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A Datasets

Synapse: Synapse multi-organ segmentation dataset includes 30 abdominal CT scans with 3779 axial
contrast-enhanced abdominal clinical CT images. Each CT volume consists of 85 ~ 198 slices of
512x512 pixels, with a voxel spatial resolution of ([0.54 ~ 0.54] x [0.98 ~ 0.98] x [2.5 ~ 5.0])mm?.
The dataset is randomly divided into 18 volumes for training (2212 axial slices), and 12 for validation.
For each case, 8 anatomical structures are aorta, gallbladder, spleen, left kidney, right kidney, liver,
pancreas, spleen, stomach.

LiTS: MICCAI 2017 Liver Tumor Segmentation Challenge (LiTS) includes 131 contrast-enhanced
3D abdominal CT volumes for training and testing. The dataset is assembled by different scanners
and protocols from seven hospitals and research institutions. The image resolution ranges from
0.56mm to 1.0mm in axial and 0.45mm to 6.0mm in z direction. The dataset is randomly divided
into 100 volumes for training, and 31 for testing.

MP-MRI: Multi-phasic MRI dataset is an in-house dataset including multi-phasic MRI scans of 20
local patients with HCC, each of which consisted of T1 weighted DCE-MRI images at three-time
points (pre-contrast, arterial phase, and venous phases). Three images are mutually registered to the
arterial phase images, with an isotropic voxel size of 1.00 mm. The dataset is randomly divided into
48 volumes for training, and 12 for testing.

B More Implementation Details

The training configuration and hyperparameter settings are summarized in Table[I]

C Model Architecture

We present the detailed architecture of CATf ormer’s encoding pipeline in Section[2] We use input/out-
put names to indicate the direction of the data stream. CATformer applies independent class-aware
attention on 4 levels of features extracted by the ResNetV2 model. Each feature level L-k is processed
by CATformer-k, consisting of 4 blocks of class-aware transformer modules, followed by 12 layers
of transformer encoder modules. Outputs from all four feature levels are fed into the decoder pipeline
to generate the segmentation masks.

D More Experiments: LiTS

Experimental results are summarized in Table 3]
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Table 1: Training configuration and hyperparameter settings.

Training Config \ Hyperparameter
Optimizer AdamW
Base learning rate Se-4
Weight decay 0.05
Optimizer momentum 51, f2=0.9,0.999
Batch size 6
Training epochs 300
Learning rate schedule cosine decay
Warmup epochs 5
Warmup schedule linear
Randaugment [[1] 9,0.5)
Label smoothing [2] 0.1
Mixup [3] 0.8
Cutmix [4] 1.0
Gradient clip None

Exp. mov. avg. (EMA) [5] None

Table 2: Architecture configuration of CATformer

CATformer

Stage | Layer | InputName | InputShape | OutputName | Output Shape
RN-L1 112 x 112 x 64

.. RN-L2 56 x 56 x 256

Encoder ResNetV2 | Original Image 224 x 224 x 3 RN-L3 28 % 98 x 512
RN-L4 14 x 14 x 1024
CATformer-1 CAT x4 RN-L1 112 x 112 x 64 CAT-1 (28 x 28) x 64
TEMx12 CAT-1 (28 x 28) x 64 F1 (28 x 28) x 64
CATformer-2 CAT x4 RN-L2 56 x 56 x 256 CAT-2 (28 x 28) x 256
THELZ | TEMx12 CAT-2 (28 x 28) x 256 F2 (28 x 28) x 256
CATformer-3 CAT x4 RN-L3 28 x 28 x 512 CAT-3 (28 x 28) x 512
TEMx12 CAT-3 (28 x 28) x 512 F3 (28 x 28) x 512
CATformer-4 CAT x4 RN-L4 14 x 14 x 768 CAT-4 (14 x 14) x 768
THETT | TEMx12 CAT-4 (14 x 14) x 768 F4 (14 x 14) x 768

E More Experiments: MP-MRI

Experimental results are summarized in Table Overall, CATformer and CASTformer outper-
form the previous results in terms of Dice and Jaccard. Compared to SETR, our CATformer and
CASTformer perform 1.78% and 2.54% higher in Dice, respectively. We also find CASTformer
performs better than CATformer, which suggests that using discriminator can make the model better
assess the medical image fidelity. Figure|l|shows qualitative results, where our CATformer and
CASTformer provide better anatomical details than all other methods. This clearly demonstrates the
superiority of our models. All these experiments are conducted using the same hyperparameters in
our CASTformer.

