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ABSTRACT

With the increasing emphasis on data privacy, the significance of machine unlearn-
ing has grown substantially. Class unlearning, which involves enabling a trained
model to forget data belonging to a specific class learned before, is important as
classification tasks account for the majority of today’s machine learning as a ser-
vice (MLaaS). Retraining the model on the original data, excluding the data to be
forgotten (also known as forgetting data), is a common approach to class unlearn-
ing. However, the availability of original data during the unlearning phase is not
always guaranteed, leading to the exploration of class unlearning with restricted
data access, which has attracted considerable attention. While current unlearning
methods with restricted data access usually generate proxy sample via the trained
neural network classifier, they typically focus on training and forgetting balanced
data. However, the imbalanced original data can cause trouble for these proxies
and unlearning, particularly when the forgetting data consists predominantly of the
majority class. To address this issue, we propose the GENerative Imbalanced Un-
learning (GENIU) framework. GENIU utilizes a Variational Autoencoder (VAE)
to concurrently train a proxy generator alongside the original model. These gen-
erated proxies accurately represent each class and are leveraged in the unlearning
phase, eliminating the reliance on the original training data. To further mitigate
the performance degradation resulting from forgetting the majority class, we in-
troduce an “in-batch tuning” strategy which works with the generated proxies.
GENIU is the first practical framework for class unlearning in imbalanced data
settings and restricted data access, ensuring the preservation of essential informa-
tion for future unlearning. Experimental results confirm the superiority of GENIU
over existing methods, establishing its effectiveness in empirical scenarios.

1 INTRODUCTION

Given the rising concerns on data privacy, and legal protections (European Parliament & Council
of the European Union; BUKATY, 2019) the practice of machine unlearning (Nguyen et al., 2020;
Brophy & Lowd, 2021; Sekhari et al., 2021), which allows a model to forget specific data, has
become increasingly important. In specific, class unlearning has been considered significant to
many real-world applications and can effectively addresses many privacy and usability needs, as
classification services play an important role (Li et al., 2019; Guzella & Caminhas, 2009; Lu &
Weng, 2007) in machine learning as a service (MLaaS) (Ribeiro et al., 2015). For example, in facial
recognition, each individual’s face is considered as a distinct class. Thus, when a model forgets a
person’s face, it essentially unlearns the class associated with that face (Masi et al., 2018). Similarly,
in online shopping, products from a specific brand can be considered to all belong to an individual
class – the brand. When a long-term customer of this brand loses interest, it is essential for the online
shopping system to forget the customer’s preference for this brand, i.e. unlearn the class quickly.

Generally, the class unlearning refers to a process of modifying or updating a well-trained model by
forgetting or disregarding specific classes that it has learned previously. The data for the classes we
want to forget is termed ‘forgetting data’, while the data for the classes we retain is called ‘retaining
data’. A straightforward unlearning method usually retrains a new model from scratch using the
original data with the forgetting data excluded. Such exact unlearning (Bourtoule et al., 2021; Chen
et al., 2022; Liu et al., 2021) is widely accepted but not efficient and requires the availability of full
data which is challenging in real-world, i.e., SISA (Bourtoule et al., 2021), RecEraser (Chen et al.,
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2022), and FedEraser (Liu et al., 2021). Approximate unlearning (Thudi et al., 2022; Graves et al.,
2021) is usually more efficient as it focuses on updating parameters of the well-trained model to
achieve class unlearning without the retraining of a new model, i.e., the Amnesiac (Graves et al.,
2021) and Unrolling (Thudi et al., 2022). They all based on a strong assumption that the original
data can be fully accessed during the unlearning phase. However, such assumption cannot hold
in real-world applications due to considerations of storage efficiency and privacy. For example, in
data sensitive applications, the original data will be deleted after the training for preserving data
privacy. Also in some streaming service scenarios, data will not be saved for a long time due to the
limited storage space. To combat the unavailability of the original data, generative based approxi-
mate unlearning methods such as zero-shot (Chundawat et al., 2023) and zero-glance (Tarun et al.,
2021) unlearning have been proposed. Both of these approaches limit the retention of the original
training data to some extent by employing a generative approach to create a limited set of proxies
for each class. The generative method must be capable of producing proxies that faithfully capture
the characteristics unique to each class. In the unlearning phase, such generative methods create
class proxies to facilitate forgetting, and assume balanced data to ensure accurate class representa-
tion. However, in reality, there are a lot of scenarios when data are imbalanced (Spelmen & Porkodi,
2018; Rout et al., 2018). The presence of imbalanced data can significantly affect the performance of
these generative methods by leading to biased representations and inadequate coverage of minority
classes, resulting in suboptimal generation of proxies for those classes.

The challenge posed by imbalanced data becomes even more pronounced when examining existing
approximate class unlearning methods such as Chundawat et al. (2023); Graves et al. (2021); Tarun
et al. (2021). For the generative based methods (Chundawat et al., 2023; Tarun et al., 2021), as
minority-class proxy samples might unintentionally carry characteristics of the majority class, the
proxy samples may not accurately reflect the class characteristics sufficiently. This causes the model
to use the unreliable proxies when unlearning, resulting in the inability to unlearning effectiveness.
What is more, methods (Graves et al., 2021; Tarun et al., 2021) typically involve two steps: impair-
ment, which erases the knowledge related to the forgetting data, and repair, which aims to restore
performance on the retained data. If the majority class constitutes the forgetting data and is sub-
jected to impairment, it results in the removal of a substantial portion of the model’s task-specific
knowledge, making it difficult to fully recover the performance on the remaining data.

To address the challenge of handling imbalanced data in class unlearning with limited data ac-
cess, this study introduces a novel generative-based class unlearning approach. To tackle the is-
sue of inaccurate proxy brought by imbalance, we present the innovative Generative Imbalanced
Unlearning (GENIU) framework. Different with prior researches (Chundawat et al., 2023; Tarun
et al., 2021), we leverage a generator structured with a Variational Autoencoder (VAE) (Kingma
& Welling, 2014) which trained concurrently with the original model to produce reliable proxies
for each class. Since the unlearning method cannot access data samples from original dataset, we
employ carefully crafted noise samples, one for each class, as proxy generating prompts and will be
stored for generating proxy with the trained generator in the unlearning phase. These noise samples
are determined as designed class representations by the original model and rendered indistinguish-
able from human-generated data. This approach enhances privacy by thwarting attempts to recover
features associated with the forgotten class. To further mitigate the adverse effects of unlearning the
majority class on model performance, we introduce in-batch tuning. This technique simultaneously
considers impairment and repair as a unified objective during the updating of the original model,
contributing to a more effective and seamless unlearning process

