
Open Vocabulary Monocular 3D Object Detection

Supplementary Material

Sec. A discusses limitations of this paper. Sec. B
presents per-category performance on novel classes for OV-
MONO3D-GEO and OVMONO3D-LIFT. Sec. C provides
additional qualitative visualizations on various datasets
and compares predictions between OVMONO3D-GEO and
OVMONO3D-LIFT. Sec. D discusses failure cases, high-
lighting challenges such as occlusions, out-of-distribution
objects, and small or distant instances. Sec. E provides
more analysis on synthetic data and the naming ambiguity
issue in current benchmarks.

A. Limitations

Due to the lack of 3D detection ground truth labels in
COCO [35], the qualitative zero-shot evaluation is not fea-
sible to perform. Additionally, our method requires accu-
rate camera intrinsics as input; however, for in-the-wild im-
ages, the estimated intrinsics can be inaccurate, leading to
errors in prediction. Furthermore, the use of computation-
ally heavy components, such as Grounding DINO [36] and
DINOv2 [43], results in slower inference speed compared
to Cube R-CNN [3], which should be addressed in future
work. See Appendix D for visualizations of failure cases.

B. Per-category Performance on novel classes

We show per-category performance on 3D Average Pre-
cision (AP3D) for OVMONO3D-GEO and OVMONO3D-
LIFT in Tab. 6.

C. More Qualitative Results

Additional qualitative visualizations of OVMONO3D-LIFT
are provided for Omni3D [3] outdoor, indoor subsets, and
COCO [35] in-the-wild images in Figs. 8 to 10, respectively.
For COCO images, we visualize with intrinsics of f = 2·H ,
px = 1

2W , py = 1
2H , where H × W is the input image

resolution.
Fig. 11 illustrates a comparison between the predic-

tions of OVMONO3D-GEO and OVMONO3D-LIFT. OV-
MONO3D-GEO derives object depth from an estimated
metric depth map, yielding better relative depth consistency
with scene layout (e.g., Fig. 11c). However, it estimates di-
mensions and poses based on visible object parts, leading
to biases. For instance, it struggles with occlusions (e.g.,
the door in Fig. 11d), limited surface visibility (e.g., ovens
in Fig. 11e), and noisy depth maps (e.g., the farthest chair
in Fig. 11f). In contrast, OVMONO3D-LIFT, leveraging
learned priors, is more robust in such scenarios. Future

work could integrate these methods to mitigate their respec-
tive limitations.

D. Failure Cases
Fig. 12 shows failure cases of OVMONO3D-LIFT on
COCO [35] images. In Fig. 12a, the relative position from
a top-down view is incorrect, indicating that our model
sometimes predicts the wrong object depth. In Fig. 12b,
our model fails to predict the correct size and pose for the
bear, suggesting that it may struggle with totally out-of-
distribution objects. In Fig. 12c, our model fails to detect
the person and bus in the distance, indicating that it may not
perform well on small and distant objects. In Fig. 12d, our
method fails to identify the mirror and incorrectly detects
the object in the mirror. These failure cases suggest that

Category GEO LIFT
Board 12.42 9.92
Printer 34.03 35.90
Painting 5.16 6.31
Microwave 33.47 48.54
Tray 10.35 15.56
Podium 41.74 62.18
Cart 32.22 54.00
Tram 0.25 8.65

Easy Categories 21.20 30.13

Monitor 18.25 13.92
Bag 25.48 23.96
Dresser 29.78 36.71
Keyboard 15.44 12.58
Drawers 30.01 57.21
Computer 13.14 13.77
Kitchen Pan 15.44 19.90
Potted Plant 20.13 6.07
Tissues 13.49 18.28
Rack 14.60 15.74
Toys 24.07 21.70
Phone 22.21 11.37
Soundsystem 17.73 17.69
Fireplace 24.44 19.76

Hard Categories 20.30 20.62

All Categories 20.63 24.08

Table 6. Per-category Performance of OVMONO3D-GEO and
OVMONO3D-LIFT. The reported metric is AP3D in target-aware
evaluation.



