
Supplementary materials for FLOP:
Tasks for Fitness Landscapes Of Protein wildtypes

Peter Mørch Groth1,2, Richard Michael1,
Jesper Salomon2, Pengfei Tian2, Wouter Boomsma1

1Department of Computer Science, University of Copenhagen
2Bioinformatics & Design, Enzyme Research, Novozymes

{petergroth,richard.michael,wb}@di.ku.dk
{pmg,jrsx,pfi}@novozymes.com

A Dataset details1

The curated datasets are kept in csv-files with the following columns:2

• index: Index for each protein.3

• name: Unique name for each protein. This identifier maps directly to the file name for4

all representations. For example, the ESM-2 embedding for sequence <seq_id> from5

<dataset> can be found in representations/<dataset>/esm_2/<seq_id>.pt.6

• sequence: Amino acid sequence.7

• target_reg: The assay value/regression target.8

• target_class: Binarized assay value for stratification.19

• part_0: 1 if sequence belongs to the first partition, 0 otherwise.10

• part_1: 1 if sequence belongs to the second partition, 0 otherwise.11

• part_2: 1 if sequence belongs to the third partition, 0 otherwise.12

The curated file for <dataset> is placed in data/processed/<dataset>/<dataset>.csv. For13

details on data access, see Section A.1.14

All structures were predicted with AlphaFold2 [1] using ColabFold [2] using five recycling runs with15

model version alphafold2_multimer_v3 with early stopping at pLDDT of 90.0. The predicted16

structures can be found in the data/raw/<dataset>/pdb directory for each dataset.17

We ask that references to the tasks in this paper include references to the original dataset authors.18

A.1 Dataset/code access19

All code is accessible via the repository at https://github.com/petergroth/FLOP. The three20

curated dataset files can be found in the repository as three separate csv-files. All remaining files21

(including PDB-files, pre-computed representations, raw data files, etc.) can be found at https:22

//sid.erda.dk/sharelink/HLXs3e9yCu. Additional details can be found in the repository.23

1Tasks can alternatively be cast as classification problems by predicting this column instead, as was also done
for the CM dataset.
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A.2 GH11424

A.2.1 Details and access25

The GH114 dataset was extracted from the WO2019228448 patent [3] filed by Novozymes A/S,26

and can be accessed at https://patentscope.wipo.int/search/en/detail.jsf?docId=27

WO2019228448, or alternatively at https://patents.google.com/patent/WO2019228448A1/28

en. The assay values/protein pairs can be found in Table 1 in the main text (columns SEQ ID29

and Absorbance at 405 nm - blank) while the corresponding sequences can be found in the30

Sequence Listing document. Each protein sequence is encapsulated by <210>, where the num-31

ber following <210> corresponds to a SEQ ID entry from patent Table 1. E.g., the sequence for32

protein SEQ ID 12 is found between <210> 12 and the next <210>. Each amino acid is described33

using 3-letter symbols (e.g., Ala for alanine). These have been processed into 1-letter symbols, and34

subsequently into the full sequence strings, which are collected in data/raw/gh114/gh114.fasta.35

A.2.2 MSA36

To strengthen the MSA, additional members from the GH114 family (PF03537) were added using37

the UniProt and InterPro databases [4, 5], where the sequence lengths of the added members were38

limited to 550 to limit the size of the final alignment, resulting in a sequence pool of 6507 sequences.39

The sequences are aligned using FAMSA [6].40

A.2.3 Stratification threshold41

During the dataset splitting procedure, the sequences were assigned a binary label for partition42

stratification. To achieve this, a two-component Gaussian mixture model was fitted to the data and43

used to assign labels. This corresponded to a decision boundary of 0.853.44

A.2.4 Permission45

While the data is publicly available, explicit permission to use the data for benchmarking purposes46

has been given by the patent’s inventors, one of which is a coauthor of this paper.47