Our contributions can be summarized as: 1) We are the first to explore the challenges presented by
the application of data access restricted class unlearning methods within an imbalanced data setting.
To the best of our knowledge, the proposed GENIU is also the first non-retrain-based unlearning
framework for imbalanced data. 2) GENIU train the proxy generator and the original model at
the same time, which ensures the generated proxy adequately represents its corresponding class by
avoiding the minority class proxies unintentionally carrying the characteristics of the majority class.
We also innovatively propose the in-batch tuning strategy during the unlearning phase to further
mitigate the negative effect on the model performance as forgetting the majority class. 3) Through
experimental results, we illustrate that existing unlearning methods, which restrict access to histori-
cal training data, struggle to perform well in an imbalanced data context. In contrast, GENIU shows
superior performance over these baselines when tested on several widely used datasets, with high
efficiency in both storage and time.
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2 RELATED WORKS

Machine unlearning. Machine unlearning (Cao & Yang, 2015; Baumhauer et al., 2022; Nguyen
et al., 2022a) is a new machine learning paradigm which allows data owners to completely delete
their data from a machine learning model and enable their “right to be forgotten”. Many existing
unlearning works (Baumhauer et al., 2022; Brophy & Lowd, 2021; Cauwenberghs & Poggio, 2000;
Chen et al., 2019; Mahadevan & Mathioudakis, 2021; Li et al., 2021) have found analytical optimiza-
tion solutions by identifying the impact of data on model for traditional machine learning models,
however, these unlearning methods are only suitable for machine learning methods with a convex
problem nature. For deep neural networks in unlearning (Nguyen et al., 2022b), the non-convex na-
ture of the problem and the stochasticity of the learning process have become the challenges which
makes it hard to model the impact of data on the trained model and further eliminate such impact
from model. A straightforward approach is to retrain a new model from scratch with a dataset that
has no forgetting data. However, this retraining method is time-consuming, requires numerous data
storage, and is infeasible when original training data is unavailable. To speed up the retraining pro-
cess, SISA (Bourtoule et al., 2021) splits the complete dataset into several partitions and trains a
model for each partition, thus it only needs to perform retraining on partitions that was containing
unlearned data. Similar methods have been applied in recommender system (Chen et al., 2022) and
federated learning (Liu et al., 2021) scenarios and this type of retrain-based method can be catego-
rized as exact unlearning. Another type of method that requires no retraining of a new model from
scratch is called approximate unlearning. The approximate unlearning can makes the parameters
of the unlearned model closer to that of the retrained model by updating the original model for a
few rounds. The Unrolling SGD (Thudi et al., 2022) and Amnesiac unlearning (Graves et al., 2021)
record the changes of the parameter during the training of the data to be unlearned and recovers
these changes during unlearning. However, all these methods require full access to the historical
training data which cannot be satisfied in many real practices.

Data restricted unlearning methods. Most training data are often deleted or archived post-
training due to storage costs and privacy concerns. Storing large amounts of data is expensive
and poses security risks, especially with sensitive information. Data breaches or unauthorized ac-
cess can lead to legal, ethical, and reputational consequences. Therefore, in a wider range of real
practices, the unlearning method has no access to full or even partial of the historical training data.
The zero-glance and zero-shot unlearning settings take such restrictions into account. The former
can only access the retaining data in unlearning phase, while the latter is more strict and requires
no access to any original data. The solutions corresponding to them, UNSIR (Tarun et al., 2021)
and GKT (Chundawat et al., 2023) respectively, adopt the idea of generating proxies for the training
data to provide a basis for unlearning. Detailedly, they use the well-trained classification model to
generate proxies for inaccessible data, then use these proxies to represent actual data and perform
unlearning. Therefore, these proxies trained through the knowledge of the well-trained classifiers
are critical for unlearning. However, they both assume that the data used to train the original model
is balanced. Due to data imbalance, the knowledge of the classifier can be biased, which in turn af-
fects the generated proxies. Imbalanced data poses significant challenges to these generative-based
methods as they may produce proxy samples for minority classes that inadvertently carry majority
class traits, leading to unreliable unlearning.

Learning and unlearning from imbalanced data. An imbalanced dataset considers when there
are some classes containing considerably more amount of samples (majority) than other classes (mi-
norities). Learning from such an imbalanced dataset can make the predictions of minority classes
inaccurate (Spelmen & Porkodi, 2018; Rout et al., 2018). An existing work (Koch & Soll) investi-
gated the impact of imbalanced class setting on SISA (Bourtoule et al., 2021) unlearning method,
when full original data is accessible during the unlearning phase they found that the imbalance in
each data shard will lead corresponding retraining model unreliable. For example, in the case of
imbalanced data, when the data is divided into various shards, some shards may be composed of the
majority class or contain only a few samples of other classes. This will cause the model trained on
this shard lacks or even has no data when retraining. This impact is more severe when access to
training data is restricted, as less learning material is available for model retraining.
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3 PRELIMINARIES AND PROBLEM FORMALISATION

In this section, we will first introduce preliminary notations and terms, i.e., class unlearning and
imbalanced unlearning, and then formalise the problem of this work at the end of this section.

Class unlearning. Let D = {(xi, yi)}ni=1 ∈ X × Y be a dataset containing n data samples that
belong to K classes. The i-th pair of the data sample and its associated label can be denoted as
(xi, yi), where xi ∈ X ⊆ Rd and yi ∈ Y = {1, . . . ,K}. We denote Dk = {(xi, yi)|yi = k} as
a subset of D that contains samples of the k-th class. When a class unlearning request is issued,
it requires the classifier to forget knowledge on the forgetting class Yf and maintain knowledge
learned on the retain class Yr, where Yf ,Yr ⊂ Y,Yf ∩ Yr = ∅ and Yr ∪ Yf = Y . Then, we can
further denote their corresponding dataset Df = {(xi, yi|yi ∈ Yf )} and Dr = {(xi, yi|yi ∈ Yr)},
where Df ∪ Dr = D and Df ∩ Dr = ∅.

A deep learning neural network f(x, θ), which is parameterized by θ, can output a vector p ∈
[0, 1]K , where the jth element of p represents the posterior probability of the jth label given x,
i.e., pj is interpreted as P (y = j|x). In the context of unlearning, an original model f(·, θor)
is trained with D. A retrained model f(·, θre) is trained with Dr. An unlearning method U is
expected to make f(·, θor) forget the knowledge about Df and output an unlearned model f(·, θun)
which has the similar performance as a retrained model, i.e., f(·, θun) ≈ f(·, θre). In retrain-
based methods (Bourtoule et al., 2021; Chen et al., 2022; Liu et al., 2021), the unlearned model
f(·, θun) is directly retrained with Dr. However, as discussed above, they are computationally cost
and infeasible when original training data is unavailable as retraining requires access to numerous
training data to train a new model from scratch. Non-retrain methods (Thudi et al., 2022; Tarun
et al., 2021; Chundawat et al., 2023), although more efficient, still assume that original data can be
accessed when performing unlearning, i.e.,

f(·, θun) = U(D, f(·, θor)). (1)