F Effect of Iteration Number N

We explore the effect of different iteration number /N in Figure [2|(a). Note that in the case of N = 1,
the sampling locations will not be updated. We find that more iterations of sampling clearly improve
network performance in Dice and Jaccard. However, we observe that the network performance
does not further increase from N = 4 to N = 6. In our study, we use N = 4 for the class-aware
transformer module.



Table 3: Quantitative segmentation results on the LiTS dataset.

Framework Average .
Liver Tumor
Encoder Decoder DSC 1 Jaccard 1 95HD | ASD |
UNet [6] 62.88 54.64 57.59 27.74 88.27 37.49
AttnUNet [7] 66.03 5849 3134 16.15 92.26 39.81

ResNet50 UNet [6] 65.25 58.09 27.97 10.02 93.78 36.73
ResNet50 AttnUNet [7] 66.22 59.27 3147 10.41 93.26 39.18

SETR [8] 54.79 4921 36.34 15.04 91.69 17.90

CoTr w/o CNN-encoder [9] 53.35 47.11 55.82 22.99 85.25 21.45
CoTr [9] 62.67 5543 3475 15.84 89.43 35.92
TransUNet [10] 67.94 60.25 29.32 12.45 93.40 42.49
SwinUNet [11] 65.53 57.84 3645 16.52 92.15 38.92

e CATformer (ours) 7239 6276  22.38 11.57 94.18 49.60
CASTformer (ours) 73.82 6491 23.35 10.16 95.88 51.76

. liver

CoTr TransUNet Swin-UNet CATformer CASTformer
Figure 1: Visual comparisons with other methods on MP-MRI dataset.

G Effect of Sampling Number n

We further evaluate the effect of sampling number n of the class-aware transformer module in Figure
[2](b). Empirically, we observe that results are generally well correlated when we gradually increase
the size of n. As is shown, the network performance is optimal when n = 16.
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Figure 2: Effects of the iteration number /N and the sampling number 7 in the class-aware transformer

module. We report Dice and Jarrcd of CATformer on the Synapse multi-organ dataset.

H Hyperparameter Selection

We carry out grid-search of A1, A2, A3 € {0.0,0.1,0.2,0.5,1.0}. As shown in Figure [3} with a
carefully tuned hyperparameters A\; = 0.5, Ay = 0.5, and A3 = 0.1, such setting performs generally
better than others.



Table 4: Quantitative segmentation results on the MP-MRI dataset.

Framework Average
Encoder Decoder DSC 1 Jaccard 1 95HD | ASD |

UNet [6] 88.38 7942 3923 11.14
AttnUNet [7] 89.79 81.51 30.13 17.85
ResNet50 UNet [6] 91.51 8439 1538 4.53
ResNet50 AttnUNet [7] 91.43 84.24 14.14 424

SETR [8] 9239 8589 7.66 3.79
CoTr w/o CNN-encoder [9] 85.21 74.49 4425 12.58

CoTr [9] 90.06 81.94 2891 7.89
TransUNet [10] 92.08 8536 23.17 6.03
SwinUNet [L1] 92.07 8532 7.62 3.88

o CATformer (ours) 94.17 86.50 6.55 3.33
CASTformer (ours) 9493 87.81 829 3.02
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Figure 3: Effects of hyperparameters A1, A2, A3. We report Dice and Jarrcd of CASTformer on the
Synapse multi-organ dataset.

