− γ)α
√
m

+
2dα/2Rα

max

(1− γα/2)(1− γ)α
√
m

(
1 + 2 log

(
|X |
(
1 +

logm

log γ−α

)
δ−1

))
.
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As such, there exist universal constants C0, C1 ∈ R+ such that

MMDκ(ηK , ηπ) ≤ C1
dα/2Rα

max

(1− γα/2)(1− γ)α
√
m

(
1 + 2 log

(
|X |
(
1 +

logm

log γ−α

)
δ−1

))
≤ C0

dα/2Rα
max

(1− γα/2)(1− γ)α
√
m

(
log |X |+ log

logm

log γ−α
+ log δ−1

)
= C0

dα/2Rα
max

(1− γα/2)(1− γ)α
√
m

(
log

(
|X |δ−1

log γ−α

)
+ logm

)
.

(14)

Corollary 1. For any kernel κ satisfying the hypotheses of Theorem 3, and for any η0 ∈ CEWP,m for
which MMDκ(η0, η

π) ≤ D < ∞, the iterates ηk+1 = Πm
EWP,κT πηk converge to a set ηηηmEWP,κ ⊂

CEWP,m, where

ηηηmEWP,κ ⊂ B

(
ηπ,

6dα/2Rα
max

(1− γα/2)(1− γ)α
√
m

)
.

Proof. Proposition 1 shows that projected EWP dynamic programming converges to a set with
radius controlled by the quantity f(d,m) that upper bounds the distance f(d,m) between ηk(x) and
Π

(k)
κ,mηk(x) at the worst state x. In the proof of Theorem 3, we saw that with nonzero probability,

the randomized projections satisfy f(d,m) ≤ 6dα/2Rα
max

(1−γ)α
√
m

. Thus, there exists a projection satisfying
this bound. Since the projection Πm

EWP,κ is, by definition, the projection with the smallest possible
f(d,m), the claim follows directly by Proposition 1.

B.3 Categorical Dynamic Programming: Section 5

Lemma 1. Let κ be a kernel induced by a semimetric ρ on [0, (1− γ)−1Rmax]
d with strong negative

type (cf. Theorem 1). Then ΠR
C,κ is well-defined, Ran(ΠR

C,κ) ⊂ CR, and ΠR
C,κ|CR = id.

Proof. Firstly, note that ∆R(x) is a bounded, finite-dimensional subspace for each x ∈ X . Thus,
∆R(x) is compact, and by the continuity of the MMD, the infimum in (7) is attained.

Following the technique of [SZS+08], we establish that ΠR
C,κ can be computed as the solution to a

particular quadratic program with convex constraints.

Let K ∈ RN(x)×N(x) denote a matrix where Ki,j = κ(ξ(x)i, ξ(x)j). Since κ is a positive definite
kernel when κ is characteristic [GBR+12], it follows that K is a positive definite matrix. Then, for
any ϱ ∈ P([0, (1− γ)−1Rmax]

d), we have

arginf
p∈∆R(x)

MMDκ(p, ϱ)

= arginf
p∈∆R(x)

MMD2
κ(p, ϱ)

= arginf
p∈∆R(x)


N(x)∑
i=1

N(x)∑
j=1

pipjκ(ξ(x)i, ξ(x)j)− 2

N(x)∑
i=1

pi

b∈RN(x)︷ ︸︸ ︷∫
κ(ξ(x)i, y)ϱ(dy)+M(κ,R, ϱ)


= arginf

p∈∆R(x)

{
p⊤Kp− 2p⊤b

}
,

where M(κ,R, ϱ) is independent of p, so it does not influence the minimization. Now, since K is
positive definite (by virtue of κ being characteristic) and ∆R(x) is a closed convex subset of RN(x), it
is well-known that there is unique optimum, and the infimum above is attained for some p⋆ ∈ ∆R(x).
Therefore, ΠR

C,κ is indeed well-defined, and its range is contained in ΠR
C,κ, confirming the first two

claims. Finally, since ΠR
C,κ is well-defined and since MMDκ is nonnegative and separates points,
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ΠR
C,κ must map elements of ∆R(x) to themselves – this is because MMDκ(p, p) = 0 for the kernels

we consider.

Lemma 2. Under the conditions of Lemma 1, ΠR
C,κ is a nonexpansion in MMDκ. That is, for any

η1, η2 ∈ P([0, (1− γ)−1Rmax]
d)X , we have MMDκ(Π

R
C,κη1,Π

R
C,κη2) ≤ MMDκ(η1, η2).

Proof. Fix any x ∈ X and denote M(x) = {µp ∈ H : p ∈ ∆R(x)}, whereH is the RKHS induced
by the kernel κ and µp denotes the mean embedding of p in this RKHS. It is simple to verify that
p 7→ µp is linear: for any p, q ∈ P(Rd) and α, β ∈ R, for all f ∈ H with ∥f∥ = 1 we have

⟨f, µαp+βq⟩ =
∫

f(y)[αp+ βq](dy) = α

∫
f(y)p(dy) + β

∫
f(y)q(dy)

= ⟨a, αµp + βµq⟩,
which implies that µαp+βq = αµp + βµq . As a consequence, M(x) inherits convexity from ∆R(x).

We claim that M(x) is closed as a subset ofH. Since p 7→ µp is an injection [GBR+12], by Lemma
1, since there is a unique q ∈ ∆R(x) minimizing MMDκ(p, q), there is a unique µq ∈M(x) attaining
the infimum ∥µp − µq∥ over M(x). Let µ ∈ H \M(x). Then there exists µq ∈ M(x) such that
∥µq − µ∥ = infν∈M(x) ∥µ − ν∥, and since µq ̸= µ, it follows that infν∈M(x) ∥ν − µ∥ = ϵ > 0.
Since this is true for any µ ̸∈M(x), it follows thatH \M(x) is open, so M(x) is closed.

We will now show that η(x) 7→ ΠR
C,κη(x) is a nonexpansion inH. Let η1, η2 ∈ CR, and denote by

µ1(x), µ2(x) the mean embeddings of η1(x), η2(x). We slightly abuse notation and write ΠR
C,κµi(x)

to denote the mean embedding of ΠR
C,κηi(x). Since M(x) is convex, for any ι(x) ∈ M(x) and

λ ∈ [0, 1] we have

MMDκ(η1(x),Π
R
C,κη1(x))

2 = ∥µ1(x)−ΠR
C,κµ1(x)∥2

≤ ∥µ1(x)− (λι(x) + (1− λ)ΠR
C,κµ1(x))∥2

= ∥µ1(x)−ΠR
C,κµ1(x)− λ(ι(x)−ΠR

C,κµ1(x))∥2.