Imbalanced unlearning. In the imbalanced unlearning setting, we assume the complete dataset
D is imbalanced and contains a set of majority class, i.e., Ym. Then, we have Dm = {(xi, yi)|yi ∈
Ym} that contains data of a majority class. We also have Dl = {(xi, yi)|yi ̸∈ Ym} that contains
data of a class other than majority class. To facilitate the control of the variables, without special
instructions, we assume all minority class have similar number of data and the number is far less
than that of the majority class data. Then we have

|Dk1 | ≫ |Dk2 | ∀k1 ∈ Ym,∀k2 ̸∈ Ym and |Dk3 | ≈ |Dk4 | k3 ̸= k4, k3 ̸∈ Ym, k4 ̸∈ Ym (2)

The imbalance rate can be denoted as r = |Dk1 |/|Dk2 |, where k1 ∈ Ym, k2 ̸∈ Ym. In this work,
we assume that Df contains one or more majority classes, that is Dm ⊆ Df , which also means the
unlearning request asks the model to forget the majority class(es).

Target problem: class unlearning with restricted data access and imbalanced data setting.
Full access to D in the Eq 1 cannot be satisfied in many practical cases. Therefore, we follow the
generative-based unlearning pipeline (Chundawat et al., 2023), which does not require the original
training data and is applicable to a wider range of scenarios, using a set of generated proxy data Dp

to provide approximate information about data features and make unlearning feasible.

We need to design an unlearning method U that, upon receiving an unlearning request which requires
the forgetting of a majority class, i.e., the k-th class, is able to take the original model f(·, θor) as
input and output an unlearned model f(·, θun) without using any data in D, such that f(·, θun) is
able to perform similarly to a model f(·, θre) retrained on data without the k-th class, i.e., the Dr.

f(·, θun) = U(Dp, f(·, θor)). (3)

It is noteworthy that, unlike generative based unlearning, we aim at the situation where the f(·, θor)
is learned from an imbalanced data distribution. It can be inferred from the Eq 3 that the proxy set
Dp is critical for unlearning, and existing generative methods cannot generate Dp well enough in
the situation of imbalanced data.

4



Under review as a conference paper at ICLR 2024

Imbalanced
data

…

{𝒩(0,1)}!

𝑥 ∈ ℝ"

𝐾 classes

{𝑧#}#$%!

𝑓(/, 𝜃&')
𝑔(/, 𝜙)

train

𝑔(/, 𝜙){𝑧#}#$%! {𝑥#( }#$%!

𝑓(/, 𝜃&')𝑓(/, 𝜃)*)

Unlearning phase

Generator training Training the noise prompt Supervision sample selection In-batch tuning

Training phase (every epoch)

eval

update

Figure 1: The overall view of GENIU. When the classifier f(·, θor) is training, noise prompt z’s are
trained in the bypass. The proxy generator g(·, ϕ) is also trained in this phase. In the unlearning
phase, only the z’s and g(·, ϕ) will be used to generate proxies x′ for unlearning using.

4 OUR METHOD

We show an overall view of GENIU in Figure 1. There are two main phases in GENIU i.e. the
training phase and the unlearning phase. In the context of imbalanced data and no access to actual
data samples, if the generator were trained by the well-trained f(·, θor) after the training phase,
as existing works have done, the generated proxies cannot accurately represent the characteristic
of its designed class, because most of the knowledge of f(·, θor) comes from the majority class
and the generator learns some biased knowledge. Therefore, we need to record the correct feature
when actual samples appear. We train and store the noise samples {zi}Ki=1 (one for each class) and
a generator g(·, ϕ) in the training phase to preserve valuable information about the features of the
samples for proxy generating. In the unlearning phase, both z’s and g(·, ϕ) will work together to
generate reliable proxy samples, then a proposed in-batch tuning method will leverage these proxies
to update the f(·, θor). This is a softer update method, other than the existing impair-repair update,
that can eliminate the performance deduction on other knowledge when the model forgets most of
the knowledge under the imbalanced unlearning problem. In the following subsections, we are going
to detail these shown components one by one. Then, we provide the algorithms for both training and
unlearning phase of the proposed GENIU.

4.1 PROXY GENERATOR

Under conditions of no access to original data, we need to generate proxies for original data to pro-
vide the information for unlearning. Considering the imbalanced data, existing proxy generating
methods, which directly use the f(·, θor) as a guider and update a random noise sample with min-
imum error target, cannot get the proxies that can correctly express the characteristics of designed
classes. Variational Autoencoders (VAE) Kingma & Welling (2014) is an impressive technology, in
which the decoder can reconstruct a sample by giving a latent code and making the reconstructed
sample x′ (also named as proxy in this work) look like a data sample in the training set. How-
ever, the belonged class of x′ depends on the given latent code. To generate data belonging to a
particular class, the latent code needs to be specified. That is if we want to get a proxy x′

i, where
{(x′

i, y
′
i)|y′i = k}, an ideal way is taking a real sample xi whose associated label yi = k as input of

the generator’s encoder and naturally get the appropriate code for the decoder. But it is infeasible
when original data is unavailable. Therefore, we introduce a VAE structure as the proxy generator
g(·, ϕ) (Figure 2) and feed a carefully designed noise z as a prompt for proxies’ generating. The
generating processing can be formalized as x′ = g(z, ϕ), where z is the carefully designed noise
which can be determined as a designed class by f(·, θor) and will be detailed in Section 4.2.

It is difficult to train the g(·, ϕ) in the unlearning phase, because the knowledge of the g(·, ϕ) cannot
be accurately obtained in the unlearning phase as there are no samples available that can accu-
rately describe the class characteristics. Thus, we intend to train the generator in the training phase
alongside the training of f(·, θ). Detailedly, given a set of noise Dz = {(zk, yk)|yk = k}Kk=1
which contains only K pairs of noise and label, and a set of selected samples from training dataset
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Figure 2: The proxy generator g(·, ϕ) used in GENIU.

Ds = {(xk, yk)|yk = k}Kk=1. The reconstruction loss Lrec can be defined as

Lrec =
1

K

K∑
k=1

∥g(zk, ϕ)− xk∥. (4)

To make the learned Gaussian distribution more accurate, a distribution loss Ldis can be defined as

Ldis =
1

2K

K∑
k=1

l∑
j=1

(1 + log((σk
j )

2)− (σk
j )

2 − (µk
j )

2) (5)

where the µ ∈ Rl and σ ∈ Rl are learnable gaussian distribution parameters for modeling the laten
code, and the l is the dimension of the latent code. Finally, the overall objective of learning generator
g(·, ϕ) is

min
ϕ

Lgen = Lrec − λLdis (6)

where λ is a hyperparameter that used to trade-off the impact of Lrec and Ldis. Optimizing Eq. 6
could give the generator. The details on how to select xk’s will be introduced in Section 4.4.