A.3 CM48

A.3.1 Dataset details and access49

The CM dataset was extracted from the supplementary materials of [7] which can be accessed at50

https://www.science.org/doi/full/10.1126/science.aba3304.51

The 2133 sequences used in this paper are composed of52

• 1130 naturally occurring enzymes,53

• 493 bmDCA designed sequences at temperature T = 0.33,54

• and 510 bmDCA designed sequences at temperature T = 0.66.55

The designed sequences are obtained by Monte Carlo sampling via Boltzmann-machine learning56

direct coupling analysis (bmDCA) [8] and match the empirical first-, second-, and higher-order57

statistics of the natural homologs. The sequences also exhibit comparable catalytic levels when58

experimentally synthesized (see [7], Fig. 3). Given the similarity to the natural homologs in both59

sequence and expression, the sequences have been included.60

The sequences sampled at higher temperatures (i.e., with temperature T = 1) and sequences designed61

using a simple profile model (where amino acids were only sampled according to position-specific62

conservation, i.e., first-order statistics) were discarded. The high-temperature sequences were almost63

exclusively non-functional while also being too distant from the wildtype homologs. The mean64

sequence identity to each sequence’s nearest natural homolog was 0.55. For comparison, the mean65

sequence identity to nearest natural homologs for the sampled sequences at temperatures 0.33 and66
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0.66, is 0.81 and 0.76, respectively. While the sequences sampled using the profile model were similar67

in first-order statistics by design (mean sequence identity of 0.76 to nearest homologs), the sequences68

were exclusively non-functional. These would furthermore have been filtered out at a later stage,69

since only sequences with values greater than 0.42 were included in the benchmark, corresponding to70

high activity enzymes.71

The used natural sequences are found in aba3304_table_s1.xlsx while the designed sequences72

are found in aba3304_table_s2.xlsx. The sequences are found aligned in the Sequence columns.73

These were stripped of the - token. The target values are found in the norm r.e. columns and74

correponds to the normalized activity relative to Escherichia coli. The proteins were named using the75

No. column while appending seq_id_.76

A.3.2 MSA77

To strengthen the MSA, additional members from the chorismate mutase family (IPR036979) were78

added using the UniProt and InterPro databases [4, 5], where the sequence lengths of the added79

members were limited to 600 to limit the size of the final alignment, resulting in a sequence pool of80

49017 sequences. The sequences are aligned using FAMSA [6].81

A.3.3 Stratification threshold82

During the dataset splitting procedure, the sequences were assigned a binary label for partition83

stratification. To achieve this, a two-component Gaussian mixture model was fitted to the data and84

used to assign labels. This corresponded to a decision boundary of 0.767.85

For the ablation study in which regression was performed on both active and inactive sequences, the86

sequences were assigned a 0 if the enzymatic activity was less than or equal to 0.42, corresponding87

to inactive enzymes, and a 1 if the activity was above. See [7] for details on the choice of decision88

boundary.89

A.3.4 Permission90

While the data is publicly available, explicit consent to use the data for benchmarking purposes has91

been given by the authors.92

A.4 PPAT93

A.4.1 Dataset details and access94

The PPAT dataset was extracted from [9] and can be accessed at https://www.science.org/doi/95

10.1126/science.aao5167. The dataset file can be found in the supplementary materials in the96

aao5167_plesa-sm-tables-s8-s14.xlsx file, sheet name S12_PPATdata. The sequences and97

target values are in the seq and globalfit14 columns, respectively.98

A.4.2 MSA99

To strengthen the MSA, additional members from the phosphopantetheine adenylyltransferase family100

(IPR001980) were added using the UniProt and InterPro databases [4, 5], where the sequence lengths101

of the added members were limited to 200 to limit the size of the final alignment, resulting in a102

sequence pool of 17891 sequences. The sequences are aligned using FAMSA [6].103

A.4.3 Stratification threshold104

During the dataset splitting procedure, the sequences were assigned a binary label for partition105

stratification. To achieve this, a two-component Gaussian mixture model was fitted to the data and106

used to assign labels. This corresponded to a decision boundary of −0.081.107
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A.4.4 Permission108

While the data is publicly available, consent to use the data for benchmarking purposes was given by109

authors of [9].110

B Reproducibility111

All results can be reproduced using the provided shell scripts in the scripts directory in the code112

repository. A description of this process can be found in the repository’s README.113

