
Appendix485486

Table of Contents487
488

List of Tables 1489

List of Figures 1490

A Environment & Task Details 2491

A.1 MAZE . 2492

A.2 FETCHPICK & FETCHPUSH . 2493

A.3 HANDROTATE . 2494

A.4 WALKER . 2495

B Algorithm 3496

C Model Architecture 3497

C.1 Model Architecture of BC, Implicit BC, Diffusion Policy, and DBC 3498

C.2 Model Architecture of EBM, VAE, and GAN 4499

D Training and Inference Details 5500

D.1 Computation Resource . 5501

D.2 Hyperparamters . 5502

D.3 Inference Details . 5503

D.4 Comparing Different Generative Models . 6504

E Generalization Experiments in FETCHPICK and FETCHPUSH 8505

F Qualitative Results and Additional Analysis 9506

F.1 Qualitative Results . 9507

F.2 Learning Progress Analysis . 9508

F.3 Episode Length Analysis of Goal-Directed Tasks 10509

G On the Theoretical Motivation for Guiding Policy Learning with Diffusion Model 10510

H Limitations 13511

I Broader Impacts 13512

513
514515

List of Tables516

4 Model Architectures. 4517

5 Hyperparameters. 5518

6 FETCHPICK Generalization Experimental Result. 8519

7 FETCHPUSH Generalization Experimental Result. 8520

8 Episode Length of Goal-Directed Tasks . 11521

List of Figures522

5 Qualitative Results . 9523

6 Learning Progress. 10524

7 Episode Length of Goal-Directed Tasks . 11525

8 Visualized Gradient Field . 12526

1

A Environment & Task Details527

A.1 MAZE528

Description. A point-maze agent in a 2D maze learns to navigate from its start location to a goal529

location by iteratively predicting its x and y acceleration. The 6D states include the agent’s two-530

dimensional current location and velocity, and the goal location. The start and the goal locations are531

randomized when an episode is initialized.532

Evaluation. We evaluate the agents with 100 episodes and three random seeds and compare our533

method with the baselines regarding the average success rate and episode lengths, representing the534

effectiveness and efficiency of the policy learned by different methods. An episode terminates when535

the maximum episode length of 400 is reached.536

Expert Dataset. The expert dataset consists of the 100 demonstrations with 18, 525 transitions537

provided by Lee et al. [2021].538

A.2 FETCHPICK & FETCHPUSH539

Description. FETCHPICK requires a 7-DoF robot arm to pick up an object from the table and move540

it to a target location; FETCHPUSH requires the robot arm to push an object to a target location.541

Following the environment setups of Lee et al. [2021], a 16D state representation consists of the542

angles of the robot joints, the robot arm poses relative to the object, and goal locations. The first three543

dimensions of the action indicate the desired relative position at the next time step. For FETCHPICK,544

the fourth dimension of action specifies the distance between the two fingers of the gripper.545

Evaluation. We evaluate the agents with 100 episodes and three random seeds and compare our546

method with the baselines regarding the average success rate and episode lengths. An episode547

terminates when the agent completes the task or the maximum episode length is reached, which is set548

to 50 for FETCHPICK and 120 for FETCHPUSH.549

Expert Dataset. The expert dataset of FETCHPICK consists of 303 trajectories (10k transitions)550

while the expert dataset of FETCHPUSH consists of 185 trajectories (10k transitions) provided by Lee551

et al. [2021].552

A.3 HANDROTATE553

Description. HANDROTATE Plappert et al. [2018] requires a 24-DoF Shadow Dexterous Hand to554

in-hand rotate a block to a target orientation. The 68D state representation consists of the joint555

angles and velocities of the hand, object poses, and the target rotation. The 20D action indicates the556

position control of the 20 joints, which can be controlled independently. HANDROTATE is extremely557

challenging due to its high dimensional state and action spaces. We adapt the experimental setup558

used in Plappert et al. [2018] and Lee et al. [2021], where the rotation is restricted to the z-axis and559

the possible initial and target z rotations are set within [� ⇡
12 ,

⇡
12] and [⇡3 ,

2⇡
3], respectively.560

Evaluation. We evaluate the agents with 100 episodes and three random seeds and compare our561

method with the baselines regarding the average success rate and episode lengths. An episode562

terminates when the agent completes the goal or the maximum episode length of 50 is reached.563

Expert Dataset. To collect expert demonstrations, we train a SAC Haarnoja et al. [2018] policy564

using dense rewards for 10M environment steps. The dense reward given at each time step t is565

R(st, at) = dt � dt+1, where dt and dt+1 represent the angles (in radian) between current and the566

desired block orientations before and after taking the actions. Following the training stage, the SAC567

expert policy achieves a success rate of 59.48%. Subsequently, we collect 515 successful trajectories568

