
Concept Distillation: Leveraging Human-Centered
Explanations for Model Improvement

Supplementary Material

1 Local loss from RRR

To leverage the local explanation benefits apart from the global ones, we additionally use a local loss
from RRR [14] for our experiments over ColorMNIST, DecoyMNIST, and TextureMNIST datasets
(indicated by Ours+ L in Table 1 and Table 2 in paper). RRR [14] has a reasoning loss, which is
added to the original GT loss of a classifier with a factor λ, and is given as:

∇Lo (fl(x)) =
∂Lo

∂ (fl(x))
(1)

∇Lp (fl(x)) =
∂Lp

∂ (fl(x))
(2)

Where A ∈ {0, 1}N×D is the user-provided annotation matrix. It is a binary mask to indicate if
dimension D should be irrelevant for the prediction of observation n. λ is a regularization parameter
which ensures that "right answers" and "right reasons" terms have similar orders of magnitude. N
is the total number of observations and ŷnk is the predicted probability for class k and observation
n. RRR penalizes the gradients over the binary mask feature-wise for each input sample and thus
is a local XAI method. In the case of debiasing color concept, we take the programmatic rule of
single pixel not affecting (single-pixel represents color information) while a group of pixels affecting
as demonstrated by [12] for their adaptation of RRR. We additionally experimented by including
local interpretability-based losses from CDEP [12], or EG [4] (instead of RRR) for MNIST datasets
(ColorMNIST, DecoyMNIST, and TextureMNIST) but found the one in RRR [13] to work best. It is
to be noted that local method losses like CDEP [12], RRR [13], or EG [4] require user-given rules.
For ColorMNIST and DecoyMNIST, which have the bias of color, they minimize the contribution of
individual pixels since the color information is contributed by individual pixels. For the execution of
their methods on TextureMNIST, we use the same individual pixel contribution minimization rule.
Such rules are not straightforward to extract in case of more complex bias (for example, in BFFHQ),
and hence, applying such local XAI-based methods is not feasible.

2 Mapping Module: Case of Ideal Mapping

In theory, if the mapping module has a zero-loss, it could make the distillation case the same as the
case without distillation, but this is not observed in our experiments due to two main reasons: (i) We
use the mapping module to map only the conceptual knowledge in CAV and train it only for concept
sets and not the training samples. (ii) Due to major differences in the perceived notion of concepts in
teacher and student networks and due to a simple mapping autoencoder (one upconv and downconv
layer) the MSE loss never goes to zero (e.g, in ColorMNIST, it starts from 11 and converges at 5 for
DINO teacher to biased student alignment). In our initial experiments, we tried bigger architectures
(ResNet18+) and found improved mapping losses but decreased student performances. Mapping
Encoder encodes an expert’s knowledge into the system via the provided concept sets, quantifies this

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



knowledge as CAV via a generalized teacher model trained on large amount of data, and thus helps in
inducing it via distillation into the student model. This brings threefold advantages in our system:
expert’s intuition, large model’s generality, and efficiency of distillation.

3 An experiment: CAV Learning comparison

In ColorMNIST, zeros are always associated with the color red. We learn a CAV for the concept of
red (CAVred separating red patches with other colored patches) in each teacher, mapped teacher and
base model (biased initial Student) and measure its cosine similarity (cs) with the respective model
representations for concept images of red, red-zeros.

As seen from Tab. 1, the Teacher and Mapped Teacher have cs(red) > cs(red_zeros) <
cs(red_non_zeros) which indicate correct concept learning while the Student (Base Model) has
cs(red) < cs(red_zeros) < cs(red_non-zeros) that indicates confusion of bias with concept (concept
red-zeros confused with concept red). Thus, teacher’s CAV and its mapped version capture the
intended concept well, while the base model (student) confuses the red-zeros concept with CAV. This
small demonstration shows (a) why the teacher is needed for good CAV learning and (b) how well
CAV’s are transferred to the student via the mapping module. Mapping module does not bias the
CAV representation.

Table 1: Cosine Similarity Order of concepts with CAVred

Model ’red’ ’red_zeros’ ’red_non_zeros’ ’non_red_zeros’

Teacher 0.084 -0.013 -0.009 0.005
Mapped Teacher 0.287 -0.044 0.014 0.024
Base Model -0.023 -0.019 -0.013 0.000

4 Fixing vs Varying CAVs in Experiments

Figure 1: Loss Curves in varying cav update iterations: frequent pattern observed, convergence
quickly

In our experimentation reported in main paper, we fix CAVs but we experimented with updating CAVs
in the student after every few training iterations (50, 100, 200, etc.). Specifically, we experimented in
the following settings and report the concept loss Lc curves with iterations in Fig. 1.