I TImportance of Loss Functions

One main argument for the discriminator is that modeling long-range dependencies and acquiring
a more holistic understanding of the anatomical visual information can contribute to the improved
capability of the generator. Besides the WGAN-GP loss [12]], the minimax (MM) GAN loss [13]],
the Non-Saturating (NS) GAN loss [14], and Least Squares (LS) GAN Loss [[15] are also commonly
used as adversarial training. We test these alternatives and find that, in most cases, using WGAN-GP
loss achieves comparable or higher performance than other loss functions. In addition, models trained
using MM-GAN loss perform comparably to those trained using LS-GAN loss. In particular, our
approach outperforms the second-best LS-GAN loss [[15] by 1.10 and 2.49 points in Dice and Jaccard
scores on the Synapse multi-organ dataset. It demonstrates the effectiveness of the WGAN-GP loss
in our CASTformer.

Table 5: Ablation on Loss Function: MM-GAN loss [[13]; NS-GAN loss [14]; LS-GAN loss [[15]];
and WGAN-GP loss [12].

Model \DSC Jaccard 95HD ASD

MM-GAN loss [13]  81.19  71.76 20.75 590
NS-GAN loss [14] | 80.02  70.47 26.06 6.96
LS-GAN loss [15] 8145 7220 20.39  6.49
WGAN-GP loss [12] | 82.55  74.69 2273 581

J Visualization of Learned Sampling Location

To gain more insight into the evolving sampling locations learned by our proposed class-aware
transformer module, we visualize the predicted offsets in Figure @l We can see that particular
sampling points around objects tend to attend to coherent segmented regions in terms of anatomical
similarity and proximity. As is shown, we show the classes with the highly semantically correlated
regions, indicating that the model coherently attends to anatomical concepts such as liver, right/left
kidney, and spleen. These visualizations also illustrate how it behaves adaptively and distinctively
to focus on the content with highly semantically correlated discriminative regions (i.e., different
organs). These findings can thereby suggest that our design can aid the CATformer to exercise finer
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Figure 4: Visualization of sampled locations in the proposed class-aware transformer module.

control emphasizing anatomical features with the intrinsic structure at the object granularity. As is
indicated (Figure[]last column), we also find evidence that our model is prone to capture some small
object cases (e.g., pancreas, aorta, gallbladder). We hypothesize that it is because they contain more
anatomical variances, which makes the model more difficult to exploit.

K Vision Transformer Visualization

In this section, we visualize the first 12 class-aware transformer layers on sequences of 28 x 28 feature
patches in the encoder pipeline. In Figure[5] we plot the attention probabilities from a single patch
over different layers and heads. Each row corresponds to one CAT layer; each column corresponds to
an attention head. As we go deeper into the network, we are able to observe three kinds of attention
behaviors as further discussed below.

Attend to similar features: In the first group of layers (layer 1 through 4), the attention probability
is spread across a relatively large group of patches. Notably, these patches correspond to areas in the
image with similar color and texture to the query patch. These more primitive attention distributions
indicate that the class-awareness property has not yet been established.

Attend to the same class and its boundary: In the middle layers of the transformer model, most
noticeable in the 5t and 6" layers, the attention probabilities start to concentrate on areas that share
the same class label as the query patch (layer 5-2). In some other instances, the model attends to the
boundary of the current class (layer 5-3, 5-6).

Attend to other classes: In the deeper layers of the model, the attention probability mainly concen-
trates on other classes. This clearly demonstrates persuasive evidence that the model establishes class
awareness, which is helpful in the downstream medical segmentation tasks.