(10k transitions) from this policy to form our expert dataset for HANDROTATE.569

A.4 WALKER570

Description. WALKER requires an agent to walk toward x-coordinate as fast as possible while571

maintaining its balance. The 17D state consists of angles of joints, angular velocities of joints, and572

velocities of the x and z-coordinate of the top. The 6D action specifies the torques to be applied on573

each joint of the walker avatar.574

2

Evaluation. We evaluate each learned policy with 30 episodes and three random seeds and compare575

our method with the baselines regarding the average returns of episodes and episode lengths. The576

return of an episode is accumulated from all the time steps of an episode. An episode terminates when577

the agent is unhealthy (i.e., ill conditions predefined in the environment) or the maximum episode578

length (1000) is reached.579

Expert Dataset. The expert dataset consists of 5 trajectories with 5k state-action pairs provided580

by Kostrikov [2018].581

B Algorithm582

Our proposed framework DBC is detailed in Algorithm 1. The algorithm consists of two parts. (1)583

Learning a diffusion model: The diffusion model � learns to model the distribution of concatenated584

state-action pairs sampled from the demonstration dataset D. It learns to reverse the diffusion process585

(i.e., denoise) by optimizing Ldiff. (2) Learning a policy with the learned diffusion model: We586

propose a diffusion model objective LDM for policy learning and jointly optimize it with the BC587

objective LBC. Specifically, LDM is computed based on processing a sampled state-action pair (s, a)588

and a state-action pair (s, â) with the action â predicted by the policy ⇡ with Ldiff.589

Algorithm 1 Diffusion Model-Augmented Behavioral Cloning (DBC)
Input: Expert’s Demonstration Dataset D
Output: Policy ⇡.

1: // Learning a diffusion model �
2: Randomly initialize a diffusion model �
3: for each diffusion model iteration do
4: Sample (s, a) from D
5: Sample noise level n from {0, ..., N}
6: Update � using Ldiff from Eq. 2
7: end for
8: // Learning a policy ⇡ with the learned diffusion model �
9: Randomly initialize a policy ⇡

10: for each policy iteration do
11: Sample (s, a) from D
12: Predict an action â using ⇡ from s: â ⇠ ⇡(s)
13: Compute the BC loss LBC using Eq. 1
14: Sample noise level n from {0, ..., N}
15: Compute the agent diffusion loss Lagent

diff with (s, â) using Eq. 3
16: Compute the expert diffusion loss Lexpert

diff with (s, a) using Eq. 4
17: Compute the diffusion model loss LDM using Eq. 5
18: Update ⇡ using the totatl loss Ltotal from Eq. 6
19: end for
20: return ⇡

C Model Architecture590

This section describes the model architectures used for all the experiments. Section C.1 presents the591

model architectures of BC, Implicit BC, Diffusion Policy, and our proposed framework DBC. Section592

C.2 details the model architectures of the EBM, VAE, and GAN used for the experiment comparing593

different generative models.594

C.1 Model Architecture of BC, Implicit BC, Diffusion Policy, and DBC595

We compare our DBC with three baselines (BC, Implicit BC, and Diffusion Policy) on various tasks596

in Section 5.3. We detail the model architectures for all the methods on all the tasks in Table 4.597

Note that all the models, the policy of BC, the energy-based model of Implicit BC, the conditional598

diffusion model of Diffusion Policy, the policy and the diffusion model of DBC, are parameterized599

by a multilayer perceptron (MLP). We report the implementation details for each method as follows.600

3

Table 4: Model Architectures. We report the architectures used for all the methods on all the tasks.

Method Models Component MAZE FETCHPICK FETCHPUSH HANDROTATE WALKER

BC Policy ⇡

Layers 3 2 2 3 3
Input Dim. 6 16 16 68 17

Hidden Dim. 256 1024 1024 1024 256
Output Dim. 2 4 3 20 6

Implicit BC Policy ⇡

Layers 2 2 2 2 2
Input Dim. 8 20 19 88 23

Hidden Dim. 1024 1024 1024 512 1024
Output Dim. 1 1 1 1 1

Diffusion Policy Policy ⇡

Layers 5 5 5 5 5
Input Dim. 8 20 19 88 23

Hidden Dim. 256 1200 1024 2100 1200
Output Dim. 2 4 3 20 6

DBC

DM �

Layers 5 5 5 5 5
Input Dim. 8 20 19 88 23

Hidden Dim. 128 1024 1024 2048 1024
Output Dim. 8 20 19 88 23

Policy ⇡

Layers 3 2 2 3 3
Input Dim. 6 16 16 68 17

Hidden Dim. 256 1024 1024 512 256
Output Dim. 2 4 3 20 6

BC. The non-linear activation function is a hyperbolic tangent for all the BC policies. We experiment601

with BC policies with more parameters, which tend to severely overfit to expert datasets, resulting in602

worse performance.603

Implicit BC. The non-linear activation function is ReLU for all energy-based models of Implicit BC.604

We empirically find that Implicit BC prefers shallow architectures in our tasks, so we set the number605

of layers to 2 for the energy-based models.606

Diffusion Policy. The non-linear activation function is ReLU for all the policies of Diffusion Policy.607

We empirically find that Diffusion Policy performs better with a deeper architecture. Therefore, we608

set the number of layers to 5 for the policy. In most cases, we use a Diffusion Policy with more609

parameters than the total parameters of DBC consisting of the policy and the diffusion model.610