4.2 TRAINING THE NOISE PROMPT.

To avoid using a historical data sample as a guide to reconstruct a proxy samples of a specific class
in the unlearning phase, we intend to train a noise zk as the prior knowledge for constructing a proxy
sample of the specific class k. Specifically, the trained noise zk should be correctly determined as
the interesting class k by the classifier f(·, θ), that is yk = f(zk, θ) and yk = k. To achieve this goal,
we update a randomly initialized noise zinit by minimizing the classification error, which satisfies

zinit ∈ Rd ∼ N (0, 1) ∈ Rd. (7)

The optimization objective of noise zk is basically the original task objective. For the classification
task, this objective should be

zk = min
z

CrossEntropy(f(z, θ), yk), yk = k . (8)

In this work, we use the Adam optimizer (Kingma & Ba, 2015) to update the randomly initialized
noise zinit according to the objective equation 8. It is worth noting that noise and classifier are
updated independently, and the training of noise will not affect the training of the classifier.

4.3 IN-BATCH TUNING FOR UNLEARNING.

To further mitigate the performance degradation of the model by forgetting the majority class in the
imbalance unlearning, we make the mini-batch of each unlearning step containing proxies of each
class. It is noteworthy that, in the unlearning phase, we need only one mini-batch which includes
K proxies. A proxy x′

k is generated by g(·, ϕ) with a given trained noise zk. Therefore, the dataset
used for unlearning is

Du = {(x′
k, yk)|yk = k}Kk=1, where x′

k = g(zk, ϕ). (9)

In the process of model tuning, we hope that the proxies that need to be unlearned can make the
model change in the direction of increasing error, and the proxies that need to be retained can make
the model continue to change on the direction of reducing error. In consideration of this, we design
the following loss

Lu =
∑

(x′
k,yk)∈Du,yk∈Yr

L(f(x′
k, θ), yk) +

∑
(x′

k,yk)∈Du,yk∈Yf

1

L(f(x′
k, θ), yk)

, (10)

where the used loss L(·, ·) should be the same as the loss on which the original model is trained.
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4.4 SUPERVISION SAMPLE SELECTION.

Since we use a tuning style method to perform unlearning only with generated proxies x′, if the x′

can be correctly classified by f(·, θ) with high confidence, the tuning step would be small, since in
this situation the x′ is away from the decision boundary and results in a small value of classification
loss. Therefore, we prefer the selected supervision samples xk (Eq.4) near to the decision boundary.
Specifically, we select an x with maximum logit entropy for each class. The logits entropy E(x)

can be calculated as E(x) = −
∑K

k=1 pk · log(pk), where the pk is the output probability of x
belonging to the k-th class. The higher the E(x), the closer each probability in p and also the higher
the uncertainty of determining x. Therefore, to supervise the training of g(·, ϕ), we need a set of
supervision samples Ds, whose items are selected as xk = maxxi∈D E(xi) and yi = k.

4.5 GENIU ALGORITHM.

The proposed GENIU is divided into training phase and unlearning phase. During the training
phase (Appendix. A, Algorithm. 1), the classifier f(·, θ) will be trained normally. In each epoch of
f(·, θ) training, additional training on noise z’s is performed. If the trained noise z’s in an epoch can
be correctly classified by f(·, θ), these noises will be used together with the selected sampled x’s to
train the generator g(·, ϕ), otherwise the training of the generator will be skipped in this epoch.

In the unlearning phase (Appendix. A, Algorithm. 2), only the trained noise z’s and generator g(·, ϕ)
will be used. The generator will reconstruct z into proxy x′, and then the in-batch tuning will use
these proxies to adjust f(·, θor) and finally output the unlearned model f(·, θun).

5 EXPERIMENTS

Datasets. We evaluate the effectiveness of the proposed GENIU on four benchmark datasets,
i.e., Digits-MNIST (LeCun et al., 1998), Fashion-MNIST (Xiao et al., 2017), Kuzushiji-
MNIST (Clanuwat et al., 2018) and CIFAR-10 (Krizhevsky et al., 2009). Detailedly, all these three
MNIST style dataset contains 60,000 samples in their training set and 10,000 samples in their test
set. Each sample of these MNIST style dataset is a 28× 28 grayscale image associated with a label
from ten classes. In the Digits-MNIST, the classes are handwritten digits from 0 to 9. In the Fashion-
MNIST, the classes are ten different fashion items (i.e. T-shirts, shoes). In the Kuzushiji-MNIST,
the classes are ten different Hiragana characters. CIFAR-10 contains 50,000 training samples and
10,000 test samples each of which is an RGB image in the shape of 32× 32 and associated with one
of ten semantic classes. To make the imbalanced dataset, we set the imbalance rate r = 0.1 in this
work. Specifically, we keep the number of samples of majority class the same as the raw dataset and
select 10% samples for each of the minority classes.

Baselines. We conduct comparison experiments on two types of methods, one can access the orig-
inal data that includes I-R (Graves et al., 2021) and Unrolling SGD (Thudi et al., 2022), the other
cannot access the original data that includes GKT (Chundawat et al., 2023) and UNSIR (Tarun et al.,
2021). In expectation, methods which can access training data should have better performance than
methods cannot access training data. Specifically, 1) I-R (Graves et al., 2021), Amnesiac records the
changes of the parameter during the training of the data to be unlearned and recovers these changes
during unlearning. 2) Unrolling SGD (Thudi et al., 2022). In unlearning phase, it arranges forget-
ting data in the first batch and performs incremental training with both unlearned training data and
retain training data. It records gradients when learning the first batch and adds recorded gradients on
weights after the incremental training. 3) GKT (Chundawat et al., 2023), which is the SOTA zero-
shot unlearning method. The GKT generates the error maximized noise to proxy Df and generates
error minimized noise to proxy Dr. Then, it initializes a new network called the student and teaches
the student with the original model. 4) UNSIR (Tarun et al., 2021), which is the SOTA zero-glance
unlearning method. It generates the error maximized noises to proxy Df and mixes these noises
with a part of Dr. Then, it performs impair-repair steps to tune the original model.