L. More Ablations on Decoder Modules

In this section, we explore another state-of-the-art backbone proposed by Lin ef al. [16], termed
Feature Pyramid Network (FPN). FPN utilizes a top-down pyramid with lateral connections to construct
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Figure 5: Attention probability of our 12 class-aware transformer layers, each with 8 heads. The
black box marks the query patch. The input image, ground truth and predicted label are shown on the
first row.

the semantically strong multi-scale feature pyramid from a single-scale input. The major differences
between FPN and our work are as follows:

¢ The former utilizes a CNN-based decoder (FPN [16]), and ours uses an All-MLP-based
decoder. In particular, our motivation comes from the observation that the attention of
lower layers tends to be local, and those of the higher layers are highly non-local [17]. As
the decoder design plays an important role in determining the semantic level of the latent
representations [[18] and Transformers have the larger receptive fields compared to CNNss,
how to use large receptive fields to include context information is the key issue [17,|19-27].



Prior work [17] suggests that the use of MLP-based decoder design can be a very effective
tool in learning additional contextual information to build powerful representations. The key
idea is to essentially take benefits of the Transformer-induced features by leveraging the local
attention at the lower layers and highly non-local (global) attention at the higher layers to
formulate the powerful representations [17]]. To this end, we utilize an MLP-based decoder
instead of a CNN-based decoder to preserve more contextual information, specifically for
medical imaging data, including more anatomical variances.

* We devise the class-aware transformer module to progressively learn interesting anatomical
regions correlated with semantic structures of images, so as to guide the segmentation of
objects or entities. We study the model’s qualitative behavior through learnable sampling
locations inside the class-aware module in Figure[d As indicated, sampling locations are
adaptively adjusted according to the interesting regions.

The table below shows the comparision results of using an FPN decoder, MLP-based decoder, and
the class-aware transformer (CAT) module, all of which include the backbone feature extractor
(ResNet50), on the Synapse multi-organ CT dataset. All the experiments are conducted under the
same experimental setting in Section ??. As we can see, adopting the MLP-based decoder can
outperform the state-of-the-art FPN decoder in terms of DSC, Jaccard, 95HD, and ASD, respectively.
Similarly, incorporating the CAT module can also consistently improve the segmentation performance
by a large margin on the Synapse multi-organ CT dataset. The results prove the robustness of
our MLP-based decoder and the effectiveness of our proposed CAT module for medical image
segmentation.

Table 6: Ablation on Decoder Modules: FPN decoder [16]; MLP-based decoder; and Class-Aware
Transformer (CAT) module.

Encoder Decoder | DSC  Jaccard 95HD ASD
ResNet50 w/o CAT FPN 74.64 6391 29.54 8.8l
ResNet50 w/ CAT FPN 78.11 65.63 28.06 8.08

ResNet50 w/o CAT MLP 80.09  70.56 25.62  7.30
ResNet50 w/ CAT MLP 82.17 73.22 1620 4.28

M More Ablations on Segmentation Losses

To deal with the imbalanced medical image segmentation, Lin et al. [28] proposed Focal loss in
terms of the standard cross entropy to address the extreme foreground-background class imbalance
by focusing on the hard pixel examples. The table below shows the results of the loss function. We
follow v = 2 in the original paper. As we can see, the setting using Focal loss and the other (i.e.,
Dice + Cross-Entropy) achieve similar performances.

Table 7: Ablation on Segmentation Losses: Focal loss [28]]; Dice loss; and Cross-Entropy loss.

Model ‘ DSC Jaccard 95HD ASD
Focal loss [28] 82.08  73.52 16.14  4.99
Dice + Focal loss [28] 81.88 7294 16.52  5.00

Dice + Cross-Entropy loss (ours) | 82.17 73.22 16.20 4.28

N More Ablations on Sampling Modules

In this section, we investigate the effect of recent state-of-the-art sampling modules [29-31]. However,
the motivation and the sampling strategy are different from these works [29-H31]]. Our motivation
comes from the accurate and reliable clinical diagnosis that rely on the meaningful radiomic features
from the correct “region of interest” instead of other irrelevant parts [32435]]. The process of
extracting different radiomic features from medical images is done in a progressive and adaptive
manner [33}34].