DBC. The non-linear activation function is ReLU for the diffusion models and is a hyperbolic tangent611

for the policies. We apply batch normalization and dropout layers with a 0.2 ratio for the diffusion612

models on FETCHPICK and FETCHPUSH.613

C.2 Model Architecture of EBM, VAE, and GAN614

We compare different generative models (i.e., EBM, VAE, and GAN) on MAZE in Section 5.5, and615

we report the model architectures used for the experiment in this section.616

Energy-Based Model. An energy-based model (EBM) consists of 5 linear layers with ReLU617

activation. The EBM takes a concatenated state-action pair with a dimension of 8 as input; the output618

is a 1-dimensional vector representing the estimated energy values of the state-action pair. The size619

of the hidden dimensions is 128.620

Variational Autoencoder. The architecture of a variational autoencoder consists of an encoder621

and a decoder. The inputs of the encoder are a concatenated state-action pair, and the outputs622

are the predicted mean and variance, which parameterize a Gaussian distribution. We apply the623

reparameterization trick [Kingma and Welling, 2014], sample features from the predicted Gaussian624

distribution, and use the decoder to produce the reconstructed state-action pair. The encoder and the625

decoder both consist of 5 linear layers with LeakyReLU Xu et al. [2020] activation. The size of the626

hidden dimensions is 128. That said, the encoder maps an 8-dimensional state-action pair to two627

128-dimensional vectors (i.e., mean and variance), and the decoder maps a sampled 128-dimensional628

vector back to an 8-dimensional reconstructed state-action pair.629

4

Table 5: Hyperparameters. This table reports the hyperparameters used for all the methods on all
the tasks. Note that our proposed framework (DBC) consists of two learning modules, the diffusion
model and the policy, and therefore their hyperparameters are reported separately.

� Hyperparameter MAZE FETCHPICK FETCHPUSH HANDROTATE WALKER

BC
Learning Rate 1e-4 1e-5 1e-5 5e-6 1e-4

Batch Size 128 128 128 128 128
Epochs 2000 5000 5000 5000 2000

Implicit BC
Learning Rate 1e-4 5e-6 1e-4 1e-5 1e-4

Batch Size 128 512 512 512 128
Epochs 10000 15000 15000 5000 10000

Diffusion Policy
Learning Rate 2e-4 1e-5 1e-5 1e-4 1e-4

Batch Size 128 128 128 128 128
Epochs 20000 15000 15000 30000 10000

DBC (Ours)

Diffusion Model Learning rate 1e-3 1e-4 1e-4 3e-5 2e-4
Diffusion Model Batch Size 128 128 128 128 1024
Diffusion Model # Epochs 8000 10000 10000 10000 8000

Policy Learning Rate 1e-4 1e-5 2e-5 1e-4 1e-4
Policy Batch Size 128 128 128 128 128
Policy # Epochs 2000 5000 5000 5000 2000

� 5 0.1 0.2 1 0.05

Generative Adversarial Network. The architecture of the generative adversarial network consists of630

a generator and a discriminator. The generator is the policy model that predicts an action from a given631

state, whose input dimension is 6 and output dimension is 2. On the other hand, the discriminator632

learns to distinguish the expert state-action pairs (s, a) from the state-action pairs produced by the633

generator (s, â). Therefore, the input dimension of the discriminator is 8, and the output is a scalar634

representing the probability of the state-action pair being "real." The generator and the discriminator635

both consist of three linear layers with ReLU activation, and the size of the hidden dimensions is 256.636

D Training and Inference Details637

We describe the details of training and performing inference in this section, including computation638

resources and hyperparameters.639

D.1 Computation Resource640

We conducted all the experiments on the following three workstations:641

• M1: ASUS WS880T workstation with an Intel Xeon W-2255 (10C/20T, 19.25M, 4.5GHz) 48-642

Lane CPU, 64GB memory, an NVIDIA RTX 3080 Ti GPU, and an NVIDIA RTX 3090 Ti643

GPU644

• M2: ASUS WS880T workstation with an Intel Xeon W-2255 (10C/20T, 19.25M, 4.5GHz) 48-645

Lane CPU, 64GB memory, an NVIDIA RTX 3080 Ti GPU, and an NVIDIA RTX 3090 Ti646

GPU647

• M3: ASUS WS880T workstation with an Intel Xeon W-2255 (10C/20T, 19.25M, 4.5GHz)648

48-Lane CPU, 64GB memory, and two NVIDIA RTX 3080 Ti GPUs649

D.2 Hyperparamters650

We report the hyperparameters used for all the methods on all the tasks in Table 5. We use the Adam651

optimizer Kingma and Ba [2015] for all the methods on all the tasks and use linear learning rate652

decay for all policy models.653

D.3 Inference Details654

This section describes how each method infers an action â given a state s.655

5

BC & DBC. The policy models of BC and DBC can directly predict an action given a state, i.e.,656

â ⇠ ⇡(s), and are therefore more efficient during inference as described in Section 5.3.657

Implicit BC. The energy-based model (EBM) of Implicit BC learns to predict an estimated energy658

value for a state-action pair during training. To generate a predicted â given a state s during inference,659

it requires a procedure to sample and optimize actions. We follow Florence et al. [2022] and660

implement a derivative-free optimization algorithm to perform inference.661

The algorithm first randomly samples Ns vectors from the action space as candidates. The EBM then662

produces the estimated energy value of each candidate action and applies the Softmax function on663

the estimated energy values to produce a Ns-dimensional probability. Then, it samples candidate664

actions according to the above probability and adds noise to them to generate another Ns candidates665

for the next iteration. The above procedure iterates Niter times. Finally, the action with maximum666

probability in the last iteration is selected as the predicted action â. In our experiments, Ns is set to667