Implementation details. For all experiments, we use the AllCNN (Springenberg et al., 2015) as
the base classification model as it has been widely used for image data and been used by baselines.
Following the baselines’ setting, the training batch size for all dataset is set as 256, and the learning
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rate and weight decay are set as 0.01 and 10−4, respectively. We also follow the default setting in
the VAE (Kingma & Welling, 2014) and set the learning rate for training of noise z and generator
g(·, ϕ) as 0.02 and 0.005, respectively, and λ = 2.5 × 10−4 (Eq.6). Then, 1) for all MNIST style
datasets, in the training phase, we train the AllCNN for 20 epochs, and train the initialized noise z
as well as the generator g(·, ϕ) for 100 steps in each epoch. In the unlearning phase, we conduct
in-batch tuning for 100 rounds. 2) For CIFAR-10, in the training phase, we train the AllCNN for 40
epochs, and train the initialized noise z for 100 steps and the generator g(·, ϕ) for 200 steps in each
epoch. In the unlearning phase, we conduct in-batch tuning for 45 rounds. For all dataset, in the
unlearning phase, we set the learning rate for tuning f(·, θor) as 4× 10−4. In the generator, we set
a CNN structure with increasing channels for the encoder, i.e. [32, 64, 128, 256], and the decoder
is a CNN structure symmetrical to the encoder. The dimension of the latent code is 128 for MNIST
style dataset and 256 for CIFAR-10. All other parameters of baseline methods follow their default
settings. All the experiments are conducted with NVIDIA RTX A5000 GPU and the reported results
are the average of five trials of experiments using different seeds.

5.1 RESULTS AND ANALYSIS

Table 1: Unlearning performance. The direction of the arrow indicates the desired direction of value
change. The up arrow means higher is better, the down arrow means lower is better.

Dataset Acc Original
Model

Retrain
Model GKT UNSIR GENIU

(ours) I-R Unrolling

D-MNIST Dr ↑ 0.9494 0.9405 0.4116 0.3502 0.9286 0.9766 0.8555
Df ↓ 0.9913 0.0 0.0258 0.0001 0.0065 0.0 0.1466

F-MNIST Dr ↑ 0.8057 0.816 0.2595 0.3002 0.7711 0.8368 0.7571
Df ↓ 0.9681 0.0 0.0 0.0016 0.0002 0.0 0.4015

K-MNIST Dr ↑ 0.8772 0.8641 0.3537 0.2346 0.7012 0.8788 0.8073
Df ↓ 0.9764 0.0 0.0029 0.0 0.0004 0.0 0.0550

CIFAR-10 Dr ↑ 0.5952 0.6347 0.273 0.1778 0.4948 0.4838 0.3971
Df ↓ 0.9452 0.0 0.0 0.0327 0.0103 0.0 0.0136

Effectiveness. We conduct unlearning experiments with each class as forgetting class (majority
class) on each dataset and report the mean accuracy performance in Table 1. From the performance
of the original model on Dr and Df , it can be seen that the imbalanced dataset will cause a corre-
sponding imbalance in the performance of the original model. The model will perform significantly
better in the majority class than in other classes. Among all methods with limited access to original
data, the proposed method GENIU performs best. GKT and UNSIR, relying on the original model
for proxy generation, their generated proxies are affected by this imbalance, impacting unlearning
quality. I-R and Unrolling, with full historical data access, generally outperformed GENIU, but
GENIU showed better results on CIFAR-10. Detailed results from Fashion-MNIST (Appendix B,
Table 6) demonstrate unlearning performance when each class is the majority. Further tests with
multiple classes as majority for deletion (0-th and 1-st classes) also confirm these findings, as re-
ported in Appendix C (Table 7).

Why existing generative based unlearning methods failed with imbalanced data? To further
prove that GENIU can obtain more reliable noise in the case of imbalance data, we try to observe the
origin model’s perception on noises generated by different methods. Intuitively, the noise generated
by leveraging the well-trained f(·, θor) will have the characteristics of the majority class, since the
knowledge from majority class dominates the model. Therefore, the origin model’s perception of
noise of other classes will be closer to that of the majority class. Specifically, the distribution of the
model’s logits output of minority classes will be closer to that of the majority class. To verify this, we
sample some training examples of the majority class and feed them to f(·, θor) to obtain reference
perception pref , which is basically the output logits. Then, we feed the noise of other classes
generated by different unlearning methods to f(·, θor) to obtain observation perception pobs. We
then try to fit the distribution of the reference perception with the distribution of these observation
perceptions, which is a common use of KL divergence Dkl(pobs||pref ), to observe the difference
between the pobs and the pref of different methods. According to the property of KL divergence,
the greater the Dkl(pobs||pref ), the more significant the difference between the model’s perception
of generated noise and its perception of the majority class, that is, the better. Since UNISR only
generates noise for the forgetting class and does not generate noise for other classes, here we only
compare the GKT and GENIU methods. From Table 2, we can observe that when producing noise

8



Under review as a conference paper at ICLR 2024

for the four data sets, the Dkl(pobs||pref ) of the noise generated by GENIU is greater than that of
GKT. This shows that the origin model’s perception of the noise generated by GKT is closer to the
majority class, and it carries more characteristics of the majority class than the noise generated by
GENIU. We also reconstruct more specific proxies for GKT by using its generated noises and the
trained VAE of GENIU. Since the noise generated by GKT carries more features of the majority
class, these reconstructed proxies will make these features more specific. As can be seen from the
Table 3, it is more difficult for GKT to use such reconstructed proxies to eliminate the knowledge of
the majority class. Some visualized samples are provided in Appendix D.

Table 2: Comparing origin model’s percep-
tion of noise generated by different methods
in Dkl(pobs||pref ).

Noise Generator D-MNIST F-MNIST K-MNIST CIFAR-10
GKT 11.7565 11.4835 12.6639 12.2472

GENIU 12.2526 11.8418 13.2708 12.9941

Table 3: Reconstruct proxy with noise gen-
erated by existing method.

Method Acc D-MNIST F-MNIST K-MNIST CIFAR-10

GKT vae Dr ↑ 0.6115 0.4854 0.269 0.1429
Du ↓ 0.7567 0.8418 0.514 0.687

GENIU Dr ↑ 0.9286 0.7711 0.7012 0.4948
Du ↓ 0.0065 0.0002 0.0004 0.0103

Table 4: Time cost in unlearning phase.

Dataset Time cost GKT UNSIR GENIU I-R Unrolling
D-MNIST ms 39086 1804 326 17005 483
F-MNIST ms 39702 1854 327 16848 608
K-MNIST ms 37312 1758 330 16254 411
CIFAR-10 ms 33633 2515 159 16601 195

Table 5: Main contribution ablation.

Proxy Tuning Accu Accr
Post Impair-Repair 0.123 0.27

GENIU Impair-Repair 0.048 0.758
Post GENIU 0.018 0.416

GENIU GENIU 0.0 0.771

Unlearning efficiency. We compare the time consumption among various unlearning methods.
Experiments were conducted under identical conditions, measuring the time in milliseconds from
inputting the original model f(·, θor) to outputting the unlearned model f(·, θun). Results in Table 4
show that GENIU is more time-efficient in the unlearning phase, as it doesn’t require training a
generation network and only uses a small number of proxies equal to the class count for adjustments.
Regarding storage costs, retaining original data for a MNIST-like dataset needs 45MB, and CIFAR-
10 needs 169MB. But storing a generator instead requires only 4.6MB for MNIST and 6.1MB for
CIFAR-10.