DCN [29]] proposed to learn 2D spatial offsets to enable the CNN-based model to generalize the
capability of regular convolutions. Because CNNs only have limited receptive fields compared to
Transformers, DCN focuses on local information around a certain point of interest. In contrast, our
CATformer/CASTformer take benefits of the Transformer-induced features by leveraging the local



attention at the lower layers and highly non-local (global) attention at the higher layers to formulate
the powerful representations.

Deformable DETR [30] incorporated the deformation attention to focus on a sparse set of keys (i.e.,
global keys are not shared among visual tokens). This is particularly useful for its original experiment
setup on object detection. Since there are only a handful of query features corresponding to potential
object classes, deformable DETR learns different attention locations for each class. In contrast, our
approach aims at refining the anatomical tokens for medical image segmentation. To this end, we
proposed to iteratively and adaptively focus on the most discriminative region of interests. This
essentially allows us to obtain effective anatomical features from spatial attended regions within the
medical images, so as to guide the segmentation of objects or entities

DAT [31] introduced deformable attention to make use of global information (i.e., global keys are
shared among visual tokens) by placing a set of the supporting points uniformly on the feature maps.
In contrast, our approach introduces an iterative and progressive sampling strategy to capture the
most discriminative region and avoid over-partition anatomical features.

The table below shows the comparison results between DCN [29], Deformable DETR [30], DAT [31],
and ours (CATformer/CASTformer) on the Synapse multi-organ CT dataset. As we can see, our
approach (i.e., CATformer/CASTformer) can outperform existing state-of-the-art models, i.e.,DCN
[29], and Deformable DETR.

Table 8: Ablation on Sampling Module: DCN [29], Deformable DETR [30], DAT [31]], and ours
(CATformer/CASTformer).

Model | DSC  Jaccard 95HD ASD
DCN [29] 73.19  62.81 3346 10.22
Deformable DETR [30] | 79.13 66.58 30.21 8.65
DAT [31] 80.34  68.15 26.14  7.76
CATformer (ours) 82.17 73.22 1620 4.28
CASTformer (ours) 82.55 74.69 2273  5.81

O More Ablations on Architecture Backbone

In this section, we conduct the ablation study on the Synapse multi-organ CT dataset to compare
our approach with the recent state-of-the-art architecture (SwinUnet) [[11]]. The table below shows
the results of our proposed architecture (e.g., Swin-class-aware transformer (Swin-CAT) module,
multi-scale feature extraction module) are superior compared to the other state-of-the-art method on
the Synapse multi-organ CT dataset. All the experiments are conducted under the same experimental
setting in Section ??. For brevity, we refer our CATformer and CASTformer using SwinUnet as
the backbone to Swin-CATformer and Swin-CASTformer. As we can see, using SwinUnet as
the backbone, the following observations can be drawn: (1) “w/ pre-trained” consistently achieves
significant performance gains compared to the “w/o pre-trained”, which demonstrates the effectiveness
of the pre-training strategy; (2) we can find that incorporating the adversarial training can boost
the segmentation performance, which suggests the effectiveness of the adversarial training strategy;
and (3) our Swin-CASTformer with different modules can also achieves consistently improved
performance. The results prove the superiority of our proposed method on the medical image
segmentation task.

Table 9: Effect of transfer learning in our Swin-CATformer and Swin-CASTformer on the Synapse
multi-organ dataset.

Model \ DSC Jaccard 95HD ASD
o Swin-CATformer (w/o pre-trained) 76.82 65.44 29.58 8.58
o Swin-CATformer (w/ pre-trained) 80.19 70.61 22.66  6.02

Swin-CASTformer (both w/o pre-trained) | 71.67  61.08 43.01 1321
Swin-CASTformer (only w/ pre-trained D) | 76.55 64.27 34.62 12.13
Swin-CASTformer (only w/ pre-trained G) | 77.12 65.39 3099 11.00
Swin-CASTformer (both w/ pre-trained) 80.49  71.19 2394 6091
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