Now, by expanding the squared norms and taking λ ↓ 0, since M(x) is closed we have

⟨µ1(x)−ΠR
C,κµ1(x), ι1(x)−ΠR

C,κµ1(x)⟩ ≤ 0 ∀ι1(x), ι2(x) ∈M(x)

∴ ⟨ΠR
C,κµ2(x)− µ2(x),Π

R
C,κµ2(x)− ι2(x)⟩ ≤ 0,

where the second inequality follows by applying the same logic to µ2(x). Choosing ι1(x) =
ΠR

C,κµ2(x), ι2(x) = ΠR
C,κµ1(x) ∈M(x) and adding these inequalities yields

⟨µ1(x)− µ2(x) + (ΠR
C,κµ2(x)−ΠR

C,κµ1(x)),Π
R
C,κµ2(x)−ΠR

C,κµ1(x)⟩ ≤ 0.

Expanding, we see that

MMDκ(Π
R
C,κη1(x),Π

R
C,κη2(x))

2 = ∥ΠR
C,κµ2(x)−ΠR

C,κµ1(x)∥2

≤ ⟨µ2(x)− µ1(x),Π
R
C,κµ2(x)−ΠR

C,κµ1(x)⟩
≤ ∥µ2(x)− µ1(x)∥∥ΠR

C,κµ2(x)−ΠR
C,κµ1(x)∥

= MMDκ(η1(x), η2(x))MMDκ(Π
R
C,κη1(x),Π

R
C,κη2(x))

∴ MMDκ(Π
R
C,κη1(x),Π

R
C,κη2(x)) ≤ MMDκ(η1(x), η2(x)),

confirming that η(x) 7→ ΠR
C,κη(x) is a non-expansion. It follows that

MMDκ(Π
R
C,κη1,Π

R
C,κη2) = sup

x∈X
MMDκ(η1(x), η2(x))

≤ sup
x∈X

MMDκ(η1(x), η2(x))

= MMDκ(η1, η2).
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Corollary 2. Let κ be a kernel satisfying the conditions of Theorem 2. Then for any η0 ∈ CR, the
iterates {ηk}∞k=1 given by ηk+1 = ΠR

C,κT πηk converge geometrically to a unique fixed point.

Proof. Combining Theorem 2 and Lemma 2, we see that

MMDκ(Π
R
C,κT πη1,Π

R
C,κT πη2) ≤ MMDκ(T πη1, η2) ≤ γc/2MMDκ(η1, η2)

for some c > 0. Thus, ΠR
C,κT π is a contraction on (CR,MMDκ). If H is the RKHS induced

by κ, we showed in Lemma 2 that CR is isometric to a product of closed, convex subsets of H.
Therefore, by the completeness ofH, CR is isometric to a complete subspace, and consequently CR
is a complete subspace under the metric MMDκ. Invoking the Banach fixed-point theorem, it follows
that ΠR

C,κT π has a unique fixed point ηπC,κ, and ηk → ηπC,κ geometrically.

B.3.1 Quality of the Categorical Fixed Point

As we saw in our analysis of multivariate DRL with EWP representations, the distance between a
distribution and its projection (as a function of m, d) plays a major role in controlling the approxi-
mation error in projected distributional dynamic programming. Before proving the main results of
this section, we begin by analyzing this quantity by reducing it to the largest distance between points
among certain partitions of the space of returns.

Lemma 3. Let κ be kernel satisfying the conditions of Lemma 1, and for any finiteR ⊂ Rd, define Π :
P(Rd)→ ∆R via Πp = arginfq∈∆R

MMDκ(p, q). Then MMD2
κ(Πp, p) ≤ infP∈PR mesh(P ;κ).

Proof. Our proof proceeds by establishing approximation bounds of Riemann sums to the Bochner
integral µp, similar to [VN02]. Let P ∈PR. Abusing notation to denote by Πpi the probability of
the ith atom of the discrete support under Πp, we have

MMD2
κ(p,Πp) = ∥µΠp − µp∥2

=

∥∥∥∥∫ κ(·, y)Πp(dy)−
∫

κ(·, y)p(dy)
∥∥∥∥2

=

∥∥∥∥∥∑
i

κ(·, zi)Πpi −
∫

κ(·, y)p(dy)

∥∥∥∥∥
2

,

whereR = {zi}ni=1 for some n ∈ N. Since Πp optimizes the MMD over all probability vectors in
∆R, for q ∈ ∆R with qi = p(θi) for the ith element of P , we have

MMD2
κ(p,Πp) ≤

∥∥∥∥∥∑
i

κ(·, zi)p(θi)−
∫

κ(·, y)p(dy)

∥∥∥∥∥
2

=

∥∥∥∥∥∑
i

∫
θi

(κ(·, zi)− κ(·, y))p(dy)

∥∥∥∥∥
2

≤

∥∥∥∥∥∑
i

sup
y1,y2∈θi

∥κ(·, y1)− κ(·, y2)∥p(θi)

∥∥∥∥∥
2

≤ sup
θ∈P

sup
y1,y2∈θ

∥κ(·, y1)− κ(·, y2)∥2.

It was shown by [SSGF13] that z 7→ κ(·, z) is an isometry from (Rd, ρ1/2) to H, where H is the
RKHS induced by κ. Thus, we have

MMD2
κ(p,Πp) ≤ sup

θ∈P
sup

y1,y2∈θ
ρ(y1, y2) = mesh(P ;κ).

Since this is true for any partition P ∈PR, the claim follows by taking the infimum over PR.

We now move on to the main results.
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Theorem 4. Let κ be a kernel induced by a c-homogeneous and shift-invariant semimetric ρ
conforming to the conditions of Theorem 2. Then the fixed point ηπC,κ of ΠR

C,κT π satisfies

MMDκ(η
π
C,κ, η

π) ≤ 1

1− γc/2
sup
x∈X

inf
P∈PR(x)

√
mesh(P ;κ). (9)

Proof. The proof begins in a similar manner to [RBD+18, Proposition 3]. Given that ΠR
C,κ is a

nonexpansion as shown in Lemma 2, we have

MMDκ(η
π
C,κ, η

π) = sup
x∈X

MMDκ(η
π
C,κ(x), η

π(x))

≤ sup
x∈X

[
MMDκ(η

π
C,κ(x),Π

R
C,κη

π(x)) +MMDκ(Π
R
C,κη

π(x), ηπ(x))
]

≤ MMDκ(η
π
C,κ,Π

R
C,κη

π) +MMDκ(Π
R
C,κη

π, ηπ)

(a)
= MMDκ(Π

R
C,κT πηπC,κ,Π

R
C,κT πηπ) +MMDκ(Π

R
C,κη

π, ηπ)