1000 and Niter is set to 3.668

Diffusion Policy. Diffusion Policy learns a conditional diffusion model as a policy and produces an669

action from sampled noise vectors conditioning on the given state during inference. We follow Pearce670

et al. [2023], Chi et al. [2023] and adopt Denoising Diffusion Probabilistic Models (DDPMs) J Ho671

[2020] for the diffusion models. Once learned, the diffusion policy ⇡ can "denoise" a noise sampled672

from a Gaussian distribution N (0, 1) given a state s and yield a predicted action â using the following673

equation:674

an�1 =
1

p
↵n

(an � 1� ↵np
1� ↵̄n

⇡(s, an, n)) + �nz, (7)

where ↵n, ↵̄n, and �n are schedule parameters, n is the current time step of the reverse diffusion675

process, and z ⇠ N (0, 1) is a random vector. The above denoising process iterates N times to676

produce a predicted action a0 from a sampled noise aN ⇠ N (0, 1). The number of total diffusion677

steps N is 100 in our experiment, which is the same for the diffusion model in DBC.678

D.4 Comparing Different Generative Models679

Our proposed framework employs a diffusion model (DM) to model the joint probability of expert680

state-action pairs and utilizes it to guide policy learning. To justify our choice of generative models, we681

explore using other popular generative models to replace the diffusion model in MAZE. Specifically,682

we consider energy-based models (EBMs) [Du and Mordatch, 2019, Song and Kingma, 2021],683

variational autoencoders (VAEs) [Kingma and Welling, 2014], and generative adversarial networks684

(GANs) Goodfellow et al. [2014]. Each generative model learns to model the joint distribution of685

expert state-action pairs. For fair comparisons, all the policy models learning from learned generative686

models consists of 3 linear layers with ReLU activation, where the hidden dimension is 256. All the687

policies are trained for 2000 epochs using the Adam optimizer [Kingma and Ba, 2015], and a linear688

learning rate decay is applied for EBMs and VAEs.689

D.4.1 Energy-Based Model690

Model Learning. Energy-based models (EBMs) learn to model the joint distribution of the expert691

state-action pairs by predicting an estimated energy value for a state-action pair (s, a). The EBM692

aims to assign low energy value to the real expert state-action pairs while high energy otherwise.693

Therefore, the predicted energy value can be used to evaluate how well a state-action pair (s, a) fits694

the distribution of the expert state-action pair distribution.695

To train the EBM, we generate Nneg random actions as negative samples for each expert state-action696

pair as proposed in Florence et al. [2022]. The objective of the EBM E� is the InfoNCE loss Oord697

et al. [2018]:698

LInfoNCE =
e�E�(s,a)

e�E�(s,a) + ⌃
Nneg

i=1 e�E�(s,ãi)
, (8)

where (s, a) indicates an expert state-action pair, ãi indicates the sampled random action, and Nneg699

is set to 64 in our experiments. The EBM learns to separate the expert state-action pairs from the700

negative samples by optimizing the above InfoNCE loss.701

6

The EBM is trained for 8000 epochs with the Adam optimizer [Kingma and Ba, 2015], with a batch702

size of 128 and an initial learning rate of 0.0005. We apply learning rate decay by 0.99 for every 100703

epoch.704

Guiding Policy Learning. To guide a policy ⇡ to learn, we design an EBM loss LEBM = E�(s, â),705

where â indicates the predicted action produced by the policy. The above EBM loss regularizes the706

policy to generate actions with low energy values, which encourage the predicted state-action pair707

(s, â) to fit the modeled expert state-action pair distribution. The policy learning from this EBM loss708

LEBM achieves a success rate of 49.09% in MAZE as reported in Table 2.709

We also experiment with combining this EBM loss LEBM with the LBC loss. The policy optimizes710

LBC + �EBMLEMB, where �EBM is set to 0.1. Optimizing this combined loss yields a success rate of711

80.00% in MAZE as reported in Table 2.712

D.4.2 Variational Autoencoder713

Model Learning. Variational autoencoders (VAEs) model the joint distribution of the expert data714

by learning to reconstruct expert state-action pairs (s, a). Once the VAE is learned, how well a715

state-action pair fits the expert distribution can be reflected in the reconstruction loss.716

The objective of training a VAE is as follows:717

Lvae = ||x̂� x||2 +DKL(N (µx,�x)||N (0, 1)), (9)
where x is the latent variable, i.e., the concatenated state-action pair x = [s, a], and x̂ is the718

reconstruction of x, i.e., the reconstructed state-action pair. The first term is the reconstruction loss,719

while the second term encourages aligning the data distribution with a normal distribution N (0, 1),720

where µx and �x are the predicted mean and standard deviation given x.721

The VAE is trained for 100k update iterations with the Adam optimizer [Kingma and Ba, 2015], with722

a batch size of 128 and an initial learning rate of 0.0001. We apply learning rate decay by 0.5 for723

every 5k epoch.724

Guiding Policy Learning. To guide a policy ⇡ to learn, we design a VAE loss LVAE = max(Lagent
vae �725