Cube R-CNN OVMono3D-LIFT
Figure 8. Qualitative Visualizations on the KITTI [15] Test Set. For each example, we present the predictions of Cube R-CNN [3] and
OVMONO3D-LIFT, displaying both the 3D predictions overlaid on the image and a top-down view with a base grid of 1m × 1m tiles.
Base categories are depicted with brown cubes, while novel categories are represented in other colors.
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Figure 9. Qualitative Visualizations on the SUN RGB-D [59] Test Set. For each example, we present the predictions of Cube R-CNN [3]
and OVMONO3D-LIFT, displaying both the 3D predictions overlaid on the image and a top-down view with a base grid of 1m×1m tiles.
Base categories are depicted with brown cubes, while novel categories are represented in other colors.

our model still has room for improvement. Future research
could explore better model architectures and weakly super-
vised learning techniques to address these shortcomings.

E. More Analysis

Do synthetic data help? We conducted an ablation
study using synthetic data for OVMONO3D-LIFT under
resource-constrained conditions, with a frozen image en-
coder and excluded depth estimator. The synthetic data
comes from Hypersim [53], which provides indoor images
rendered from artist-created meshes and serves as the sole

synthetic data source in Omni3D [3].

Tab. 7 presents the effect of synthetic data on the per-
formance of OVMONO3D-LIFT. When synthetic data is
incorporated alongside real data, a modest yet meaning-
ful increase of 1 AP3D point is observed in detecting ob-
jects from seen categories, while performance on novel cat-
egories remains largely unchanged. These findings suggest
that, while synthetic data can enhance model performance
in closed-vocabulary 3D object detection tasks, its benefits
are minimal for detecting unseen objects, thereby limiting
its usefulness in open-vocabulary 3D object detection sce-



Figure 10. OVMONO3D-LIFT on In-the-Wild COCO [35] Images. We display 3D predictions overlaid on the images and the top-down
views with a base grid of 1m × 1m tiles.

narios.

Naming Ambiguity issue. We quantitatively evaluate
naming ambiguity in current 3D benchmarks using SUN
RGB-D [59] as an example. For each object instance, we
cropped its 2D bounding box and computed CLIP similar-
ity scores between the visual features and all category text
embeddings. We then aggregated these similarity vectors by

ground-truth category and computed average similarities to
form a confusion matrix, applying softmax normalization.

As shown in Fig. 13, SUN RGB-D annotations exhibit
weaker self-correlation than COCO [35], indicating less
distinct category boundaries. This reflects SUN RGB-D’s
highly similar category names (e.g., ”table” vs. ”desk”).
In open-vocabulary settings, such similarity creates false
negatives when models correctly identify a table as a
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Figure 11. OVMONO3D-GEO vs. OVMONO3D-LIFT on SUN RGB-D [59] Images. For each example, we display the predictions of
OVMONO3D-GEO and OVMONO3D-LIFT. We display 3D predictions overlaid on the images and the top-down views with a base grid
of 1m × 1m tiles. Base categories are depicted with brown cubes, while novel categories are represented in other colors.

(a) (b)

(c) (d)

Figure 12. Failure Cases of OVMONO3D-LIFT on COCO [35] Images. We display 3D predictions overlaid on the images and the
top-down views with a base grid of 1m × 1m tiles.

desk—a distinction often acceptable in real-world applica-
tions. Therefore, our proposed target-aware evaluation is
essential for datasets with ambiguous category definitions,
unlike the well-differentiated categories in COCO.
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Figure 13. Normalized confusion matrices displaying CLIP’s prediction performance on the SUNRGBD and COCO datasets.

Data #Images APBase
3D APNovel

3D

Synthetic 55k 7.14 7.33
Real 120k 23.78 16.20
Synthetic+Real 175k 24.77 16.04

Table 7. Ablation on Synthetic Data. Synthetic data refers to the
Hypersim subset of the Omni3D dataset, while real data comprises
the other Omni3D subsets. Synthetic data boosts the performance
of OVMONO3D-LIFT on base categories but offers little benefit
for novel objects.