(b)

≤ MMDκ(T πηπC,κ, T πηπ) +MMDκ(Π
R
C,κη

π, ηπ)

(c)

≤ γc/2MMDκ(η
π
C,κ, η

π) +MMDκ(Π
R
C,κη

π, ηπ)

∴ MMDκ(η
π
C,κ, η

π) ≤ 1

1− γc/2
MMDκ(Π

R
C,κη

π, ηπ),

where (a) leverages the fact that ηπC,κ is the fixed point of ΠR
C,κT π and that ηπ is the fixed point of

T π, (b) follows since ΠR
C,κ is a nonexpansion by Lemma 2, and (c) follows by the contractivity of

T π established in Theorem 2. Finally, by Lemma 3, we have

MMDκ(η
π
C,κ, η

π) ≤ 1

1− γc/2
sup
x∈X

MMDκ(Π
R
C,κη

π(x), ηπ(x)) ≤ 1

1− γc/2
sup
x∈X

inf
P∈PR(x)

√
mesh(P ;κ).

Finally, we explicitly derive a convergence rate for a particular support map under the energy distance
kernels.

Corollary 3. LetR(x) = Um, where Um is a set of m uniformly-spaced support points on [0, (1−
γ)−1Rmax]. For κ induced by the semimetric ρ(x, y) = ∥x− y∥α2 for α ∈ (0, 2),

MMDκ(η
π
C,κ, η

π) ≤ 1

(1− γα/2)(1− γ)α/2
dα/4R

α/2
max

(m1/d − 2)α/2
.

Proof. We begin bounding mesh(P ;κ). Assume m = nd for some n ∈ N. We consider a partition
P ⊂PUm

consisting of d-dimensional hypercubes with side length (1− γ)−1Rmax/(n− 1). By
definition of Um, it is clear that these hypercubes cover [0, (1−γ)−1Rmax]

d and each contain exactly
one support point. Now, for each θ ∈ P , we have

sup
y1,y2∈θ

ρ(y1, y2) ≤ ∥y − (y + (1− γ)−1Rmax/(n− 1)⃗1∥α2

where 1⃗ is the vector of all ones, and y is any element in θ. Expanding, we have

sup
y1,y2∈θ

ρ(y1, y2) ≤ (1− γ)−α

(
d∑

i=1

(
Rmax

n− 1

)2
)α/2

≤ dα/2Rα
max

(1− γ)α(n− 1)α
.
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Since this bound holds for any θ ∈ P , invoking Theorem 4 yields

MMDκ(η
π
C,κ, η

π) ≤ 1

1− γα/2
sup
x∈X

inf
P∈PUm

√
mesh(P ;κ)

≤ 1

1− γα/2
sup
x∈X

√
mesh(P ;κ)

≤ 1

1− γα/2
sup
x∈X

√
dα/2Rα

max

(1− γ)α(n− 2)α

=
1

(1− γα/2)(1− γ)α/2
dα/4R

α/2
max

(n− 1)α/2

=
1

(1− γα/2)(1− γ)α/2
dα/4R

α/2
max

(n− 1)α/2

=
1

(1− γα/2)(1− γ)α/2
dα/4R

α/2
max

(m1/d − 1)α/2
.

If instead m ∈ ((n− 1)d, nd), we omit all but (n− 1)d of the support points, and achieve

MMDκ(η
π
C,κ, η

π) ≤ 1

(1− γα/2)(1− γ)α/2
dα/4R

α/2
max

(⌊m1/d⌋ − 1)α/2
.

Alternatively, we may write

MMDκ(η
π
C,κ, η

π) ≤ 1

(1− γα/2)(1− γ)α/2
dα/4R

α/2
max

(m1/d − 2)α/2
.

B.4 Categorical TD Learning: Section 6

In this section, we prove results leading up to and including the convergence of the categorical TD-
learning algorithm over mass-1 signed measures. First, in Section B.4.1, we show that MMDκ is in
fact a metric on the space of mass-1 signed measures, and establish that the multivariate distributional
Bellman operator is contractive under these distribution representations. Subsequently, in Section
B.4.2, we analyze the temporal difference learning algorithm leveraging the results from Section
B.4.1.

B.4.1 The Signed Measure Relaxation

We begin by establishing that MMDκ is a metric onM1(Y) for spaces Y under which MMDκ is a
metric on P(Y).
Lemma 4. Let κ : Y × Y → R be a characteristic kernel over some space Y . Then MMDκ :
M1(Y) ×M1(Y) → R+ given by (p, q) 7→ ∥µp − µq∥H defines a metric onM1(Y), where µp

denotes the usual mean embedding of p andH is the RKHS with kernel κ.

Proof. Naturally, since MMDκ is given by a norm, it is non-negative, symmetric, and satisfies the
triangle inequality. We must show that MMDκ(p, q) = 0 ⇐⇒ p = q. Firstly, it is clear that
MMDκ(p, p) = 0 by the positive homogeneity of the norm. It remains to show that MMDκ(p, q) =
0 =⇒ p = q.

Let p ̸= q ∈ M1(Y). For the sake of contradiction, assume that MMDκ(p, q) = 0. We will show
that this implies that MMDκ(P,Q) = 0 for a pair of distinct probability measures, which is a
contradiction since MMDκ with characteristic κ is known to be a metric on P(Y).
By the Hahn decomposition theorem, we may write p = p̃+ − p̃− for non-negative measures p̃+, p̃−.
Therefore, for some a ∈ R+, we may express

p = (a+ 1)p+ − ap−
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where p+, p− ∈ P(Y). Likewise, there exist b ∈ R+ and probability measure q+, q− for which
q = (b+ 1)q+ − bq−. Since MMDκ(p, q) = 0 by hypothesis, and by linearity of p 7→ µp, we have

0 = ∥µp − µq∥H
= ∥(a+ 1)µp+ − aµp− + bµq− − (b+ 1)µq+∥H
= ∥(a+ 1)µp+ + bµq− − (aµp− + (b+ 1)µq+)∥H

= (a+ b+ 1)

∥∥∥∥(λµp+ + (1− λ)µq−

)
−
(
λ′µp− + (1− λ′)µq+

)∥∥∥∥ , λ =
a+ 1

a+ b+ 1
, λ′ =

a

a+ b+ 1

:= (a+ b+ 1)∥µP − µQ∥H,

where P = λp+ + (1− λ)q− and Q = λ′p− + (1− λ′)q+ are convex combinations of probability
measures, and are therefore probability measures themselves. So, we have that

λp+ − λ′p− = (1− λ′)q+ − (1− λ)q−

(a+ 1)λp+ − ap− = (b+ 1)q+ − bq−

∴ p = q,

which contradicts our hypothesis. Therefore, MMDκ(p, q) = 0 ⇐⇒ p = q for any p, q ∈M1(Y),
and it follows that MMDκ is a metric.