Ablation studies We also conduct ablation studies to assess the impact of different technologies
on GENIU. It starts by evaluating two main techniques, as shown in Table 5. Further investigations
focus on the type of supervision sample selection and the number of in-batch tuning rounds, with
findings and analyses detailed in Appendices G.2 and G.3.

The study examines how two technical components affect unlearning performance: 1) training a
proxy generator alongside the original model, and 2) in-batch tuning during the unlearning phase. It
compares the first with post-training generated proxies and the second with an impair-repair process,
using identical learning rates and rounds. From the results which are reported in Table 5, when the
proxy generated by the GENIU framework is applied, the impair-repair process will first forget the
knowledge related to the majority class, however, this part of knowledge is most of the knowledge
of the model about the classification task and makes the model hard to maintain the performance
on retain classes in the subsequent repair stage. Additionally, when using post-training generated
proxies, the imbalance in original training data causes these proxies to exhibit characteristics of
the majority class, reducing the model’s ability to distinguish between classes to be retained after
forgetting the majority class.

6 CONCLUSION

In this work, we explore the challenges presented by the applications of restricting data access
unlearning methods within an imbalanced data setting. The proposed framework, Generative Im-
balanced Unlearning (GENIU) offers an effective solution to these challenges. GENIU requires
neither training a new model from scratch nor access to any historical training data. The unique
approach of training the proxy generator and the original model concurrently ensure the proxies ac-
curately represent their corresponding classes. The in-batch tuning strategy that we introduce in the
unlearning phase effectively mitigates the performance degradation as the model unlearns the major-
ity class. The experimental results confirm GENIU’s superior performance over existing methods,
demonstrating its practicality and efficiency within the imbalanced data setting.
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A GENIU ALGORITHM

The proposed GENIU is divided into training phase and unlearning phase. During the training
phase (Algorithm. 1), the classifier f(·, θ) will be trained normally. In each epoch of f(·, θ) training,
additional training on noise z’s is performed. If the trained noise z’s in an epoch can be correctly
classified by f(·, θ), these noises will be used together with the sampled x’s to train the generator
g(·, ϕ), otherwise the training of the generator will be skipped in this epoch.

Algorithm 1 Training phase

Require:
Dataset D and number of classes K;
Initialized noise {zi}Ki=1 and rounds Epochz;
Initialized classifier f(·, θ) and epochs Epochf ;
Initialized generator g(·, ϕ) and rounds Epochg;

1: for en in range(Epochf ):
2: Train f(·, θ);
3: for ez in range(Epochz):
4: Train {zi}Ki=1 (section 4.2);
5: if {zi}Ki=1 can be correctly classified by f(·, θ):
6: Select supervision {xi}Ki=1 (section 4.4);
7: for eg in range(Epochg):
8: Train g(·, ϕ) with {zi}Ki=1 and {xi}Ki=1;
9: return {zi}Ki=1, g(·, ϕ) and f(·, θor);

In the unlearning phase (Algorithm. 2), only the trained noise z’s and generator g(·, ϕ) will be used.
The generator will reconstruct z into proxy x′, and then in-batch tuning will use these proxies to
adjust f(·, θor) and finally output the unlearned model f(·, θun).

Algorithm 2 Unlearning phase

Require:
Trained noise {zi}Ki=1;
Trained generator g(·, ϕ);
Trained classifier f(·, θor);
Unlearning rounds Epochu;

1: x′ = g(z, ϕ);
2: for eu in range(Epochu):
3: Do in-batch tuning with x′ (section 4.3);
4: return f(·, θun);

B DETAILED ACCURACY PERFORMANCE

A more detailed example result, which is from the Fashion-MNIST dataset and shows the unlearning
performance when each class is set as forgetting class (majority class), is listed in Table 6. From the
results, we can see that the proposed GENIU outperforms both GKT and UNSIR. In addition, we can
also observe that there are differences in the unlearning performance when different classes are set
as unlearned classes. This may be related to the relationship between the features of the forgetting
class and the features of the retain class. However, the influence of the relationship between the
features of the forgetting class and the features of the retain class on the unlearning performance is
still unclear and remains to be explored.

C MULTICLASS UNLEARNING WHEN IMBALANCED DATA

We also test all methods when there are multiple classes of data that are majority class and needed
to be deleted. We set the 0-th and 1-st classes of each dataset are majority classes that are needed
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Table 6: Detailed accuracy performance from Fashion-MNIST.

Class Acc
Original
Model

Retrain
Model

GKT UNSIR
GENIU
(ours)

I-R Unrolling

T-shirt/top
Dr ↑ 0.796 0.8544 0.2602 0.2453 0.784 0.8209 0.8636
Df ↓ 0.9388 0.0 0.0 0.0 0.0 0.0 0.4618

Trouser
Dr ↑ 0.7469 0.8376 0.2771 0.2962 0.7427 0.8120 0.7751
Df ↓ 0.9758 0.0 0.0 0.0112 0.0 0.0 0.8096

Pullover
Dr ↑ 0.8111 0.8422 0.1651 0.2327 0.7427 0.8758 0.8764
Df ↓ 0.9784 0.0 0.0 0.0 0.0 0.0 0.63

Dress
Dr ↑ 0.8424 0.8447 0.2851 0.2938 0.7993 0.8285 0.8278
Df ↓ 0.9734 0.0 0.0 0.0034 0.0 0.0 0.3574

Coat
Dr ↑ 0.8238 0.8089 0.2416 0.4018 0.8287 0.8511 0.8687
Df ↓ 0.9518 0.0 0.0 0.0 0.0004 0.0 0.26

Sandal
Dr ↑ 0.8184 0.7416 0.2684 0.2004 0.6996 0.8244 0.8549
Df ↓ 0.9948 0.0 0.0004 0.0 0.0 0.0 0.6552

Shirt
Dr ↑ 0.7996 0.8878 0.1782 0.2671 0.7898 0.8911 0.8073
Df ↓ 0.9068 0.0 0.0 0.0 0.0 0.0 0.016

Sneaker
Dr ↑ 0.8218 0.8093 0.3742 0.3491 0.7529 0.8124 0.8504
Df ↓ 0.9948 0.0 0.0 0.0012 0.0 0.0 0.003

Bag
Dr ↑ 0.7724 0.7396 0.2758 0.3918 0.7749 0.8304 0.0139
Df ↓ 0.987 0.0 0.0 0.0 0.0 0.0 0.557

Ankle boot
Dr ↑ 0.8244 0.7942 0.2696 0.3236 0.7964 0.8218 0.8327
Df ↓ 0.9798 0.0 0.0 0.0 0.0016 0.0 0.2648

Table 7: Multi-class unlearning results. The 0-th and 1-st class of each dataset are set as forgetting
class (majority class).