Reproducing the main results (i.e., running the regression benchmark given the representa-114

tions) is cheap and can be achieved in a few hours using multithreading by running the115

shell script scripts/reproduce.sh. The figures and tables can then be generated via116

scripts/process_results.sh. Generating structures and representations is more time con-117

suming, and will be system specific. For further details, see Section B.1. We provide all used118

representations via the data link in Section A.1. The representations can be downloaded either in bulk119

with representations.tar.gz or individually via the representations directory.120

All data (raw and curated) can be collected from the links provided in Section A.1. The data can be121

downloaded in bulk via data.tar.gz or individual files can be chosen through the file manager and122

the data directory.123

Minor preprocessing (e.g., removing headers to make the Excel-files conform to a tabulated format)124

might be required before the compilation scripts in src/data/ can be run. These preprocessed files125

can be found in the following files in the data repository (see Section A):126

• GH114: data/raw/gh114/gh114.csv127

• CM: data/raw/cm/cm.csv128

• PPAT: data/raw/ppat/ppat.xlsx129

Each dataset can then be compiled (i.e., processed and split according to the prescribed dataset130

splitting procedure) using src/data/compile_<dataset>.py. This yields the format described in131

Section A.132

The final partitioning as determined using GraphPart [10] is dependent on the ordering of the input133

data. Shuffling the datasets, i.e., changing the order of the sequences, will thus slightly change the134

partitions. We observed only minor changes to the benchmark results given these slight differences.135

The CT, ESM-1B, ESM-2, ESM-IF1, MIF-ST, MSA (1-HOT) as well as ESM-IF1 likelihoods can be136

generated using the generate_representations.sh script.137

The Evoformer embeddings are extracted during folding using AlphaFold2 by using the138

–-save-single-representations flag of ColabFold [2].139

To generate the EVE embeddings, the model has to be trained. This can be handled via the140

train_EVE_models.sh script. EVE is trained on each dataset a total of three times using dif-141

ferent seeds. The ELBO scores and embeddings are computed/extracted from each trained model.142

The embeddings are placed in the 0/1/2 subdirectories of representations/<dataset>/EVE/.143

B.1 Computational resources144

A system with an Intel Xeon E5-2680v4 CPU, NVIDIA RTX A5000 GPUs, and 512 GB of RAM145

was used for benchmarking, computing ESM/MIF-ST embeddings, and training EVE models (though146

the benchmarking process itself does not utilize GPUs). A system with an AMD EPYC 7642 CPU,147

NVIDIA A40 GPUs, and 1 TB of RAM was used for protein folding.148

A conservative estimate puts the computational resources for each sequence at 4 minutes, which for149

2804 sequences results in approximately 187 GPU hours. The majority of this time (>80 %) is spent150
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folding the proteins using AlphaFold2. Running the regression benchmark takes approximately 3151

hours using a multithreading-capable CPU.152

C Dataset target histograms153
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Figure A1: Target histograms of the datasets. CM dataset shows both full dataset prior to filtering and
the subset of active sequences that is included in the benchmark. The subset includes only sequences
with enzyme activities > 0.42.
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D Histograms of cross-validation partitions154
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Figure A2: Stacked histogram over distribution of target values for GH114 dataset. Each color
correspond to a partition.
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Figure A3: Stacked histogram over distribution of target values for CM dataset. Each color correspond
to a partition.
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D.3 PPAT157
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Figure A4: Stacked histogram over distribution of target values for PPAT dataset. Each color
correspond to a partition.
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E Phylogenetic trees for PPAT dataset158

The phylogenetic tree in Figure 2 was constructed based on a family-wide multiple sequence alignment159

using FastTree [11]. The extracted segment corresponds to the top right quarter.160

E.1 Phylogenetic tree colored by dataset partitioning scheme161

The phylogenetic tree in Figure A5 is the full version of the leftmost segment in Figure 2.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
																																																																																											

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	
	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Figure A5: Phylogenetic tree for PPAT dataset. Each sequence is colored according to its partition as
computed in the data splitting setup. Black squares indicate high target value while white squares
indicate low target value.
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E.2 Phylogenetic tree colored by MMseqs-based clustering scheme163