Lexpert
vae , 0), similar to Eq. 5. This loss forces the policy to predict an action, together with the state,726

that can be well reconstructed with the learned VAE. The policy learning from this VAE loss LVAE727

achieves a success rate of 48.47% in MAZE as reported in Table 2.728

We also experiment with combining this VAE loss LVAE with the LBC loss. The policy optimizes729

LBC + �VAELVAE, where �VAE is set to 1. Optimizing this combined loss yields a success rate of730

82.31% in MAZE as reported in Table 2.731

D.4.3 Generative Adversarial Network732

Adversarial Model Learning & Policy Learning. Generative adversarial networks (GANs) model733

the joint distribution of expert data with a generator and a discriminator. The generator aims to734

synthesize a predicted action â given a state s. On the other hand, the discriminator aims to identify735

expert the state-action pair (s, a) from the predicted one (s, â). Therefore, a learned discriminator736

can evaluate how well a state-action pair fits the expert distribution.737

While it is possible to learn a GAN separately and utilize the discriminator to guide policy learning,738

we let the policy ⇡ be the generator directly and optimize the policy with the discriminator iteratively.739

We hypothesize that a learned discriminator may be too selective for a policy training from scratch,740

so we learn the policy ⇡ with the discriminator D to improve the policy and the discriminator741

simultaneously.742

The objective of training the discriminator D is as follows:743

Ldisc = BCE(D(s, a), 1) +BCE(D(s, â), 0) = �log(D(s, a))� log(1�D(s, â)), (10)
where â = ⇡(s) is the predicted action, and BCE is the binary cross entropy loss. The binary label744

(0, 1) indicates whether or not the state-action pair sampled from the expert data. The generator and745

the discriminator are both updated by Adam optimizers using a 0.00005 learning rate.746

To learn a policy (i.e., generator), we design the following GAN loss:747

LGAN = BCE(D(s, â), 1) = �log(D(s, â)). (11)

7

Table 6: FETCHPICK Generalization Experimental Result. We report the performance of our
proposed framework DBC and the baselines regarding the mean and the standard deviation of
the success rate with different levels of noise injected into the initial state and goal locations in
FETCHPICK, evaluated over three random seeds.

Method Noise Level
1 1.25 1.5 1.75 2

BC 86.78% ± 4.68% 69.15% ± 5.00% 54.42% ± 3.89% 43.49% ± 4.68% 36.64% ± 3.85%
Implicit BC 89.40% ± 4.85% 72.27% ± 6.71% 46.32% ± 5.49% 34.60% ± 4.78% 25.84% ± 4.16%

Diffusion Policy 76.04% ± 3.12% 74.37% ± 3.80% 69.22% ± 5.23% 56.95% ± 4.63% 53.93% ± 4.49%
DBC (Ours) 97.59% ± 1.53% 88.71% ± 6.46% 78.76% ± 10.84% 69.36% ± 12.72% 62.62% ± 14.01%

Table 7: FETCHPUSH Generalization Experimental Result. We report the performance of our
proposed framework DBC and the baselines regarding the mean and the standard deviation of
the success rate with different levels of noise injected into the initial state and goal locations in
FETCHPUSH, evaluated over three random seeds.

Method Noise Level
1 1.25 1.5 1.75 2

BC 94.07% ± 4.45% 82.52% ± 5.46% 66.02% ± 6.88% 48.85% ± 8.65% 34.82% ± 7.13%
Implicit BC 85.95% ± 8.39% 83.99% ± 6.06% 77.70% ± 4.42% 70.33% ± 6.06% 56.98% ± 11.74%

Diffusion Policy 97.92% ± 1.10% 93.02% ± 2.36% 86.93% ± 3.26% 74.50% ± 3.66% 65.84% ± 3.81%
DBC (Ours) 99.83% ± 0.23% 99.38% ± 0.78% 94.92% ± 3.09% 87.48% ± 5.04% 78.43% ± 7.41%

The above GAN loss guides the policy to generate state-action pairs that fit the joint distribution of748

the expert data. The policy learning from this GAN loss LGAN achieves a success rate of 50.29% in749

MAZE as reported in Table 2.750

We also experiment with combining this GAN loss LGAN with the LBC loss. The policy optimizes751

LBC + �GANLGAN, where �GAN is set to 0.2. Optimizing this combined loss yields a success rate of752

71.64% in MAZE as reported in Table 2.753

E Generalization Experiments in FETCHPICK and FETCHPUSH754

This section further investigates the generalization capabilities of the policies learned by our proposed755

framework and the baselines. To this end, we evaluate the policies by injecting different noise levels to756

both the initial state and goal location in FETCHPICK and FETCHPUSH. Specifically, we parameterize757

the noise by scaling the 2D sampling regions for the block and goal locations in both environments.758