Next, we show that the distributional Bellman operator is contractive on the space of mass-1 signed
measure return distribution representations.
Lemma 5. Under the conditions of Corollary 2, the projected operator ΠR

SC,κT π : SR → SR is
affine, is contractive with contraction factor γc/2, and has a unique fixed point ηπSC,κ.

Proof. Indeed, ΠR
SC,κ is, in a sense, a simpler operator than ΠR

C,κ. SinceM1(R(x)) is an affine
subspace ofM1(Rd), it holds that ΠR

SC,κ is simply a Hilbertian projection, which is known to be
affine and a nonexpansion [Lax02]. Moreover, since T π acts identically onM1(Rd) as it does on
P(Rd), it immediately follows that T π is a γc/2-contraction onM1(Rd), inheriting the result from
Theorem 2. Thus, we have that for any η1, η2 ∈ SR,

MMDκ(Π
R
SC,κT πη1,Π

R
SC,κT πη2) ≤ MMDκ(T πη1, T πη2)

≤ γc/2MMDκ(η1, η2)

confirming that the projected operator is a contraction. Since MMDκ is a metric onM1(R(x)) for
each x ∈ X , it follows that MMDκ is a metric on SR. The existence and uniqueness of the fixed
point ηπSC,κ follows by the Banach fixed point theorem.

Finally, we show that the fixed point of distributional dynamic programming with signed measure
representations is roughly as accurate as ηπC,κ.

Theorem 5. Under the conditions of Lemma 5, we have that

1. MMDκ(η
π
SC,κ, η

π) ≤ 1
1−γc/2 supx∈X infP∈PR(x)

√
mesh(P ;κ); and

2. MMDκ(Π
R
C,κη

π
SC,κ, η

π) ≤ (1 + 1
1−γc/2 ) supx∈X infP∈PR(x)

√
mesh(P ;κ).

Proof. Since ΠR
SC,κ is a nonexpansion in MMDκ by Lemma 5, following the procedure of Theorem

4, we have

MMDκ(η
π
SC,κ, η

π) ≤ 1

1− γc/2
MMDκ(Π

R
SC,κη

π, ηπ).

Note that ΠR
SC,κη

π identifies the closest point (in MMDκ) to ηπ in SR :=
∏

x∈XM1(R(x)) and
ΠR

C,κη
π identifies the closest point to ηπ in CR :=

∏
x∈X ∆R(x). Since it is clear that CR ⊂ SR, it

follows that

MMDκ(η
π
SC,κ, η

π) ≤ 1

1− γc/2
MMDκ(Π

R
C,κη

π, ηπ).
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The first statement then directly follows since it was shown in Lemma 3 that MMDκ(Π
R
C,κη

π, ηπ) ≤
supx∈X infP∈PR(x)

√
mesh(P ;κ).

To prove the second statement, we apply the triangle inequality to yield

MMDκ(Π
R
C,κη

π
SC,κ, η

π) ≤ MMDκ(Π
R
C,κη

π
SC,κ,Π

R
C,κη

π) +MMDκ(Π
R
C,κη

π, ηπ)

≤ MMDκ(η
π
SC,κ, η

π) +MMDκ(Π
R
C,κη

π, ηπ),

where the second step leverages the fact that ΠR
C,κ is a nonexpansion in MMDκ by Lemma 2.

Applying the conclusion of the first statement as well as the bound on MMDκ(Π
R
C,κη

π, ηπ), we have

MMDκ(Π
R
C,κη

π
SC,κ, η

π) ≤ 1

1− γc/2
sup
x∈X

inf
P∈PR(x)

√
mesh(P ;κ) + sup

x∈X
inf

P∈PR(x)

√
mesh(P ;κ)

=

(
1 +

1

1− γc/2

)
sup
x∈X

inf
P∈PR(x)

√
mesh(P ;κ).

B.4.2 Convergence of Categorical TD Learning

Convergence of the proposed categorical TD-learning algorithm will rely on studying the iterates
through an isometry to an affine subspace of

∏
x∈X RN(x). This affine subspace is that consisting of

the set of state-conditioned “signed probability vectors”. We define Rn
1 as an affine subspace of Rn

for any n ∈ N according to

Rn
1 =

{
v ∈ Rn :

n∑
i=1

vi = 1

}
. (15)

We note that any element η of SR can be encoded in
∏

x∈X R
N(x)
1 by expresing η(x) as the sequence

of signed masses associated to each atom ofR(x). In Lemma 8, we exhibit an isometry I between
SR and

∏
x∈X R

N(x)
1 .

Lemma 8. Let κ be a characteristic kernel. There exists an affine isometric isomorphism I between
SR and an affine subspace

∏
x∈X R

N(x)
1 (cf. (15)).

Proof. Since κ is characteristic, it is positive definite [GBR+12]. Thus, for each x ∈ X , define
Kx ∈ RN(x)×N(x) according to

(Kx)i,j = κ(zi, zj) R(x) = {zk}N(x)
k=1 .

Then each Kx is positive definite since κ is a positive definite kernel. Let p, q ∈ ∆R(x), and define
P ∈ RN(x) and Q ∈ RN(x) such that Pi = p(zi) and Qi = q(zi). Then, we have

MMD2
κ(p, q) = ∥µp − µq∥2H

=

∥∥∥∥∥∥
N(x)∑
i=1

κ(·, zi)p(zi)−
N(x)∑
i=1

κ(·, zi)q(zi)

∥∥∥∥∥∥
2

H

=

〈
N(x)∑
i=1

κ(·, zi)(p(zi)− q(zi)),

N(x)∑
j=1

κ(·, zj)(p(zj)− q(zj))

〉
H

=

N(x)∑
i=1

N(x)∑
j=1

(p(zi)− q(zi))(p(zj)− q(zj))κ(zi, zj)

= (P −Q)⊤Kx(P −Q)

= ∥P −Q∥2Kx
.

Since Kx is positive definite, ∥ · ∥Kx
is a norm on RN(x). Therefore, the map I1x :

(∆R(x),MMDκ) → (RN(x), ∥ · ∥Kx
) given by I1x(p) = P is a linear isometric isomorphism
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onto the affine subspace of RN(x) with entries summing to 1, which we denote R
N(x)
1 . Moreover,

since (R
N(x)
1 , ∥ · ∥Kx) is a finite dimensional Hilbert space, it is well known that there exists a

linear isometric isomorphism I2x : (R
N(x)
1 , ∥ · ∥Kx

) → R
N(x)
1 with the usual L2 norm. Thus,

Ix = I2xI1x : (∆R(x),MMDκ) → R
N(x)
1 is a linear isometric isomorphism. Consequently, it

follows that I : (CR,MMDκ) →
∏

x∈X R
N(x)
1 given by I = (

∏
x∈X RN(x), ∥ · ∥2,∞) is a linear

isometric isomorphism, where ∥v∥2,∞ = supx∈X ∥v(x)∥2.