The phylogenetic tree in Figure A6 is the same tree as in Figure A5 with a different coloring scheme.164

The protein sequences were clustered using MMseqs [12] such that at least two large clusters were165

created. These two large clusters get separate colors, while the remaining minor clusters get a shared166

color. This represents an alternative dataset splitting scheme. As is apparent from the figure, wide167

bands of uniformly colored (and thus partitioned) sequences appear. Large subfamilies are all placed168

in the same partition which means that learning across subfamilies is difficult. The partitioning is169

furthermore not stratified which might result in low-scoring partitions.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
																																																																																											

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	
	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Figure A6: Phylogenetic tree for PPAT dataset. Each sequence is colored according to its partition as
computed in the data splitting setup. Black squares indicate high target value while white squares
indicate low target value.
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E.3 Phylogenetic tree colored randomly171

The phylogenetic tree in Figure A7 is the same tree as in Figure A5 with a different coloring scheme.172

Instead of relying on the prescribed partitioning strategy, each sequence is assigned one of the three173

colors randomly. This corresponds to generating three random partitions. While the tree looks similar174

to the one in Figure A5, there is no guarantee that nearly identical sequences are not placed in separate175

partitions thus allowing for data leakage. There is furthermore no mechanism to ensure properly176

stratified splits (although this can be handled in most machine learning frameworks).

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
																																																																																											

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	
	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Figure A7: Phylogenetic tree for PPAT dataset. Each sequence is colored randomly corresponding to
a random splitting procedure. Black squares indicate high target value while white squares indicate
low target value.
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F ProteinGym sequence identities178

Table A1 shows the median, mean. and standard deviation of the pairwise sequence identities for179

each benchmark dataset. For comparison, we have computed the same quantities for 48 substitution180

tasks present in the ProteinGym [13] set of deep mutational scanning assays which is commonly181

used for benchmarking variant effect predictors. These quantities can be seen in Table A2. The stark182