We expect all the methods to perform worse with higher noise levels, while the performance drop of759

the methods with better generalization ability is less significant. The results are presented in Table 6760

for FETCHPICK and Table 7 for FETCHPUSH.761

Overall Performance. Our proposed framework DBC consistently outperforms all the baselines762

with different noise levels, indicating the superiority of DBC when different levels of generalization763

are required.764

Performance Drop with Increased Noise Level. In FETCHPICK, DBC experiences a performance765

drop of 35.0% when the noise level increase from 1 to 2. However, BC and Implicit BC demonstrate766

a more significant performance drop of 50.1% and 63.6%, respectively. Notably, Diffusion Policy767

initially performs poorly at a noise level of 1 but demonstrates its robustness with a performance768

drop of only 22.1% when the noise level increases to 2. On the other hand, in FETCHPUSH, DBC769

experiences a performance drop of 21.4% when the noise level increase from 1 to 2, while all the770

baselines have a more significant performance drop: BC (63%), Implicit BC (33.7%), and Diffusion771

Policy (32.8%). This demonstrates that our proposed framework not only generalizes better but also772

exhibits greater robustness to noise compared to the baselines.773

In this experiment, we set the coefficient � of DBC to 0.5 in FETCHPUSH and 0.1 in FETCHPICK,774

resulting in improved performance compared to the performance reported in the main paper.775

In this experiment, we set the coefficient � of DBC to 0.5 in FETCHPUSH and 0.1 in FETCHPICK,776

resulting in an improved performance compared to the performance reported in the main paper.777

8

Maze FetchPick FetchPush HandRotate Walker

DBC

(Ours)

Diffusion

Policy

Implicit

BC

BC

Figure 5: Qualitative Results. Rendered videos of the policies learned by our pro-
posed framework and the baselines can be found at https://sites.google.com/view/
diffusion-behavioral-cloning.

F Qualitative Results and Additional Analysis778

This section provides more detailed analyses of our proposed framework and the baselines. We779

present the qualitative results in Section F.1. Then, we analyze the learning progress and the episode780

length of goal-directed tasks during inference in Section F.2 and Section F.3, respectively.781

F.1 Qualitative Results782

Rendered videos of the policies learned by our proposed framework and the baselines can be found783

at https://sites.google.com/view/diffusion-behavioral-cloning. A screenshot of the784

rendered videos on the web page is presented in Figure 5.785

F.2 Learning Progress Analysis786

In this section, we analyze the learning progress of all the methods on all the tasks. The training curves787

are presented in Figure 6. Our proposed framework (DBC) not only achieves the best converged788

performance but also converges the fastest, demonstrating its learning efficiency.789

Since Implicit BC and Diffusion Policy take significantly longer to converge, we set a higher number790

of training epochs for these two methods (see Table 5), and hence their learning curves are notably791

longer than BC and DBC.792

Note that we make sure the numbers of training epochs for Implicit BC and Diffusion Policy are not793

less the total number of training epochs for learning both the diffusion model and the policy in DBC,794

except for Implicit BC in HANDROTATE where training longer does not yield any improvement. This795

forecloses the possibility of the superior performance of DBC coming from learning with a higher796

total number of training epochs.797

9

https://sites.google.com/view/diffusion-behavioral-cloning
https://sites.google.com/view/diffusion-behavioral-cloning
https://sites.google.com/view/diffusion-behavioral-cloning

(a) MAZE (b) FETCHPICK (c) FETCHPUSH

(d) HANDROTATE (e) WALKER

Figure 6: Learning Progress. We evaluate the baselines and our proposed method DBC and its
variants during the learning process. Since Implicit BC (green) and Diffusion Policy (brown) take
significantly longer to converge, we set a higher number of training epochs for these two methods,
and hence their learning curves are notably longer than BC (orange) and DBC (blue). Our method
demonstrates superior learning efficiency over the baselines.

F.3 Episode Length Analysis of Goal-Directed Tasks798

In this section, we investigate the efficiency of the learned policies regarding the number of time steps799

they need to fulfill a task. We compare all the methods regarding average episode lengths over 100800

episodes and three random seeds in all goal-directed tasks (MAZE, FETCHPUSH, FETCHPICK, and801

HANDROTATE). The results are presented in Table 8 and Figure 7 .802

Note that Implicit BC and Diffusion Policy take significantly longer to converge, and hence we set803

a higher number of training epochs for these two methods (see Table 5). As a result, their learning804

curves are notably longer than BC and DBC.805

We observe that our proposed framework DBC results in the shortest episode lengths in MAZE,806

FETCHPUSH, and FETCHPICK while performing competitively against the best-performing baseline807

(Diffusion Policy) in HANDROTATE. This indicates that DBC learns an efficient policy that can808

accomplish tasks quickly.809

G On the Theoretical Motivation for Guiding Policy Learning with Diffusion810

Model811

This section further elaborates on the technical motivation for leveraging diffusion models for812

imitation learning. Specifically, we aim to learn a diffusion model to model the joint distribution of813

expert state-action pairs. Then, we propose to utilize this learned diffusion model to augment a BC814

policy that aims to imitate expert behaviors.815

We consider the distribution of expert state-action pairs as the real data distribution qx in learning a816

diffusion model. Following this setup, x0 represents an original expert state-action pair (s, a) and817

q(xn|xn�1) represents the forward diffusion process, which gradually adds Gaussian noise to the818

data in each timestep n = 1, ..., N until xN becomes an isotropic gaussian distribution. On the other819

hand, the reverse diffusion process is defined as �(xn�1|xn) := N (xn�1;µ✓(xn, n),⌃✓(xn, n)),820

where ✓ denotes the learnable parameters of the diffusion model �, as illustrated in Figure 1.821