Lemma 9. Define the operator Uπ :
∏

x∈X R
N(x)
1 →

∏
x∈X R

N(x)
1 by Uπ = IΠR

SC,κT πI−1,
where I is the isometry of Lemma 8. Let {Ut}∞t=1 be given by Ut = Iηt, where {ηt}∞t=1 are
the dynamic programming iterates ηt+1 = ΠR

SC,κT πηt. Then Ut+1 = UπUt. Moreover, Uπ is
contractive whenever ΠR

SC,κT π is, and in this case, Ut → U⋆, where U⋆ is the unique fixed point of
Uπ .

Proof. By definition, we have

Ut+1 = Iηt+1

= I(ΠR
C,κT πηt)

= IΠR
C,κT π(I−1Ut)

= UπUt,

which proves the first claim. Moreover, for U1 = Iη1 and U2 = Iη2, we have

∥UπU1 − UπU2∥2,∞ =
∥∥IΠR

C,κT πη1 − IΠR
C,κT πη2

∥∥
2,∞

= MMDκ(Π
R
C,κT πη1,Π

R
C,κT πη2),

where the second step transforms the ∥ · ∥2,∞ to MMDκ since I is an isometry between those metric
spaces. Therefore, if ΠR

C,κT π is contractive with contraction factor β ∈ (0, 1), we have

∥UπU1 − UπU2∥2,∞ ≤ βMMDκ(η1, η2)

= β ∥Iη1 − Iη2∥2,∞
= β ∥U1 − U2∥2,∞ ,

so that Uπ has the same contraction factor as ΠR
C,κT π. Consequently, by the Banach fixed point

theorem, Uπ has a unique fixed point U⋆ whenever ΠR
C,κT π is contractive, and Ut → U⋆ at the same

rate as ηt → ηπ .

The main theorem in this section is that temporal difference learning on the finite dimensional
representations I(ηt) converges.
Proposition 2 (Convergence of categorical temporal difference learning). Let {Ut}∞t=1 ⊂∏

x∈X R
N(x)
1 be given by Ut = Iη̂t, and let κ be a kernel satisfying the conditions of Theorem 2.

Suppose that, for each x ∈ X , the states {Xt}∞t=1 and step sizes {αt}∞t=1 satisfy the Robbins-Munro
conditions

∞∑
t=0

αt1[Xt=x] =∞
∞∑
t=0

α2
t1[Xt=x] <∞.

Then, with probability 1, Uk → U⋆, where U⋆ is the fixed point of Uπ .

The proof of this result as a natural extension of the convergence analysis of Categorical TD Learning
given in [BDR23] to the multivariate return setting under the supremal MMD metric. The analysis
hinges on the following general lemma.
Lemma 10 ([BDR23, Theorem 6.9]). Let O : (Rn)X → (Rn)X be a contractive operator with
respect to ∥ · ∥2,∞ with fixed point Z⋆, and let (Ω,F , {Fk}∞k=1 ,P) be a filtered probability space.
Define a map Ô : (Rn)X ×X × Ω→ (Rn)X such that

27



EP

[
Ô(Z,X, ω)

∣∣∣ X = x
]
= (OZ)(x). (16)

For a stochastic process {ξk}∞k=1 adapted to {Fk}∞k=1 with ξk = Xk ⊕ ωk, consider a sequence
{Zk}∞k=1 ⊂ (Rn)X given by

Zk+1(x) =

{
(1− αk)Zk(x) + αkÔ(Zk, Xk, ωk)(x) Xk = x

Zk(x) otherwise
(17)

where {αk}∞k=1 is adapted to {Fk}∞k=1 and satisfies the Robbins-Munro conditions for each x ∈ X ,
∞∑
k=1

αk1[Xt=x] =∞,

∞∑
k=1

α2
k1[Xt=x] <∞.

Finally, for the processes {w(x)k}
∞
k=1

where w(x)k = (Ô(Zk, Xk, ωk) − (OZk)(Xk))1[Xk=x],
assume the following moment condition holds,

EP

[
∥w(x)k∥2

∣∣ Fk

]
≤ C1 + C2∥Zk∥22,∞ (18)

for finite universal constants C1, C2. Then, with probability 1, Zk → Z⋆.

The operator O of Lemma 10 will be substituted with Uπ, governing the dynamics of the encoded
iterates of the multi-return distribution. The stochastic operator Ô will be substituted with the
corresponding stochastic TD operator for Uπ , given by

Ûπ(U, x1, (R, x2))(x) =

{
I
(
ΠR

SC,κ(bR,γ)♯I−1U(x2)
)
(x1) x1 = x

U(x) otherwise.
(19)

This corresponds to applying a Bellman backup from a stochastic reward R and next state x2, followed
by projecting back onto SR, and applying the isometry back to

∏
x∈X R

N(x)
1 .

Proof of Proposition 2. Let n = maxx∈X N(x). Note that for any m ≤ n, Rm can be isometrically
embedded into Rn by zero-padding. Thus,

∏
x∈X R

N(x)
1 can be isometrically embedded into (Rn

1 )
X ,

so without loss of generality, we will assume that N(x) ≡ n.

Define the map Ûπ : (Rn
1 )

X ×X × (Rd×X )→ (Rn
1 )

X according to

(Ûπ(U, x1, (R, x2)))(x) =

{
I(ΠR

SC,κ(bR,γ)♯I−1U(x2))(x1) x1 = x

U(x) otherwise
(20)

Then, defining Ûπ
k U = Ûπ(U,Xk, (Rk, X

′
k)) with (Xk, Ak, Rk, X

′
k) = Tk ∼ P as in (11), we have

Uk+1(x) = (IT̂ π η̂k+1)(x)

= I
(
1[Xk=x]Π

R
SC,κ(bRk,γ)♯η̂k(X

′
k) + 1[Xk ̸=x]η̂k(x)

)
= 1[Xk=x]IΠR

SC,κ(bRk,γ)♯η̂k(X
′
k) + 1[Xk ̸=x]Uk(x)

= (Ûπ
k Uk)(x).