differences shows the diversity of the wildtype datasets.183

Table A1: Diversity of FLOP datasets

Dataset Median %ID Mean %ID Standard deviation

GH114 0.485 0.514 0.098
CM 0.400 0.408 0.059
PPAT 0.513 0.515 0.046

Mean 0.466 0.479 0.067

Table A2: Diversity of ProteinGym datasets

Dataset Median %ID Mean %ID Standard deviation

A0A140D2T1_ZIKV_Sourisseau_growth_2019 0.999 0.999 0.000
A0A192B1T2_9HIV1_Haddox_2018 0.998 0.998 0.000
A0A2Z5U3Z0_9INFA_Doud_2016 0.996 0.997 0.001
A0A2Z5U3Z0_9INFA_Wu_2014 0.996 0.996 0.000
A4GRB6_PSEAI_Chen_2020 0.992 0.993 0.001
AMIE_PSEAE_Wrenbeck_2017 0.994 0.995 0.001
B3VI55_LIPST_Klesmith_2015 0.995 0.996 0.001
BLAT_ECOLX_Deng_2012 0.993 0.993 0.001
BLAT_ECOLX_Firnberg_2014 0.993 0.993 0.001
BLAT_ECOLX_Jacquier_2013 0.993 0.993 0.000
BLAT_ECOLX_Stiffler_2015 0.993 0.993 0.000
BRCA1_HUMAN_Findlay_2018 0.999 0.999 0.000
C6KNH7_9INFA_Lee_2018 0.996 0.997 0.001
CALM1_HUMAN_Weile_2017 0.987 0.987 0.002
CCDB_ECOLI_Adkar_2012 0.980 0.980 0.001
CCDB_ECOLI_Tripathi_2016 0.980 0.980 0.001
DLG4_RAT_McLaughlin_2012 0.997 0.997 0.000
ENV_HV1B9_DuenasDecamp_2016 0.998 0.998 0.000
ENV_HV1BR_Haddox_2016 0.998 0.998 0.000
GAL4_YEAST_Kitzman_2015 0.998 0.998 0.000
HSP82_YEAST_Flynn_2019 0.997 0.997 0.000
HSP82_YEAST_Mishra_2016 0.997 0.997 0.000
I6TAH8_I68A0_Doud_2015 0.996 0.996 0.000
IF1_ECOLI_Kelsic_2016 0.972 0.974 0.005
KKA2_KLEPN_Melnikov_2014 0.992 0.993 0.001
MK01_HUMAN_Brenan_2016 0.994 0.994 0.000
MTH3_HAEAE_Rockah-Shmuel_2015 0.994 0.994 0.000
NCAP_I34A1_Doud_2015 0.996 0.996 0.000
P84126_THETH_Chan_2017 0.992 0.992 0.000
PA_I34A1_Wu_2015 0.997 0.998 0.001
POLG_CXB3N_Mattenberger_2021 0.999 0.999 0.000
POLG_HCVJF_Qi_2014 0.999 0.999 0.000
PTEN_HUMAN_Mighell_2018 0.995 0.995 0.000
Q2N0S5_9HIV1_Haddox_2018 0.998 0.998 0.000
Q59976_STRSQ_Romero_2015 0.996 0.997 0.001
RASH_HUMAN_Bandaru_2017 0.989 0.989 0.000
REV_HV1H2_Fernandes_2016 0.983 0.983 0.001
RL401_YEAST_Mavor_2016 0.984 0.985 0.003
RL401_YEAST_Roscoe_2013 0.984 0.985 0.002
RL401_YEAST_Roscoe_2014 0.984 0.985 0.002
SC6A4_HUMAN_Young_2021 0.997 0.997 0.000
SUMO1_HUMAN_Weile_2017 0.980 0.981 0.003
TAT_HV1BR_Fernandes_2016 0.977 0.977 0.001
TPK1_HUMAN_Weile_2017 0.992 0.992 0.001
TRPC_SACS2_Chan_2017 0.992 0.992 0.000
TRPC_THEMA_Chan_2017 0.992 0.992 0.000
UBC9_HUMAN_Weile_2017 0.987 0.988 0.002
UBE4B_MOUSE_Starita_2013 0.998 0.998 0.000

Mean 0.993 0.992 0.001
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G Representation dimensionalities184

The dimensionalities of the different protein representations are shown in Table A3. The ESM,185

Evoformer, and MIF-ST embeddings are mean-pooled along the protein length dimension to obtain186

fixed inputs.187

A multiple sequence alignment (MSA) is generated for each (enriched) protein family, resulting in188

different dimensionalities. The amino acids are then one-hot encoded to a MSA_length× 20 matrix189

for each protein, which is in turn flattened to a vector input.190

The CT representation consists of two parts: compositional and transitional descriptors which191

are concatenated. Each of the two groups in turn consists of seven physicochemical descrip-192

tors, relating to overall polarizability, charge, hydrophobicity, polarity, secondary structure,193

solvent accessibility, and van der Waals volume of a sequence. Each descriptor is in turn194

represented by three numbers. This yields a total of 2 × 7 × 3 = 42 dimensions. For de-195

sciptions of the various features, see https://github.com/gadsbyfly/PyBioMed/blob/196

45440d8a70b2aa2818762ceadb499dd3a1df90bc/PyBioMed/PyProtein/CTD.py#L60 and197

[14].198

Table A3: Dimensionalities of the different protein representations.

Representation D Note Model name
CT 42 – –
ESM-1B 1280 Mean-pooled esm1b_t33_650M_UR50S
ESM-2 2560 Mean-pooled esm2_t36_3B_UR50D
ESM-IF1 256 Mean-pooled esm_if1_gvp4_t16_142M_UR50
MIF-ST 256 Mean-pooled mifst
EVE 50 Seeds 0,1,2 –
Evoformer (AF2) 256 Mean-pooled alphafold2_multimer_v3

MSA (1-HOT, GH114) 88420 Flattened 6507 sequences in MSA.
MSA (1-HOT, CM) 109980 Flattened 49017 sequences in MSA.
MSA (1-HOT, PPAT) 10140 Flattened 17891 sequences in MSA.

