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Figure 1: Inresponse to Reviewer pyBD’s comment. Results on Sim-Adult with estimated coun-
terfatuals. Following the setup in [Zuo+ 23], we choose {Age, Race, Native Country, Workclass,
Education, Marital Status, Occupation, Relationship, Hours per Week} as X. Here to investigate
more complex causal models, we train a DCEVAE to generate Sim-Adult and another DCEVAE to
estimate counterfactuls. The remaining setup is similar to that of Sim-Adult. The predictor is a MLP
regressor. We test the convex combination of each algorithm and ERM. For example, PCF-CRM
with A means § = Afpcr.crm + (1 — A)Jgrm. The result suggests that PCF-CRM can achieve
lower Error given the same TE and lower TE given the same Error.
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Figure 2: In response to Reviewer e7ax’s comment. Results on Sim-Law with ECOCF and FLAP-
O, two additional baselines. The predictor is a MLP classifer. We test the convex combination of
each algorithm and ERM. For example, PCF-CRM with A means § = AJpcr.crm + (1 — A)JErM-
ECOCEF represnts the method proposed in [Wang+ 23]. Specially, yecocr = p(a)[p(a)é(z, a) +
p(1—a)p(z,1—a)]+p(l—a)lp(l1—a)p(x1—q,1—a)+p(a)p(x1_q,a)] where ¢ is the pretrained
predictor via ERM. FLAP-O first pre-process X with the orthogonization procedure in [Chen+ 23],
then train a predictor via ERM. We observe that our method outperform both methods.
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