Dataset Acc Original
Model

Retrain
Model GKT UNSIR GENIU

(ours) I-R Unrolling

D-MNIST Dr ↑ 0.9515 0.9755 0.5429 0.4682 0.9018 0.9468 0.4805
Df ↓ 0.9967 0.0 0.5168 0.0 0.0002 0.0 0.0

F-MNIST Dr ↑ 0.7857 0.7975 0.1755 0.3303 0.7333 0.8119 0.7498
Df ↓ 0.9807 0.0 0.4711 0.0919 0.052 0.0 0.1416

K-MNIST Dr ↑ 0.8422 0.8658 0.3993 0.3222 0.649 0.8119 0.6811
Df ↓ 0.9722 0.0 0.787 0.0 0.0 0.0 0.0166

CIFAR-10 Dr ↑ 0.5795 0.6425 0.3485 0.0998 0.528 0.5010 0.4104
Df ↓ 0.9548 0.0 0.7849 0.1997 0.045 0.0 0.0152

to be deleted and report the results in Table 7. From the results, we can observe that the proposed
GENIU can still achieve the best performance among methods that have restricted data access.
It is worth noting that when the GKT method performs multi-class unlearning under imbalanced
data settings, it still has relatively high accuracy on forgetting data. This is because GKT generates
proxies for both unlearning and retraining data, and filters the unlearning proxy through the designed
knowledge gate, however, the retained proxies through the gate may still represent features that are
related to the forgetting class.

D VISUALIZING NOISE AND RECONSTRUCTED PROXIES

In this subsection, we visualize the noise generated by different methods, as well as the samples
reconstructed using these noises and VAE trained by GENIU. From Figure 3 we can see that when
the 9-th class is set as the majority class, the noise generated by GKT for other classes cannot
accurately reflect the characteristics of their respective classes, and the characteristics of the majority
class can be seen from their reconstructed images. For example, in the D-MNIST dataset, the
reconstructed samples of the number 1 show curved characteristics, and the reconstructed samples
of the number 3 look more like the number 9. In the F-MNIST dataset, the reconstructed samples of
some classes look like majority class (Ankle boot), the highlighted pixels of reconstructed samples
of other classes are also concentrated in the lower half of the image. However, we can see from
Figure 4 that the reconstructed samples via the noise generated by GENIU can visually reflect the
characteristics of their corresponding classes.
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0 - zero 1 - one 3 - three 4 - four 5 - five
Generated noises and reconstructed samples on D-MNIST (GKT)

T-shirt/top Pullover Coat Sandal Shirt
Generated noises and reconstructed samples on F-MNIST (GKT)

Figure 3: The figure shows the noises learned by GKT (upper) and corresponding VAE reconstructed
samples (lower) of some classes in the D-MNIST and F-MNIST dataset. The 9-th class (digit num-
ber 9 for D-MNIST and Ankle boot for F-MNIST) is set as majority class for both dataset.

0 - zero 1 - one 3 - three 4 - four 5 - five
Generated noises and reconstructed samples on D-MNIST (GIU)

T-shirt/top Pullover Coat Sandal Shirt
Generated noises and reconstructed samples on F-MNIST (GIU)

Figure 4: The figure shows the noises learned by GENIU (upper) and corresponding VAE recon-
structed samples (lower) of some classes in the D-MNIST and F-MNIST dataset. The 9-th class
(digit number 9 for D-MNIST and Ankle boot for F-MNIST) is set as majority class for both dataset.

E TIME COST OF AUXILIARY MODELS

As we place the training of the proxy generator in the training phase of the original model, extra
processes are introduced in the training phase, which are supervision sample selection, noise train-
ing, and generator training. Therefore, we investigate the extra training time and report the mean
training time cost of each part across all training epochs. According to the result in Figure 5, the
noise training and generator training both take around 10% time cost in the training phase for all
tasks on the MNIST style dataset. Since we set the generator training round as 200 for the task on
CIFAR-10, the time cost of the generator training also doubled. Although the supervision sample
selection (shown in orange) takes about 20% of the training time, it can be further reduced by re-
ducing the sample selection times. For example, we can select supervision samples once for several
epochs instead of selecting samples before every generator training.
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Figure 5: Time costs in training phase.
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F EFFECT OF THE IMBALANCE RATE r

In this section, we examine the effect of the imbalance rate r, defined in Section 3. We also drop
the assumption that all minority classes have a similar amount of data. By doing these two further
investigations, we observe how these generative based unlearning methods perform with different
levels of class imbalance. Specifically, we choose the imbalance rate r in [0.1, 0.2, 0.4] to simulate
different levels of class imbalance. We also set r to “vary” for the situation where minority classes
have different amounts of data. When r is set to “vary”, we randomly set the imbalance rate for each
class, in this experience they are [0.2, 0.7, 0.3, 0.3, 0.6, 0.2, 0.2, 0.6, 0.2, 0.6]. For example, when it
is going to unlearn the 1-th class, all data of the 1-th class in the training set will be kept to make it
majority and only 20% of 0-th class data will be kept.

As shown in the Table 8, when the r is grater than 0.1, the UNSIR outperforms the GENIU. This
is because the UNSIR can access the retaining class data in the training set, and the amount of
retaining class data in these cases is sufficient for the UNSIR to obtain enough information about the
distribution of minority classes and repair its performance on these classes. However, the UNSIR
will fail when the imbalance is more severe, for example when r = 0.1. Our proposed GENIU,
which has no access to both forgetting and retaining class data in the unlearning phase, demonstrates
its effectiveness in any imbalanced situation.

Table 8: Effect of the imbalance rate r.

r Acc origin retrain GKT UNSIR GENIU

0.1 Dr ↑ 0.8057 0.816 0.2595 0.3002 0.7711
Df ↓ 0.9681 0.0 0.0 0.0016 0.0002

0.2 Dr ↑ 0.8591 0.8693 0.2593 0.7871 0.7509
Df ↓ 0.954 0.0 0.0 0.0163 0.0

0.4 Dr ↑ 0.8908 0.9013 0.2241 0.8742 0.7706
Df ↓ 0.9411 0.0 0.0 0.0031 0.0

Vary Dr ↑ 0.9022 0.9146 0.2643 0.8942 0.7992
Df ↓ 0.9375 0.0 0.0 0.0123 0.0001

G ABLATION STUDY

G.1 MAIN CONTRIBUTION ABLATION.

In this section, we investigate the impact of two main technical components on unlearning perfor-
mance, those are 1) the training proxy generator along with the training of the original model and 2)
the in-batch tuning in unlearning phase. Detailedly, we compare the former with the post-training
generated proxy and compare the latter with the widely used impair-repair process. For both im-
pair and repair, we set the learning rate and the number of rounds as the same as in-batch tuning
in the GENIU. From the results which are reported in Table. 9, when the proxy generated by the
GENIU framework is applied, the impair-repair process will first forget the knowledge related to
the majority class, however, this part of knowledge is most of the knowledge of the model about
the classification task and makes the model hard to maintain the performance on retain classes in
the subsequent repair stage. When the post-training generated proxy is used, due to the imbalance
of original training data, the proxy of other classes can also present the characteristics of the ma-
jority class, thus, the ability to discriminate retain classes is also reduced after the majority class is
forgotten.