H EVE199

Due to the stochastic training process, we train EVE on each fitness landscape using three different200

random seeds (0,1,2). The reported performance will thus be the average over the predictions using201

the three different representations for each sequence. While EVE was originally used to predict202

variant effects of single wildtype proteins, it can be used on any multiple sequence alignment. The203

built-in preprocessing requires a reference wildtype (query) sequence. This query sequence is then204

used to trim and otherwise clean the remaining sequences in the MSA. Since no single wildtype is205

representative for entire protein families, we instead generate an artificial query sequence. Given the206

full-length MSA, we iterate through all of our labelled sequences (a minor part of the full MSA), and207

create a query sequence which has an amino acid (we arbitrarily chose ’A’) at any position in the208

MSA, where any of the labelled sequences also have an amino acid. The remaining positions are209

filled with gaps. For example, say that sequences –A-T-H and -AT–J- are two labelled sequences210

from the MSA. The corresponding query sequence would thus be -AA-AAA. The query sequence is211

only used in the preprocessing, e.g., to conserve the columns, where the labelled sequences have212

occupancy, and to remove columns where none do. The query sequence is not included in the model213

training itself. Alternative preprocessing is equally viable which can avoid the creation of the artificial214

query sequence.215
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I ProteinMPNN216

ProteinMPNN [15] is an inverse folding model. As described in example 3 in the repository, the model217

can estimate its uncertainty given structure/sequence pairs by using the score_only functionality.218

We use the v_48_020 weights, sampling temperature of 0.1, and number of sequences per target of 5.219

J Tranception220

We evaluate the fitness of the wildtype sequences using the bidirectional scoring with retrieval using221

the Tranception L (Large) as defined in the manuscript [13]. This utilises a multiple sequence222

alignment for each sequence during scoring.223

K Regressor hyperparameters224

In each cross validation iteration, the regressor is optimized via a grid search. The regressor is trained225

with all configurations on the training set, and the model providing the lowest mean squared error on226

the validation set is used to predict on the test set. In addition to the shown results from a random227

forest regressor, the results from K-nearest neighbour model, a ridge regressor, and a multilayer228

perceptron (MLP) are also computed. The following hyperparameter grids are used:229

• Ridge(random_state=0): Regularization strength was chosen among: 0.0001, 0.001,230

0.01, 0.1, 0.2, 0.5, 1, 2, 10, 25, 50, 100.231

• KNeigborsRegressor(): The number of neighbours was chosen among: 1, 2, 5, 10, 25.232

For the GH114 dataset, the 10 and 25 options were removed due to the small partition sizes.233

• RandomForestRegressor(random_state=0): Minimum samples to split was chosen234

among 2, 5. Maximum number of features was either sqrt or log2. Number of estimators235

was either 100 or 200.236

• MLPRegressor(random_state=0, max_iter=2000): hidden layer sizes was either 10237

or 100, the L2 regularization strength was set to 0, 0.01, or 0.0001, while the optimizer was238

either Adam (with gradient descent) or L-BFGS.239

We use the scikit-learn implementations of the regressors [16]. The parameters not explicitly defined240

above are the default parameters. Several other grids for the four models were examined but provided241

no significant performance increases. The MLP-regressor occasionally experienced convergence242

issues (with both optimizers).243

L Ablation results figure244

The values in Table 3 are shown as bar plots in Figure A8. The figure has been moved to the appendix245

due to page limit constraints.246
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Figure A8: Spearman’s correlation coefficient between predictions and targets over test partitions,
grouped by dataset. Standard error is shown as vertical bars. *: Hold-out validation. **: Regression
on both active and inactive proteins. ***: Repeated random splitting.
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L.1 Hold-out ablation study on all datasets247

The included ablation study shows the results if hold-out validation is applied to the GH114 dataset248

using a ridge regressor. In Figure A9 is shown the same ablation study on all three datasets using249

a K-nearest neighbour regressor, a ridge regressor, and a random forest regressor. For EVE, three250

models have been trained at different initializations thereby explaining the errors bars.
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Figure A9: Spearman’s rank correlation coefficient between predictions and targets using a hold-out
validation approach, grouped by regressor and dataset.
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L.2 Random splitting ablation study on all datasets252