Note that, since ΠR
SC,κ is a Hilbert projection onto an affine subspace, it is affine [Lax02]. Conse-

quently, Ûπ is an unbiased estimator of the operator Uπ in the following sense,

EP

[
Ûπ(U,Xk, (Rk, X

′
k))
∣∣∣ Xk = x

]
= EP

[
IΠR

SC,κ(bRk,γ)♯I−1U(X ′
k)
]

= IΠR
SC,κEX′

k∼Pπ(·|x)
[
(br(x),γ)♯I−1U(X ′

k)
]

= IΠR
SC,κT πI−1U(x) = (UπU)(x),
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where the first step invokes the linearity of ΠR
SC,κ, the second step invokes the linearity of the isometry

I established in Lemma 8 and the third step is due to the definition of T π . As a result, we see that the
conditions (16) and (17) of Lemma 10 are satisfied by Ûπ, the iterates {Uk}∞k=1, and the step sizes
{αk}∞k=1. Moreover, for wk(x) defined by

wk(x) =
(
Ûπ(Uk, Xk, (Rk, X

′
k))− (UπUk)(Xk)

)
1[Xk=x]

we have ∥wk(x)∥2 ≤ C1 + C2∥U(x)∥2 for universal constants C1, C2—this is shown in Lemma 11.
As such, the condition of (18) is satisfied.

Finally, since Uπ inherits contractivity from ΠR
SC,κT π as shown in Lemma 5, we may invoke Lemma

10, which ensures that Uk → U with probability 1, where U = UπU is a unique fixed point.

Theorem 6. For a kernel κ induced by a semimetric ρ of strong negative type, the sequence {η̂t}∞t=1
given by (11)-(13) converges to ηπSC,κ with probability 1.

Proof. By Proposition 2, the sequence {Ut}∞t=1 with Ut = Iηt converges to a unique fixed point U
with probability 1. Note that

U⋆ = UπU⋆

I−1U⋆ = I−1UπU⋆

= ΠR
SC,κT π(I−1U⋆).

Therefore, I−1U⋆ is a fixed point of ΠR
SC,κT π . Since it was shown in Lemma 5 that ΠR

SC,κT π has a
unique fixed point, it follows that I−1U⋆ = ηπSC,κ. Since I is an isometry, η̂t = I−1Ut → I−1U⋆

with probability 1, so indeed η̂t → ηπSC,κ with probability 1.

To conclude, we prove Lemma 11, which was invoked in the proof of Proposition 2.

Lemma 11. Under the conditions of Proposition 2, it holds that for any x ∈ X and U ∈∏
x∈X RN(x)−1,

E
X∼Pπ(·|x)

[∥∥∥UπU(x)− Ûπ(U, x, (R(x), X))(x)
∥∥∥2] ≤ C1 + C2∥U(x)∥2

for finite constants C1, C2 ∈ R+.

Proof. Since I is an isometry, we have that∥∥∥UπU(x)− Ûπ(U, x, (r, x′))
∥∥∥2 =

∥∥ΠR
SC,κT πI−1U(x)−ΠR

SC,κ

(
(br,γ)♯I−1(x′)

)
(x)
∥∥2
H ,

whereH is the RKHS induced by the kernel κ. Moreover, since ΠR
SC,κ is a nonexpansion in ∥ · ∥H as

argued in Lemma 5, we have that

E
X∼Pπ(·|x)

[∥∥∥UπU(x)− Ûπ(U, x, (R(x), X))(x)
∥∥∥2]

≤ E
X∼Pπ(·|x)

[∥∥T πI−1U(x)−
(
(bR,γ)♯I−1U(X)

)
(x)
∥∥2
H

]
≤ 2 ∥T πI−1U(x)∥2H︸ ︷︷ ︸

A

+2 E
X∼Pπ(·|x)

[∥∥((bR,γ)♯I−1U(X)
)
(x)
∥∥2
H

]
︸ ︷︷ ︸

B

.

Proceeding, we will bound the terms A,B. To bound A, we simply have

A ≤ ∥T πI−1U(x)− ηπ(x)∥2H + ∥ηπ(x)∥2H
≤ γc/2∥I−1U(x)− ηπ(x)∥2H + ∥ηπ(x)∥2H,
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where we invoke the contraction of Uπ in MMDκ from Theorem 2. Note that ηπ(x) ∈ P([0, (1−
γ)−1Rmax]

d), so it follows that ∥ηπ∥2H ≤ D1,1 for some constant D1,1 since the kernel κ is bounded
in compact domains. Expanding the norm of the difference above yields

A ≤ (1 + γc/2)D1,1 +D1,2∥I−1U(x)∥2H = (1 + γc/2)D1,1 +D1,2∥U(x)∥2

for a finite constant D1,2, again invoking the isometry I in the last step.

Our bound for B is similar. Choose any x′ ∈ suppPπ(· | x). We consider the operator T̃x′ :
P([0, (1− γ)−1Rmax]

d)→ P([0, (1− γ)−1Rmax]
d) given by

(T̃x′η)(x) = (bR(x),γ)♯η(x
′).

This operator is a contraction in MMDκ, and correspondingly has a fixed point ηπx′ . To see this, we
note that T̃x′ is simply a special case of Uπ for the case Pπ(· | x) = δx′ , so the contractivity and
existence of the fixed point are inherited from Theorem 2. Proceeding in a manner similar to the
bound on A, we have∥∥((bR,γ)♯I−1U(x′)

)
(x)
∥∥2
H =

∥∥∥T̃x′I−1U(x)
∥∥∥2
H

≤
∥∥∥T̃x′I−1U(x)− ηx′

∥∥∥2
H
+ ∥ηx′(x)∥2H

≤ γc/2∥I−1U(x)− ηx′∥2H + ∥ηx′(x)∥2H
≤ (1 + γc/2)D2,1 +D2,2∥U(x)∥2

where the final step mirrors the bound on A. Therefore, we have shown that

E
X∼Pπ(·|x)

[∥∥∥UπU(x)− Ûπ(U, x, (R(x), X))(x)
∥∥∥2]

≤ 2(1 + γc/2)(D1,1 +D2,1) + (D1,2 +D2,2)∥U(x)∥2,

completing the proof.

C Memory Efficiency of Randomized EWP Dynamic Programming

In Section 4, we argued for the necessity of considering a projection operator in EWP dynamic
programming. While we provided a randomized projection, Theorem 3 requires that we apply
only a finite amount of DP iterations. Thus, one might ask if, given that we apply only finitely
many iterations, the naive unprojected EWP dynamic programming can produce accurate enough
approximations of ηπ without costing too much in memory.

