
A Metrics

In this section we discuss the various metrics that we used to report the results in Section 5.

1. Generational Distance Plus (GD +) [18]: This metric measures the euclidean distance
between the solutions of the Pareto approximation and the true Pareto front by taking the
dominance relation into account. To calculate GD+ we require the knowledge of the true
Pareto front and hence we report this metric for Hypergrid experiments (Section 5.1.1)

2. Hypervolume (HV) Indicator [14]: This is a standard metric reported in MOO works that
measures the volume in the objective space with respect to a reference point spanned by a
set of non-dominated solutions in Pareto front approximation.

3. R2 Indicator [16]: R2 provides a monotonic metric comparing two Pareto front approx-
imations using a set of uniform reference vectors and a utopian point z∗ representing the
ideal solution of the MOO. Generally, R2 metric calculations are performed with z∗ equal
to the origin and all objectives transformed to a minimization setting thereby ensuring
monotonicity of the metric. Here we are instead in a (reward) maximization setting and so
the utopian point considered is the vector of maximal values for each reward (typically 1 for
normalized rewards).

4. Top-K Reward: This metric was originally used in [4], which we extend for our multi-
objective setting. For MOGFN-PC, we sample N candidates per test preference and then
pick the top-k candidates (k < N ) with highest scalarized rewards and calculate the mean.
We repeat this for all test preferences enumerated from the simplex and report the average
top-k reward score.

5. Top-K Diversity: This metric was also originally used in [4], which we extend for our
multi-objective setting. We use this metric to quantify the notion of diversity of the generated
candidates. Given a distance metric d(x, y) between candidates x and y we calculate the
diversity of candidates as those who have d(x, y) greater than a threshold epsilon. For
MOGFN-PC, we sample N candidates per test preference and then pick the top-k candidates
based on the diversity scores and take the mean. We repeat this for all test preferences
sampled from simplex and report the average top-k diversity score. We use the edit distance
for sequences, and 1 minus the Tanimoto similarity for molecules.

B Task Details

B.1 Hypergrid

Here we elaborate on the HyperGrid experimental setup which we discussed in Section 5.1.1.
We also present additional results where we vary the grid size and show some quanti-
tative metrics. For all our experiments we consider the following rewards: R(x) =
[brannin(x), currin(x), sphere(x), shubert(x), beale(x)]. In Figure 5, we show the
heatmap for each reward function. Note that we normalize all the reward functions between 0 and 1.
Additional Results: Here we present extended qualitative visualizations across more preferences in

Figure 5: Reward Functions Different reward function considered for HyperGrid experiments
presented in Section 5.1.1. Here the grid dimension is H = 32

.

Figure 6.

13



Table 6: Hyperparameters use for String Generation Task
Hyperparameter Values
Learning Rate (PF ) {0.01, 0.05, 0.001, 0.005, 0.0001}
Learning Rate (Z) {0.01, 0.05, 0.001}
Reward Exponent: β {16, 32, 48}
Uniform Policy Mix: δ {0.01, 0.05, 0.1}

Model Details and Hyperparameters For MOGFN-PC policies we use an MLP with two hidden
layers each consisting of 64 units. We use LeakyReLU as our activation function as in [4]. All models
are trained with learning rate=0.01 with the Adam optimizer [23] and batch size=128. We
sample preferences ω from Dirichlet(α) where α = 1.5.

B.2 String

Model Details and Hyperparameters We consider a Transformer, with 3 hidden layers of dimension
64 with 8 attention heads, as the architecture all methods. We present the hyperparameters we used
in Table 6. Each method is trained for 10,000 iterations with a minibatch size of 128.

B.3 QM9

More Details As mentioned in Section 5.2.1, we consider four reward functions for our experiments.
Here we elaborate on them. The first reward function is the HUMO-LUMO gap, for which we
rely on the predictions of a pretrained model trained on the QM9 dataset [33]. The second reward
is the standard Synthetic Accessibility score which we calculate using the RDKit library, to get a
reward we take (10 − SA)/9. The third reward function is molecular weight target. Here we first
calculate the molecular weight of a molecule using RDKit, and then construct a reward function of
the form e−(molWt−105)2/150 which is maximized at 105. Our final reward function is a logP target,
e−(logP−2.5)2/2, which is again calculated with RDKit and is maximized at 2.5.

Model Details and Hyperparameters We use a graph neural network based on a graph transformer
architecture [43].

Hyperparameter Values
Learning Rate (PF ) 0.0005
Learning Rate (Z) 0.0005
Reward Exponent: β 32
Batch Size: 64
Number of Embeddings 64
Uniform Policy Mix: δ 0.001
Number of layers 4

B.4 Fragments

More Details As mentioned in Section 5.2.2, we consider four reward functions for our experiments.
The first reward function is a proxy trained on molecules docked with AutodockVina [37] for the sEH

Figure 6: Extended Qualitative Visualizations for Hypergrid epxeriments
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target; we use the weights provided by [4]. We also use synthetic accessibility, as for QM9, and a
weight target region (instead of the specific target weight used for QM9), ((300 - molwts) / 700
+ 1).clip(0, 1) which favors molecules with a weight of under 300. Our final reward function is
QED which is again calculated with RDKit.

Additional Results

Model Details and Hyperparameters We again use a graph neural network based on a graph
transformer architecture [43]. We additionally sample from a lagged model whose parameters are
updated as θ′ = τθ′ + (1− τ)θ.

Hyperparameter Values
Learning Rate (PF ) 0.0005
Learning Rate (Z) 0.0005
Reward Exponent: β 96
Batch Size: 256
Sampling model τ 0.95
Number of Embeddings 128
Number of layers 6

B.5 DNA Sequence Design

More details In order to compute the free energy and number of base with the software NUPACK,
we used 310 K as the temperature. The inverse of the length L objective was calculated as 30

L , as 30
was the minimum length for sampled sequences.

Model Details and Hyperparameters As with the synthetic string generation task, we consider
a 4-layer Transformer, with 256 units per layer and 16 attention heads, as the architecture for all
methods. We detail the most relevant hyperparameters Table 7.

B.6 Active Learning

We follow the exact experimental setup used in [36]. The active learning batch size is set to 16, and
we run 64 rounds of optimization. Table 8 presents the hyperparameters used for MOGFN-AL.

Table 7: Hyperparameters tuned for DNA-Aptamers Task. The values used in the final models are
highlighted in bold.

Hyperparameter Values
Learning Rate (PF ) {0.01, 0.001, 0.0001, 0.00001, 0.000001}
Learning Rate (Z) 0.001
Reward Exponent: β {5, 20, 40, 60, 80, 100}
Batch Size: 16
Training iterations: 10,000
Dirichlet α {0.1, 1.0, 5.0}

15



Table 8: Hyperparameters tuned for the Active Learning Task
Hyperparameter Values
Learning Rate (PF ) {0.01, 0.001, 0.0001}
Learning Rate (Z) {0.01, 0.001}
Reward Exponent: β {16, 24}
Uniform Policy Mix: δ {0.01, 0.05}
Number of mutations {10, 15, 20}
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