The included ablation study shows the results if splitting is applied to the PPAT dataset using a ridge253

regressor. In Figure A10 is shown the same ablation study on all three datasets using a K-nearest254

neighbour regressor, a ridge regressor, and a random forest regressor.
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Figure A10: Spearman’s rank correlation coefficient between predictions and targets over using a
cross-validation approach with randomly sampled partitions repeated on on three random seeds,
grouped by regressor and dataset.255
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M Classification results for CM dataset256

Classification was carried out on a combined pool of inactive and active sequences for the CM257

dataset. The threshold between the two classes is set to 0.42 as described in [7]. The procedure258

was carried out just as described in Section 3.1 simply with alternative targets and objectives. The259

results using a K-nearest neighbour classifier, a logistic regression classifier, a random forest classifier,260

and a multi-layer perceptron are shown in Figure A11. The models were optimized using a binary261

cross-entropy loss function. The shown metric is Matthew’s correlation coefficient. As can be seen262

from the results, the classification task is significantly easier than the proposed regression benchmark.263

This supports the notion of carrying out an initial classification prior to performing regression on the264

subset of active sequences.
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Figure A11: Average Matthew’s correlation coefficient between predictions and targets over test
partitions. Standard error is shown as vertical bars.265
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N Additional results266

N.1 Results using additional regressors (Spearman)267

Test results obtained using a K-nearest neighbour regressor, a ridge regressor (as shown in the main268

text), a random forest regressor, and an MLP are shown in Figure A12. We observe no systematic269

differences between the choice of regressor, other than the random forest consistently reaching high270

performance. This led us to include only the results from the random forest predictor in the main text.271
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Figure A12: Average Spearman’s correlation between predictions and targets over test partitions,
grouped by regressor and dataset. Standard error is shown as vertical bars.
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N.2 Benchmark results (RMSE)272

Test RMSE obtained can be seen in Table A4.273

Table A4: Benchmark results with random forest regressor. Mean RMSE and standard error using
cross-validation. Lower is better.

GH114 CM PPAT
ESM-1B 0.43 ± 0.04 0.15 ± 0.0 2.32 ± 0.03
ESM-2 0.43 ± 0.04 0.15 ± 0.0 2.33 ± 0.03
ESM-IF1 0.48± 0.04 0.15 ± 0.0 2.33 ± 0.02
MIF-ST 0.42 ± 0.04 0.15 ± 0.0 2.34 ± 0.03
Evoformer (AF2) 0.45± 0.05 0.16± 0.0 2.32 ± 0.03
EVE 0.44 ± 0.02 0.16± 0.0 2.41± 0.01
MSA (1-HOT) 0.45 ± 0.04 0.15 ± 0.0 2.35 ± 0.02
CT 0.45 ± 0.05 0.16± 0.0 2.41± 0.03

N.3 Results using additional regressors (RMSE)274

Test RMSE obtained using a K-nearest neighbour regressor, a ridge regressor (as shown in the main275

text), a random forest regressor, and an MLP are shown in Figure A13. Note that the y-axes are not276

shared.277
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Figure A13: Average RMSE over test partitions, grouped by regressor and dataset. Standard error is
shown as vertical bars.

N.4 Results for CM dataset when using only natural homologs278

During the curation process of the chorismate mutase dataset, the 1130 natural homologs were279

enriched with 1003 model-generated sequences (for details, see Appendix A.3. The benchmark280

results if only the natural sequences were used can be seen in Figure A14.281
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Figure A14: Average Spearman correlation coefficient between predictions and targets over test
partitions. Standard error is shown as vertical bars.

O Retraction from ICLR 2022282

A previous version of this work was submitted to – and subsequently withdrawn from – the Inter-283

national Conference on Learning Representations (ICLR) 2022. The earlier version had a lack of284

novelty and limited relevance. The paper has seen major revisions since, including removing an285

earlier dataset, introducing the GH114 dataset, a more elaborate description of the limitations of286

previous work with respect to wildtype exploration, a more thorough description of the methodology287

and its impact, thorough supplementary materials and more.288
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P Mandatory dataset information details289