• cav_update_iter200: CAV updates every 200 iterations.
• cav_update_iter100: CAV updates every 100 iterations.
• constant_cav: Fixed CAV throughout training.

As seen in Fig. 1, there is a recurring pattern with concept loss LC increasing on CAV update (due to
an abrupt change in objectives), followed by a subsequent decrease due to optimization. However, LC

2



remains lower than the initial value the model started with (from 105.98 at iteration 0, loss dropped
to 9.51 at iteration 199 (before the CAV update) but jumps to 20.61 following the CAV update),
underscoring the efficacy of our approach. Similar patterns were consistently observed when updating
CAVs in varying numbers of iterations. This trend persisted across diverse datasets during training as
well.

The given graph is shown for experimentation over ColorMNIST, but we find the same recurring
patterns across all other datasets. Additionally, the best validation accuracy (and also corresponding
test accuracy) values for all the settings mentioned above (whether fixed or varying CAVs) are the
same (within < 0.3% accuracy changes amongst the settings). The graph also shows that our design
choice of keeping CAVs fixed is good practically as the loss quickly converges to a lower value.

5 Additional Ablations

Table 2: Impact of different variants of CAV sensitivity calculation gradient ∇X in proposed loss
Eq. 2 on the final results

X logit Lo Lp, fixed proto Lp, varying prototypes (Ours)

Accuracy % 25.55 30.94 40.02 41.83

We evaluate the impact of different components of our framework apart from the ones already
mentioned in the paper.

We experimented with different ways of calculating sensitivity used for Lc in Eq. 2 by replacing
∇Lo with ∇X where X is taken as (i) last layer outputs or logits; (ii) last layer loss Lo and (iii)
intermediate layer prototype based loss Lp in two settings: fixed prototypes where prototypes are
kept fixed as initial (α = 0) vs prototypes are varied with α. Settings (i) and (ii) are essentially final
layer sensitivity calculation according to the original implementation by Kim et al. [6] while Setting
(iii) is our proposed intermediate layer sensitivity using prototypes. We also show results when (a)
KNN k in the prototype calculation is varied and found k=7 to work best Fig. 2 (b) number of images
(#imgs) in the concept set are varied and we observe a peak in #imgs = 150 which is chosen as the
KNN k and #imgs in our experiments.

Figure 2: Impact of varying the concept set size and number of means on 100% biased ColorMNIST.

6 Design Choices and Implementation Details

Choosing the Student Layer for Concept Distillation: CAVs can be calculated for any model
layer. Which student layers should be used? We show results only for the last convolution layer of
the student model in the paper, but theoretically, our framework can be extended to any number of
layers at any depth. Our design choice is based on the fact that the deeper layers of the model encode
complex higher-order class-level features while the shallower layers encode low-level features. The
last convolution layer represents more abstract features, which are easily representable for humans in
the form of concepts rather than low-level features in other layers. For the same reasons, [1] too use
the last convolution layers for conceptual explanation generation.

Teacher Selection: For a teacher, we experimented with various model architectures (including the
biased teacher ones shown in Sec. 4 Ablations) and chose a pre-trained DINO transformer [2] for

3



the main reason of scalability. DINO has been proven to work well for a variety of tasks [15, 17]. A
large model knows a variety of concepts and can be used as a teacher for various tasks, as shown in
our experiments. We use the same DINO teacher on very different classification datasets like biased
MNIST (ColorMNIST, DecoyMNIST, and TextureMNIST) and BFFHQ, as well as over a completely
different problem of IID.

Among the DINO variants, we found ViT-B/8 (85M parameters) to perform the best, aiding student
to get 50.93% accuracy on ColorMNIST while ViT-S/8 (21M parameters) aced 39% student accuracy.
We thus picked DINO ViT-B/8 for all our experiments. We used the code implementation of the
DINO feature extractor by Tschernezki et al. [16] and loaded the checkpoints for DINO variants from
[2]. The DINO ViT-B/8 gives 768-dimensional feature images, further reduced to 64 using PCA.

Apart from biased small teacher experiments in Tab. 6 (as shown in the paper) where we vary the bias
in teacher from 5% to 100%, we also experimented when the small teacher network is (pre)trained
on 0% bias (simply MNIST dataset [8]). We found the student to achieve an accuracy of 23.6%
with this teacher network. This accuracy is lesser than that in biased teacher due to the fact that the
teacher trained on the MNIST dataset having grayscale images has never seen the concept of color.
Henceforth as mentioned before, it is important for teacher to have the knowledge of concepts for our
proposed concept distillation to work well.

