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A THE USE OF LLM

In this work, large language models (LLMs) are used in two primary ways. First, we employ an
LLM to improve the readability and grammar of the manuscript, ensuring that the writing is clear
and accessible to a broad research audience. Second, and most critically, we rely on LLMs to
generate spatial reasoning guidance for our proposed Reasoning Supervision framework. For each
dataset, we provide carefully designed prompts to extract object-level spatial maps and temporal
cues that highlight task-relevant regions and dependencies. The exact prompts and representative
outputs are included in the Appendix to ensure reproducibility. All reasoning signals were generated
using GPT-4.1-mini, which was selected for its cost-efficiency and strong reasoning capability.

B LLM PROMPTS AND COST

This section provides the exact prompts used for generating spatial reasoning guidance to ensure
reproducibility.

The approximate token cost for generating spatial reasoning guidance for a single 320×240 frame in
the UCF datasets is about 338 tokens. Each video contains 10 sampled frames, resulting in roughly
3380 tokens per video. For UCF50 and UCF101, where we process 60% of the training videos,
this yields approximately 0.6 × Ntrain × 3380 total tokens (where Ntrain is the number of training
videos). For SSv2, the per-frame token cost is slightly higher at around 360 tokens due to longer
class labels. Since we process 10% of the training set with 10 frames per video, the total token
count is approximately 0.1×Ntrain × 3600. For Desktop Assembly, the per-frame cost ranges from
450–500 tokens, reflecting the additional object-level annotations required in its reasoning outputs.
The example outputs from LLMs are shown below.

Figure 1: Output for DA dataset

Figure 2: Output for UCF and SSV2 dataset
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Figure 3: Prompt for UCF dataset

Figure 4: Prompt for SSV2 dataset
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Figure 5: Prompt for Desktop Assembly dataset

C EXTENDED RELATED WORK

Vision Transformers for Video Understanding. The introduction of Vision Transformers (ViTs)
has significantly advanced video understanding by enabling global spatiotemporal modeling through
self-attention mechanisms. Models such as ViViT (Arnab et al., 2021), TimeSformer (Bertasius
et al., 2021), and MViT (Fan et al., 2021) represent milestone architectures in this direction. ViViT
systematically explores different factorization strategies for attention computation, including joint
space–time attention, factorized attention (where spatial and temporal dimensions are processed sep-
arately), and tubelet embeddings that reduce input sequence length. TimeSformer further demon-
strates that factorized attention not only reduces computational cost but can also maintain or exceed
the performance of joint attention on large-scale datasets such as Kinetics-400. Multiscale Vision
Transformers (MViT) extend this paradigm by progressively reducing temporal and spatial resolu-
tion across layers, enabling computation-efficient yet powerful hierarchical feature representations.

Despite these advances, most existing models rely solely on classification supervision and lack ex-
plicit mechanisms to enforce semantically meaningful attention. As a result, attention maps may
highlight irrelevant background regions or static objects, which can degrade robustness under occlu-
sion, viewpoint changes, or domain shift (Wu et al., 2022; Seo et al., 2022). Our proposed TSViT
is designed to address this limitation by decoupling spatial and temporal reasoning into two explicit
stages: a frame-level spatial learning stage that focuses on task-relevant objects and regions, and
a temporal reasoning stage that models multi-scale temporal dependencies. Crucially, TSViT is
trained with complementary alignment objectives: a spatial alignment loss that constrains attention
to align with LLM-derived guidance and a three-level temporal consistency loss that regularizes
predictions across short-term, mid-range, and global temporal scales. This turns reasoning from a
post-hoc interpretability tool into a first-class training signal that directly shapes model representa-
tions.

Explainable AI and Reasoning Supervision. Explainable AI (XAI) aims to make model predic-
tions more transparent by attributing decisions to input features or higher-level concepts. Classical
attribution techniques include gradient-based saliency maps (Ancona et al., 2018), path-integrated
gradients (Sundararajan et al., 2017; Zhang et al., 2024), and parameter-aware attribution for robust
saliency (Zhu et al., 2024). Concept bottleneck models (Sun et al., 2025) and prototype-based net-
works (Chen et al., 2019) go further by introducing inherently interpretable intermediate representa-
tions. However, these methods are often used post-hoc or focus on interpretability at inference time,
with limited influence on the training dynamics or robustness of the learned representations (Ade-
bayo et al., 2018).
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Recent research has introduced the notion of reasoning supervision, where attention or intermedi-
ate representations are explicitly aligned with human annotations, bounding boxes, or other proxy
signals during training (Selvaraju et al., 2021; Liu et al., 2022). For example, CAM-guided loss
functions have been used to suppress spurious correlations by penalizing attention outside labeled
regions. More recent work leverages LLMs to generate pseudo-rationales for text–image pairs and
uses these to regularize cross-modal attention (Wang et al., 2023; Li et al., 2023). Our framework
generalizes this idea to video understanding, using LLM-generated spatial masks and temporal cues
as supervision signals to improve both interpretability and performance.

LLM-Guided Knowledge Distillation. Large language models (LLMs) have demonstrated im-
pressive reasoning and few-shot generalization capabilities, making them attractive sources of auxil-
iary supervision. Chain-of-thought prompting (Wei et al., 2022) and visual-language prompting (Liu
et al., 2023) have been used to generate step-by-step rationales or scene descriptions, which can then
be used to train smaller models in a distillation framework (Magister et al., 2022). Methods such
as BLIP-2 (Li et al., 2023) and ChatGPT4V-based supervision (Wang et al., 2023) demonstrate that
leveraging LLM-generated captions, explanations, or visual grounding signals can significantly im-
prove model generalization while reducing the need for manual annotation.

Our work extends this paradigm by using LLMs as surrogate annotators to generate structured rea-
soning guidance at both the spatial and temporal levels. Unlike direct captioning or zero-shot pre-
diction, we transform the LLM output into token-level supervision maps and temporal consistency
objectives that are differentiable and can be directly integrated into model training. This approach
converts LLM knowledge into a cost-effective, automated source of training-time guidance, bridging
the gap between post-hoc explanation and end-to-end learning.
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