All curated datasets are publicly available with thorough documentation (see Section A) and consent290

to use the three datasets for benchmarking purposes has been given by the respective authors. Since291

the GH114 dataset has not been used in the literature prior to our work, however, we here include the292

mandatory details – where/if relevant – for new datasets. Headings are in italics and answers are in293

default format.294

1. Submission introducing new datasets must include the following in the supplementary295

materials:296

(a) Dataset documentation and intended uses. Recommended documentation frameworks297

include datasheets for datasets, dataset nutrition labels, data statements for NLP, and298

accountability frameworks.299

The documentation for GH114 can be found in the main text of the patent [3] at https:300

//patentscope.wipo.int/search/en/detail.jsf?docId=WO2019228448. In-301

tended use of the data in this body of work is for benchmarking purposes, as illustrated302

in the main article.303

(b) URL to website/platform where the dataset/benchmark can be viewed and downloaded304

by the reviewers.305

Instructions for how to access both raw and processed/curated data can be found306

in Section A.1. The repository at https://github.com/petergroth/FLOP holds307

additional details for accessing remaining data and precomputed representations.308

(c) Author statement that they bear all responsibility in case of violation of rights, etc.,309

and confirmation of the data license.310

All protein sequences in the GH114 dataset are patented and all rights belong to the311

patent holders. Consent to use the data for benchmarking purposes was given by the312

patent holders directly.313

(d) Hosting, licensing, and maintenance plan. The choice of hosting platform is yours, as314

long as you ensure access to the data (possibly through a curated interface) and will315

provide the necessary maintenance.316

All data (raw and processed) is kept in an archive managed by the Electronic Research317

Data Archive (ERDA) by the University of Copenhagen. The data can be accessed at318

https://sid.erda.dk/sharelink/HLXs3e9yCu. The raw data itself is available319

via the patent itself (see item (a)).320

2. To ensure accessibility, the supplementary materials for datasets must include the following:321

(a) Links to access the dataset and its metadata. This can be hidden upon submission if the322

dataset is not yet publicly available but must be added in the camera-ready version. In323

select cases, e.g when the data can only be released at a later date, this can be added324

afterward. Simulation environments should link to (open source) code repositories.325

For links to the datasets (and code), see Section A and item (f) below.326

(b) The dataset itself should ideally use an open and widely used data format. Provide a327

detailed explanation on how the dataset can be read. For simulation environments, use328

existing frameworks or explain how they can be used.329

A detailed description of dataset formats and of how the dataset can be used can be330

found in Section A. See item (f) for links.331

(c) Long-term preservation: It must be clear that the dataset will be available for a332

long time, either by uploading to a data repository or by explaining how the authors333

themselves will ensure this.334

All used data (raw, processed, representations) is stored by the Electronic Research335

Data Archive (ERDA) by the University of Copenhagen. The curated datasets used336

for benchmarking can additionally be found in the GitHub repository (see item (f) for337

links).338
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(d) Explicit license: Authors must choose a license, ideally a CC license for datasets, or339

an open source license for code (e.g. RL environments).340

While we do not hold the rights to the datasets, our contribution in the form of estab-341

lishing the benchmark (i.e., the methodology and code) falls under the open source342

MIT License. As described in the supplementary materials, we ask that references to343

the presented tasks include references to the original sources.344

(e) Add structured metadata to a dataset’s meta-data page using Web standards (like345

schema.org and DCAT): This allows it to be discovered and organized by anyone. If346

you use an existing data repository, this is often done automatically.347

No metadata was added or altered to the data and remains accessible (see item (a)).348

(f) Highly recommended: a persistent dereferenceable identifier (e.g. a DOI minted by a349

data repository or a prefix on identifiers.org) for datasets, or a code repository (e.g.350

GitHub, GitLab,...) for code. If this is not possible or useful, please explain why.351

Data access: https://sid.erda.dk/sharelink/HLXs3e9yCu. GitHub repository352

for all code and more details: https://github.com/petergroth/FLOP.353

3. For benchmarks, the supplementary materials must ensure that all results are easily repro-354

ducible. Where possible, use a reproducibility framework such as the ML reproducibility355

checklist, or otherwise guarantee that all results can be easily reproduced, i.e. all necessary356

datasets, code, and evaluation procedures must be accessible and documented.357

See Section B.358
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