CAV learning: For CAV learning, we use a logistic regression implemented by a single perceptron
layer with sigmoid activation. We train it to distinguish between model activations of concept set
(C) and its negative counterpart (C’) in layer l using a cross-entropy loss for binary classification.
This is theoretically the same but implementation-wise slightly different from [6], who also use a
logistic regression but from sklearn [11]. We get the same results from either of them, though our
perceptron-based implementation is slightly faster in terms of computation.

Mapping Module details: For the mapping module, we choose a pair of one down-convolutional
and up-convolutional layers as Encoder and decoder (depending on students and teacher’s dimensions,
it is determined whether the Encoder is up or down-convolutional and vice versa). In our experiments,
we train the autoencoder for a maximum of five epochs and select the Encoder from the best of
the first five epochs as our activation space mapping module M . We also tried with other deeper
autoencoder architectures in our initial experiments but found the above simple one to give good
results while being computationally cheapest. Due to the simple architecture (logistic regression
or single up-down convolutions), both our CAV learning and Mapping module training are very
lightweight (< 120K parameters, < 10MB and <1MB) and train within a minute for 10-15 concept
sets having a number of images between 50-200 on a single 12GB Nvidia 1080 Ti GPU.

Taking only Robust CAVs for Distillation [6] use t-testing with concept vs multiple random
samples to filter robust CAVs for TCAV score estimation. Similar to them, we employed t-testing
initially by taking concept vs multiple random samples and selecting only the significant CAVs. This
proved to be too expensive computationally during training, especially during frequent CAV updates.
Currently, we have a simple filter on CAV classification accuracy > 0.7 to select only the good CAVs
(i.e., CAVs that can differentiate concept vs random). The concept loss corresponding to all such
valid CAVs is then averaged before backpropagating. This design simplification was empirically
verified and found to work equivalently to [6] t-testing).

6.1 Debiasing in classification details

For the student network in classification debiasing applications, we use two convolution layers
followed by two fully connected layers as done by [12] [9] for all three biased MNIST experiments.
We use Resnet18 (no pre-training) for BFFHQ student architecture as done by [9] and apply our
method over the "layer4.1.conv1" layer. We use Adam [7] optimizer with a learning rate of 10e-4,
0.9 ≤ β ≤ 0.999, and ep = 1e − 08 with a weight decay of 0 (all default pytorch values except
learning late). We use a batch size of 32 for MNIST experiments and 64 for BFFHQ experiments. For
the mapping module, we use one up-convolution and one down-convolution layer for encoders and
decoders. We train the autoencoders with an L2 loss. For training the MNIST and BFFHQ models,
we use the cross-entropy loss as the Ground Truth loss (Lo). Our concept loss LC is weighted by a
parameter λ varied from 0.01 to 10e5 in our experiments. We found it to work best for values close to
20 in our experimentation. Other parameter values that we found to work best are number of clusters

4



Figure 3: pixel hard MNIST test set

in K-Means k = 7 and prototypes updation weight α = 0.3. Our student model converges within
2-3 epochs of training with a training time of less than 1.5-2 hours for MNIST datasets and within 4
hours for the BFFHQ dataset (on one Nvidia 1080 Ti GPU).

6.2 MNIST datasets

For MNIST datasets (ColorMNIST and DecoyMNIST), we use the splits by Rieger et al. [12]. For
the creation of TextureMNIST, we use the above-obtained splits of digits and replace the colors with
textures from DTD [3] (all colors removed and rather texture bias added). We use random flat-colored
patches as the concept "color," random textures as the "textures" concept, and gray-colored patches as
the "gray" concept set. For the negative concept set, we create randomly shaped white blobs in black
backgrounds. ColorMNIST and TextureMNIST datasets have test sets comprising flipped colors and
random textures digits. To check the generalization of our model, we tested the ColorMNIST and
TextureMNIST trained models on other test sets having random colors and textures (Tab. 4) . Also,
we created our Pixel Hard MNIST test set (Fig. 3), which has color in each pixel in digits randomized
in contrast to one color in the entire digit in others(ColorMNIST and TextureMNIST).

6.3 BFFHQ Details

We take the 48 images each for young men and old women (bias conflicting samples as given by Lee
et al. [9]) as our concept sets for class-specific training (separate concepts for each class). For the
negative concept set of class-specific training, we take mixed images of both young and old women
for women concept and young and old men for men concept. We use the same train-test-validation
split as done by [9].