In this section, we demonstrate that, in fact, the algorithm described in Theorem 3 can approximate
ηπ to any desired accuracy with many fewer particles. Suppose our goal is to derive some η such that

MMDκ(η, η
π) ≤ ϵ

for some ϵ > 0. We will derive bounds on the number of required particles to attain such an
approximation with unprojected EWP dynamic programming (denoting the number of particles
munproj) as well as with our algorithm described in Theorem 3 (denoting the number of particles mproj.
In both cases, we will compute iterates starting with some η0 ∈ CEWP,m with MMDκ(η0, η

π) ≤
D <∞. For simplicity, we will consider the energy distance kernel with α = 1.

The remainder of this section will show that the dependence of the number of atoms on both ϵ and
|X | is substantially worse in the unprojected case (that is, mproj ≪ munproj for large state spaces or
low error tolerance). We demonstrate this with concrete lower bounds on munproj and upper bounds
on mproj below; note that these bounds are not optimized for tightness or generality, and are instead
aimed to provide straightforward evidence of our core points above.

We will begin by bounding munproj. In the best case, η0(x) is supported on 1 particle for each x. If
any state can be reached from any other state in the MDP with non-zero probability, then applying
the distributional Bellman operator to η0 will result in η1(x) having support on |X | atoms at each
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state x (due to the mixture over successor states in the Bellman backup). Consequently, the iterate
ηk(x) will be supported on |X |k atoms. Since MMDκ(ηk, η

π) ≤ γ1/2D by Theorem 2, we require

K ≥ 2 log(D/ϵ)

log γ−1

to ensure that MMDκ(ηK , ηπ) ≤ ϵ. Thus, we have

munproj ≥ |X |
2 log(D/ϵ)

log γ−1 .

On the other hand, the following lemma bounds mproj; we prove the lemma at the end of this section.
Lemma 12. Let ηmproj denote the output of the projected EWP algorithm described by Theorem 3
with m = mproj particles. Then under the assumptions of Theorem 3 and with the energy distance
kernel with α = 1, MMDκ(ηmproj , η

π) ≤ ϵ is achievable with

mproj ∈ Θ

(
ϵ−2 dR2

max

(1−√γ)2(1− γ)2
polylog

(
1

ϵ
,
1

δ
, |X |, d, Rmax,

1

1−√γ

))
. (21)

For any fixed MDP with |X | ≥ 4 and γ ≥ 1/2, we have that

munproj ≥ exp

(
2 log |X | log ϵ

−1

log γ−1

)
exp

(
2 log |X | logD

log γ−1

)
= exp

(
2 log |X | logD

log γ−1

)
ϵ
−2

log |X|
log γ−1

∈ Ω(ϵ−4)

since D > 0 and does not depend on ϵ. Meanwhile, we have mproj ∈ Θ(ϵ−2polylog(ϵ−1)) by Lemma
12, indicating a much more graceful dependence on ϵ relative to the unprojected algorithm.

On the other hand, for any fixed tolerance ϵ ≤ γD, we immediately have

munproj ∈ Ω(|X |2)
mproj ∈ Θ(d · polylog(d, |X |)).

In the worst case, we may have d ∈ Θ(|X |) (any larger d will induce linearly dependent cumulants).
Thus, we have

mproj

munproj
∈

{
Õ(|X |−1) d ∈ ω(1)

Õ(|X |−2) d ∈ Θ(1),

so the projected algorithm scales much more gracefully with |X | as well.

Proof of Lemma 12

Finally, we prove Lemma 12, which determines the number of atoms required to achieve an ϵ-accurate
return distribution estimate with the algorithm of Theorem 3.
Lemma 12. Let ηmproj denote the output of the projected EWP algorithm described by Theorem 3
with m = mproj particles. Then under the assumptions of Theorem 3 and with the energy distance
kernel with α = 1, MMDκ(ηmproj , η

π) ≤ ϵ is achievable with

mproj ∈ Θ

(
ϵ−2 dR2

max

(1−√γ)2(1− γ)2
polylog

(
1

ϵ
,
1

δ
, |X |, d, Rmax,

1

1−√γ

))
. (21)

Proof. Note that, by Theorem 3, increasing mproj can only decrease the error ϵ as long as mproj ≥ 1.
Therefore, as shown in (14) in the proof of Theorem 3, there exists a universal constant C0 > 0 such
that

ϵ := C0
1

√
mproj

dα/2Rα
max

(1− γα/2)(1− γ)α︸ ︷︷ ︸
c1

log

(
|X |δ−1

log γ−α

)
︸ ︷︷ ︸

c2

+ logmproj

 . (22)
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Now, we write c3 = C0c1c2, c4 = C0c1, and u :=
√
mproj, yielding

ϵ =
c3
u

+ c4
log u2

u

=
c3
u

+ 2c4
log u

u
.

Then, after isolating the logarithmic term and exponentiating, we see that

u = exp

(
uϵ− c3
2c4

)
.

We now rearrange this expression and invoke the identity W (z)eW (z) = z where W is a Lambert
W -function [CGH+96]:

uec3/2c4 exp

(
− uϵ

2c4

)
= 1

− uϵ

2c4
exp

(
− uϵ

2c4

)
= −e−c3/2c4ϵ

2c4
= −e−c2/2ϵ

2c4

∴ zez = −e−c2/2ϵ

2c4
z := − uϵ

2c4
.

There are two branches of the Lambert W -function on the reals, namely W0 and W−1. These two
branches satisfy W0(ze

z) = z when z ≥ −1 and W−1(ze
z) = z when z ≤ −1. In our case, we know

that z is negative, and it is known [CGH+96] that |W0(z)| ≤ 1 when z ∈ [−1, 0]. Consequently,
when z ≥ −1, we have | uϵ2c4

| ≤ 1, and substituting mproj = u2, we have

mproj ≤
4c24
ϵ2

when z ≥ −1. (23)

On the other hand, when z ≤ −1, we have

z = W−1

(
−e−c2/2ϵ

2c4

)
∴ − uϵ

2c4
= W−1

(
−e−c2/2ϵ

2c4

)
∴ mproj =

4c24
ϵ2

W 2
−1

(
−e−c2/2ϵ

2c4

)
, z ≤ −1.

Since it is known [CGH+96, Equations 4.19, 4.20] that W 2
−1(−z) ∈ polylog(1/z), incorporating

(23), we have that

mproj ≤

{
4c24
ϵ2 z ≥ −1
4c24
ϵ2 W 2

−1

(
− ec2/2ϵ

2c4

)
z ≤ −1

≤ 4c24
ϵ2

max
(
1, polylog(c4e

c2/2ϵ−1)
)

≤ 4C2
0dR

2
max

(1−√γ)2(1− γ)2ϵ2
polylog

(
1

ϵ
,
1

δ
, |X |, d, Rmax,

1

1−√γ

)
.