Table 9: Main contributions ablation

Proxy Tuning Accu Accr

Post Impair-Repair 0.123 0.27
GENIU Impair-Repair 0.048 0.758

Post GENIU 0.018 0.416
GENIU GENIU 0.0 0.771
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T-shirt/top Trouser Dress Sandal Shirt
Select supervision samples with min entropy

T-shirt/top Trouser Dress Sandal Shirt
Select supervision samples with max entropy

Figure 6: The figure shows the learned noises (upper) and corresponding generated proxies (lower)
of some classes in the Fashion-MNIST dataset under different supervision sample selection condi-
tions.

Table 10: Performance comparison between different type of supervision sample selection.
(Fashion-MNIST)

Selection Acc T-shirt Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Boot

Max
Dr ↑ 0.784 0.743 0.743 0.799 0.829 0.7 0.79 0.753 0.775 0.796
Du ↓ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.002

Min
Dr ↑ 0.78 0.68 0.721 0.775 0.768 0.648 0.844 0.64 0.755 0.751
Du ↓ 0.027 0.0 0.001 0.0 0.0 0.0 0.0 0.0 0.008 0.0

G.2 SUPERVISION SAMPLE SELECTION.

In this section, we will take the Fashion-MNIST dataset as an example to compare the impact of
different supervision sample selection methods on unlearning performance. Specifically, in 4.4 we
select x with maximum logits entropy for each class. Therefore, in this ablation study, we compare
the performance of selecting x with maximum logits entropy and selecting with minimum logits
entropy.

From Figure 6, we can see that the proxies trained by the max entropy sample are more visually
blurred than the proxies trained by the min entropy sample. In addition, semantically, some skirts
that look like pants will be selected, and some sandals that look like sneakers will also be selected.
We intend to strengthen the model’s discrimination of categories through these proxies with rela-
tively high classification uncertainty.

From the results in Table. 10, we can see that, generally, when we use the maximum logits entropy
method to select the supervision sample for the generator, the performance of unlearning will be
better than using the minimum logits entropy method.

G.3 IN-BATCH TUNING ROUNDS.

In this section, we conduct an ablation experiment to observe the effect of the number of rounds
using in-batch tuning (a.k.a. unlearning rounds) on unlearning performance. Specifically, we con-
tinuously recorded the accuracy and test error of the f(·, θun) on unlearn test data and retain test
data after each round in the unlearning process. From Figure 7, we can observe that in the first few
rounds of unlearning, the difference between unlearn error and the retrain error is small, and the
retain accuracy will also decrease slightly when the unlearn accuracy decreases. As the gap between
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Figure 7: Impact of unlearning rounds.

16



Under review as a conference paper at ICLR 2024

unlearn error and retrain error increases, unlearn accuracy quickly drops to zero, while retain ac-
curacy will gradually increase and gradually stabilize. Therefore, in the previous experiment, for
the case where the accuracy of the f(·, θun) on Df is small but not zero, it can be eliminated by
increasing the unlearning rounds.

G.4 TIME AND STORAGE COST OF AUXILIARY MODELS.

As we place the training of the proxy generator in the training phase of the original model, extra pro-
cesses are introduced in the training phase, which are supervision sample selection, noise training,
and generator training. Therefore, we investigate the extra training time and report the mean training
time cost of each part across all training epochs. According to the result in Figure 5 (Appendix E),
the noise training and generator training both take around 10% time cost in the training phase for all
tasks on the MNIST style dataset. Since we set the generator training round as 200 for the task on
CIFAR-10, the time cost of the generator training also doubled. Although the supervision sample
selection (shown in orange) takes about 20% of the training time, it can be further reduced by re-
ducing the sample selection times. For example, we can select supervision samples once for several
epochs instead of selecting samples before every generator training.

For the storage cost, if still keeping the original data in the storage, the MNIST style dataset requires
45MB space and the CIFAR-10 requires 169MB. However, if saving the generator instead of original
data, the generator requires only 4.6MB for MNIST’s and 6.1MB for the CIFAR-10.

G.5 START THE NOISE TRAINING WHEN THE ORIGINAL MODEL HAS DIFFERENT
EFFECTIVENESS.

We conducted this experiment on the F-MNIST dataset. We define a classification accuracy thresh-
old t to determine when to start the noise training in the training phase. Since the original model can
achieve 0.8 accuracy on the retaining classes, we set t ∈ [0.4, 0.6, 0.7].

According to the results, we can see that as the threshold t increases, the performance of the un-
learned model will decrease accordingly. This is because the later the noise training is started, the
more deeply the original model is affected by imbalanced data, and the worse the noise trained
through original model is.

Acc to start the noise training Acc on Dr ↑ Acc on Df ↓
none 0.7711 0.0002
0.4 0.7705 0.0002
0.6 0.7544 0.0023
0.7 0.7436 0.0031

Table 11: Start the noise training when the original model has different effectiveness.

G.6 THE SIZE OF MINI-BATCH

The mini-batch is actually the proxy set Dp in the problem definition (Section 3). Each element
in Dp, i.e. each proxy, is learned and generated using the maximum decision entropy sample as
a reference (Section G.2). Therefore, these proxies can be considered as examples of each class
that are very close to the decision boundary. In the unlearning phase, tuning the model with the
information provided by such proxies can modify the decision boundary of the model as significantly
as possible.

We did some additional experiments to have a quick look at the effect of different numbers of such
mini-batches, i.e. different sizes of Dp, on the unlearning results. We create a mini-batch containing
one sample for each class. Then we set the different number of batches to run the experiment. In this
experimental setting, there will be multiple proxies for a class. In order to make the proxies diverse,
we will choose top-B samples with maximum decision entropy as their supervisory information
respectively, where B is the number of the mini-batch.

As can be seen from the Table 12, the performance of unlearning will first increase and then decrease
as the number of batches increases, which means that more proxies are not better. A reasonable
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number of proxies will increase the diversity and information richness of Dp and help to better
modify the decision boundary. However, if a larger number of proxies is required, due to the single
and insufficient diversity of the training of the noise that is used to guide the proxy generation, the
diversity of the learning of the generator is limited and the performance of unlearning is reduced.
This may be a shortcoming of GENIU at this stage and is also one of our future work to improve the
GENIU.

B Acc on Dr ↑ Acc on Df ↓
1 0.7711 0.0002
2 0.7825 0.0000
5 0.8004 0.0001
7 0.7953 0.0003
10 0.7971 0.0000
12 0.7693 0.0013

Table 12: Unlearning using different number of mini-batch.
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