6.4 IID details

For our IID students, we use the architecture and training datasets from [10]. For Lo, we adopt the
same losses as Li and Snavely [10], which consist of an IIW loss, GT Reconstruction loss, and a
SAW loss. We train the model for 5-10 epochs, saving the best checkpoint (on validation). We show
the IID concept sets example in Fig. 4. For IID concept sets, we follow [5]. Their albedo variations
∆a concept set consists of scenes in fixed illumination and camera viewpoint with varying albedo (or
intrinsic color). For the illumination variation ∆i concept set, they fix the albedo and viewpoint in
the scene while varying the illumination direction. They have multiple such scenes consisting of both
single and multiple objects rendered in the blender. We use 100 images per scene for ∆a and 44 for
∆i, similar to them. For more details, please refer [5]. Our model trains within 16-20 hours for IID
on two 12GB Nvidia 1080 Ti GPUs.

7 Additional results

We show the additional IID results in Fig. 5. It can be seen that our method is able to remove the
illumination information from it and flatten the predictions of R (R̂) as well.

5



Figure 4: Concept sets used for IID experiments

Figure 5: Qualitative IID results: Our method is able to make the R̂ less sensitive to illumination
(thereby removing the concept of illumination from R̂ and during this R̂ predictions become flatter
without specifically introducing the flatness prior suggesting disentanglement of R-S is a better way
to improve IID. Also, the illumination information removed from R̂ is introduced in Ŝ.

References
[1] A. Akula, S. Wang, and S.-C. Zhu. Cocox: Generating conceptual and counterfactual explanations via

fault-lines. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 2594–2601,
2020.

[2] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joulin. Emerging properties in
self-supervised vision transformers. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 9650–9660, 2021.

[3] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi. Describing textures in the wild. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 3606–3613, 2014.

[4] G. Erion, J. D. Janizek, P. Sturmfels, S. M. Lundberg, and S.-I. Lee. Improving performance of deep
learning models with axiomatic attribution priors and expected gradients. Nature machine intelligence, 3
(7):620–631, 2021.

[5] A. Gupta, S. Saini, and P. J. Narayanan. Interpreting intrinsic image decomposition using concept
activations. In Proceedings of the Thirteenth Indian Conference on Computer Vision, Graphics and Image

6



Processing, ICVGIP ’22, New York, NY, USA, 2023. Association for Computing Machinery. ISBN
9781450398220. doi: 10.1145/3571600.3571603.

[6] B. Kim, M. Wattenberg, J. Gilmer, C. Cai, J. Wexler, F. Viegas, et al. Interpretability beyond feature
attribution: Quantitative testing with concept activation vectors (tcav). In International conference on
machine learning, pages 2668–2677. PMLR, 2018.

[7] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[8] Y. LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

[9] J. Lee, E. Kim, J. Lee, J. Lee, and J. Choo. Learning debiased representation via disentangled feature
augmentation. Advances in Neural Information Processing Systems, 34:25123–25133, 2021.

[10] Z. Li and N. Snavely. Cgintrinsics: Better intrinsic image decomposition through physically-based
rendering. In European Conference on Computer Vision (ECCV), 2018.

[11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[12] L. Rieger, C. Singh, W. Murdoch, and B. Yu. Interpretations are useful: penalizing explanations to align
neural networks with prior knowledge. In International conference on machine learning, pages 8116–8126.
PMLR, 2020.

[13] A. S. Ross, M. C. Hughes, and F. Doshi-Velez. Right for the right reasons: Training differentiable models
by constraining their explanations. arXiv preprint arXiv:1703.03717, 2017.

[14] P. Schramowski, W. Stammer, S. Teso, A. Brugger, F. Herbert, X. Shao, H.-G. Luigs, A.-K. Mahlein, and
K. Kersting. Making deep neural networks right for the right scientific reasons by interacting with their
explanations. Nature Machine Intelligence, 2(8):476–486, 2020.

[15] V. Tschernezki, I. Laina, D. Larlus, and A. Vedaldi. Neural feature fusion fields: 3d distillation of
self-supervised 2d image representations. arXiv preprint arXiv:2209.03494, 2022.

[16] V. Tschernezki, I. Laina, D. Larlus, and A. Vedaldi. Neural feature fusion fields: 3D distillation of
self-supervised 2D image representations. In Proceedings of the International Conference on 3D Vision
(3DV), 2022.

[17] X. Wanyan, S. Seneviratne, S. Shen, and M. Kirley. Dino-mc: Self-supervised contrastive learning for
remote sensing imagery with multi-sized local crops. arXiv preprint arXiv:2303.06670, 2023.

7


	Local loss from RRR
	Mapping Module: Case of Ideal Mapping
	An experiment: CAV Learning comparison
	Fixing vs Varying CAVs in Experiments
	Additional Ablations
	Design Choices and Implementation Details
	Debiasing in classification details
	MNIST datasets
	BFFHQ Details
	IID details

	Additional results