The upper bound given above will generally not be an integer. Howevever, increasing mproj can only
improve the approximation error, as shown in Theorem 3 since logm/

√
m decreases monotonically

when m > 7. So, we can round mproj up to the nearest integer (or round it down when m ≤ 7)
incurring a penalty of at most one atom. It follows that the randomized EWP dynamic programming
algorithm of Theorem 3 run with mproj given by (21) produces a return distribution function ηmproj

for which MMDκ(ηmproj , η
π) ≤ ϵ.
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Table 1: Certificate that ΠR
C,κ is not affine

Support point ξ ∈ R q1(ξ) q2(ξ)
(0, 0) 0 0
(0, 1) 0 0
(0, 2) 0 0
(0, 3) 0 0
(1, 0) 0 0
(1, 1) 0.1999 0.2057
(1, 2) 0.1999 0.1959
(1, 3) 0 0
(2,0) 0.0937 0.07957
(2,1) 0.2062 0.2413
(2, 2) 0.1999 0.2026
(2, 3) 0 0
(3,0) 0.0937 0.0787
(3, 1) 0.0063 0
(3, 2) 0 0
(3, 3) 0 0

D Nonlinearity of the Categorical MMD Projection

In Section 6, we noted that the categorical projection ΠR
C,κ is non-affine. Here, we provide an explicit

example certifying this phenomenon.

We consider a single-state MDP, since the nonlinearity issue is independent of the cardinality of
the state space (the projection is applied to each state-conditioned distribution independently). We
write R = {0, . . . , 3}2, and consider the kernel κ induced by ρ(x, y) = ∥x − y∥2—this resulting
MMD is known as the energy distance, which is what we used in our experiments. We consider two
distributions, p1 = δ[1.5,1.5] and p2 = δ[2.5,0].

We consider λ = 0.8 and compare q1 = ΠR
C,κ(λp1+(1−λ)p2) with q2 = λΠR

C,κp1+(1−λ)ΠR
C,κp2,

and we note that q1 ̸= q2; confirming that ΠR
C,κ is not an affine map. The results are tabulated in

Table 1, with bolded entries depicting the atoms with non-negligible differences in probability under
q1, q2.

E Experiment Details

TD-learning experiments were conducted on a NVidia A100 80G GPU to parallelize experiments.
Methods were implemented in Jax [BFH+18], particularly with the help of JaxOpt [BBC+21] for
vectorizing QP solutions — this was helpful for computing the categorical projections discussed
in this work. SGD was used for optimization, using an annealed learning rate schedule (λk)k≥0

with λk = k−3/5, satisfying the conditions of Lemma 10. Experiments with constant learning rates
yielded similar results, but were less stable—this validates that the choice of learning rate schedule
did not impede learning.

The dynamic programming experiments were implemented in the Julia programming language
[BEKS17].

In all experiments, we used the kernel induced by ρ(x, y) = ∥x − y∥2 with reference point 0 for
MMD optimization—this corresponds to the energy distance, and satisfies the requisite assumptions
for convergent multivariate distributional dynamic programming outlined in Theorem 2.

F Neural Multivariate Distributional TD-Learning

For the sake of illustration, in this section, we demonstrate that the signed categorical TD learning
algorithm presented in Section 6 can be scaled to continuous state spaces with neural networks. We
will consider an environment with visual (pixel) observations of a car in a parking lot, an example
observation is shown in Figure 4.
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Car

Obstacle

Parking Spot

Figure 4: Example state in the
parking environment.

Here, we consider 2-dimensional cumulants, where the first dimen-
sion tracks the x coordinate of the car, and the second dimension is
an indicator that is 1 if and only if the car is parked in the parking
spot. We learn a multivariate return distribution function with tran-
sitions sampled from trajectories that navigate around the obstacle
to the parking spot. Notably, the successor features (expectation of
multivariate return distribution) will be zero in the first dimension,
since the set of trajectories is horizontally symmetric. Thus, from
the successor features alone, one cannot distinguish the observed
policy from one that traverses straight through the obstacle!

Fortunately, when modeling a distribution over multivariate returns,
we should see that the support of the multivariate return distribution does not include points with
vanishing first dimension.

CNN

CNN

Figure 5: Neural architecture for modeling multi-return distributions from images.

To learn the multivariate return distribution function from images, we use a convolutional neural
architecture as shown in Figure 5.

Notably, we simply use convolutional networks to model the signed masses for the fixed atoms of the
categorical representation. The projection ΠR

SC,κ is computed by a QP solver as discussed in Section
5, and is applied only to the target distributions (thus we do not backpropagate through it).

We compared the multi-return distributions learned by our signed categorical TD method with that
of [ZCZ+21]. Our results are shown in Figure 6. We see that both TD-learning methods accurately
estimate the distribution over multivariate returns, indicating that no multivariate return will have a
vanishing lateral component. Quantitatively, we see that the EWP algorithm appears to be stuck in a
local optimum, with some particles lying in regions of low probability mass.

Moreover, on the right side of Figure 6, we show predicted return distributions for two randomly
sampled reward vectors, and quantitatively evaluate the two methods. The leftmost reward vector
incentivizes the agent to take paths conservatively avoiding the obstacle on the left. The rightmost
reward vector incentivizes the agent to get to the parking spot as quickly as possible. We see that the
EWP TD learning algorithm of [ZCZ+21] more accurately estimates the return distribution function
corresponding to the latter reward vector, while our signed categorical TD algorithm more accurately
estimates the return distribution function corresponding to the former reward vector. In both cases,
both methods produce accurate estimations.
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Figure 6: Multi-return distributions learned by signed categorical TD and EWP TD, as well as
examples of predicted return distributions on two randomly sampled reward functions.
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generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not pose any such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

39

paperswithcode.com/datasets


Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

40


	Introduction
	Background
	Multivariate Distributional Dynamic Programming
	Particle-Based Multivariate Distributional Dynamic Programming
	Categorical Multivariate Distributional Dynamic Programming
	Simulation: The Distributional Successor Measure

	Multivariate Distributional TD-Learning
	Simulations: Distributional Successor Features

	Conclusion
	Appendix In-Depth Summary of Related Work
	Appendix Proofs
	Multivariate Distributional Dynamic Programming: Section 3
	EWP Dynamic Programming: Section 4
	Categorical Dynamic Programming: Section 5
	Quality of the Categorical Fixed Point

	Categorical TD Learning: Section 6
	The Signed Measure Relaxation
	Convergence of Categorical TD Learning


	Appendix Memory Efficiency of Randomized EWP Dynamic Programming
	Appendix Nonlinearity of the Categorical MMD Projection
	Appendix Experiment Details
	Appendix Neural Multivariate Distributional TD-Learning