Our key idea is to use the proposed diffusion model loss LDM in Eq. 5 as an estimate of how well a822

predicted state-action pair (s, â) fits the expert state-action pair distribution, as described in Section823

4.2.2. In the following derivation, we will show that by optimizing this diffusion model loss LDM, we824

10

Table 8: Episode Length of Goal-Directed Tasks. We report the mean and the standard deviation
of the episode length (#) on MAZE, FETCHPICK, FETCHPUSH, and HANDROTATE, evaluated over
three random seeds. The experiments demonstrate that our proposed method (DBC) outperforms
(i.e., finish tasks with fewer time steps) the baselines on MAZE, FETCHPICK, and FETCHPUSH while
performing competitively in HANDROTATE.

Method MAZE FETCHPICK FETCHPUSH HANDROTATE

BC 219.95 ± 13.21 39.92 ± 0.65 74.08 ± 5.55 33.79 ± 1.18
Implicit BC 199.91 ± 15.95 44.67 ± 0.65 67.75 ± 3.13 46.13 ± 0.84

Diffusion Policy 241.45 ± 12.47 42.20 ± 0.64 80.93 ± 8.88 31.95 ± 0.82
DBC (Ours) 193.12 ± 10.30 30.22 ± 1.38 54.58 ± 3.33 31.97 ± 1.49

(a) MAZE (b) FETCHPICK (c) FETCHPUSH (d) HANDROTATE

Figure 7: Episode Length of Goal-Directed Tasks. We evaluate the baselines and our proposed
method regarding the episode length during the learning process. Since Implicit BC (green) and
Diffusion Policy (brown) take significantly longer to converge, we set a higher number of training
epochs for these two methods, and hence their learning curves are notably longer than BC (orange)
and DBC (blue). The average episode length indicates how fast the agent reaches the goal, which can
be a measurement of the efficiency of the agent. Our method DBC demonstrates superior efficiency
in accomplishing tasks.

maximize the lower bound of the agent data’s probability under the derived expert distribution and825

hence bring the agent policy ⇡ closer to the expert policy ⇡E , which is the goal of imitation learning.826

As depicted in Luo [2022], one can conceptualize diffusion models, including DDPM [J Ho, 2020]827

adopted in this work, as a hierarchical variational autoencoder [Kingma and Welling, 2014], which828

maximizes the likelihood p(x) of observed data points x. Therefore, similar to hierarchical variational829

autoencoders, diffusion models can optimize the Evidence Lower Bound (ELBO) by minimizing the830

KL divergence DKL(q(xn�1|xn, x0)||�(xn�1|xn)). Consequently, this can be viewed as minimizing831

the KL divergence to fit the distribution of the predicted state-action pairs (s, â) to the distribution of832

expert state-action pairs.833

According to Bayes’ theorem and the properties of Markov chains, the forward diffusion process834

q(xn�1|xn, x0) follows:835

q(xn�1|xn, x0) ⇠ N (xn�1;

p
↵n(1� ↵̄n�1)xn +

p
↵̄n�1(1� ↵n)x0

1� ↵̄n| {z }
µq(xn, x0),

(1� ↵n)(1� ↵̄n�1)

1� ↵̄n| {z }
⌃q(n)).

The variation term ⌃q(n) in the above equation can be written as �2
q (n)I , where �2

q (n) =836

(1� ↵n)(1� ↵̄n�1)

1� ↵̄n
. Therefore, minimizing the KL divergence is equivalent to minimizing the gap837

11

(a) Maze Layout (b) Learned Gradient Field

Figure 8: Visualized Gradient Field. (a) Maze Layout: The layout of the medium maze used for
MAZE. (b) Learned Gradient Field: We visualize the MAZE expert demonstration as a distribution
of points by their first two dimensions in gray. The points that cluster densely have a high probability,
and vice versa. Once a diffusion model is well-trained, it can move randomly sampled points to the
area with high probability by predicting gradients (blue arrows). Accordingly, the estimate p(s, a) of
joint distribution modeling can serve as guidance for policy learning, as proposed in this work.

between the mean values of the two distributions:838

argmin
✓

DKL(q(xn�1|xn, x0)||�(xn�1|xn))

= argmin
✓

DKL(N (xn�1;µq,⌃q(n))||N (xn�1;µ✓,⌃q(n)))

= argmin
✓

1

2�2
q (n)

[||µ✓ � µq||22],

where µq represents the denoising transition mean and µ✓ represents the approximated denoising839

transition mean by the model.840

Different implementations adopt different forms to model µ✓. Specifically, for DDPMs adopted in
this work, the true denoising transition mean µq(xn, x0) derived above can be rewritten as:

µq(xn, x0) =
1

p
↵n

(xn � 1� ↵np
1� ↵̄n

✏0),

which is referenced from Eq. 11 in J Ho [2020]. Hence, we can set our approximate denoising841

transition mean µ✓ in the same form as the true denoising transition mean:842

µ✓(xn, n) =
1

p
↵n

(xn � 1� ↵np
1� ↵̄n

✏̂✓(xn, n)), (12)

as illustrated in Popov et al. [2022]. Song et al. [2021] further show that the entire diffusion model843

formulation can be revised to view continuous stochastic differential equations (SDEs) as a forward844

diffusion. It points out that the reverse process is also an SDE, which can be computed by estimating845

a score function rx log pt(x) at each denoising time step. The idea of representing a distribution846

by modeling its score function is introduced in Song and Ermon [2019]. The fundamental concept847

is to model the gradient of the log probability density function rx log pt(x), a quantity commonly848

referred to as the (Stein) score function. Such score-based models are not required to have a tractable849

normalizing constant and can be directly acquired through score matching. The measure of this score850

function determines the optimal path to take in the space of the data distribution to maximize the log851

probability under the derived real distribution.852

As shown in Figure 8b, we visualized the learned gradient field of a diffusion model, which learns to853

model the expert state-action pairs in MAZE. Once trained, this diffusion model can guide a policy854

with predicted gradients (blue arrows) to move to areas with high probability, as proposed in our855

work.856

Essentially, by moving in the opposite direction of the source noise, which is added to a data point xt857

to corrupt it, the data point is “denoised”; hence the log probability is maximized. This is supported858

12

by the fact that modeling the score function is the same as modeling the negative of the source noise.859

This perspective of the diffusion model is dubbed diffusion SDE. Moreover, Popov et al. [2022]860

prove that Eq. 12 is diffusion SDE’s maximum likelihood SDE solver. Hence, the corresponding861

divergence optimization problem can be rewritten as:862

argmin
✓

DKL(q(xn�1|xn, x0)||�(xn�1|xn))

= argmin
✓

1

2�2
q (n)

(1� ↵n)2

(1� ↵̄n)↵n
[||✏̂✓(xn, n)� ✏0||22],

where ✏✓ is a function approximator aim to predict ✏ from x. As the coefficients can be omitted during
optimization, we yield the learning objective Ldiff as stated in in Eq. 2:

Ldiff = ||✏̂(s, a, n)� ✏(n)||2 = ||�(s, a, ✏(n))� ✏(n)||2.

The above derivation motivates our proposed framework that augments a BC policy by using the863

diffusion model to provide guidance that captures the joint probability of expert state-action pairs.864

Based on the above derivation, minimizing the proposed diffusion model loss (i.e., learning to denoise)865

is equivalent to finding the optimal path to take in the data space to maximize the log probability. To866

be more accurate, when the learner policy predicts an action that obtains a lower Ldiff, it means that867

the predicted action â, together with the given state s, fits better with the expert distribution.868

Accordingly, by minimizing our proposed diffusion loss, the policy is encouraged to imitate the869

expert policy. To further alleviate the impact of rarely-seen state-action pairs (s, a), we propose870

to compute the above diffusion loss for both expert data (s, a) and predicted data (s, â) and yield871

Lexpert
diff and Lagent

diff , respectively. Therefore, we propose to augment BC with this objective: LDM =872

max(Lagent
diff � Lexpert

diff , 0) This design is justified in Section 5.6.2.873

H Limitations874

This section discusses the limitations of our proposed framework.875

• Since this work aims to learn from demonstrations without interacting with environments, our876

proposed framework in its current form is only designed to learn from expert trajectories and877

cannot learn from trajectories produced by the learner policy. Extending our method to incorporate878

agent data can potentially allow for improvement when interacting environments are possible,879

which is left for future work.880

• The key insight of our work is to allow the learner policy to benefit from both modeling the881

conditional and joint probability of expert state-action distributions. To this end, we propose to882

optimize both the BC loss and the proposed diffusion model loss. To balance the importance of883

the two losses, we introduce a coefficient � as an additional hyperparameter. While the ablation884

study conducted in MAZE shows that the performance of our proposed framework is robust to885

�, this can potentially increase the difficulty of searching for optimal hyperparameters when886

applying our proposed framework to a new application.887

I Broader Impacts888

This work proposes Diffusion Model-Augmented Behavioral Cloning, a novel imitation learning889

framework that aims to increase the ability of autonomous learning agents (e.g., robots, game AI890

agents) to acquire skills by imitating demonstrations provided by experts (e.g., humans). However, it891

is crucial to acknowledge that our proposed framework, by design, inherits any biases exhibited by892

the expert demonstrators. These biases can manifest as sub-optimal, unsafe, or even discriminatory893

behaviors. To address this concern, ongoing research endeavors to mitigate bias and promote894

fairness in machine learning hold promise in alleviating these issues. Moreover, research works895

that enhance learning agents’ ability to imitate experts, such as this work, can pose a threat to job896

security. Nevertheless, in sum, we firmly believe that our proposed framework can offer tremendous897

advantages in terms of enhancing the quality of human life and automating laborious, arduous, or898

perilous tasks that pose risks to humans, which far outweigh the challenges and potential issues.899

900

13

	Introduction
	Related Work
	Preliminaries
	Imitation Learning
	Behavioral Cloning: Modeling Conditional Probability p(a|s)
	Modeling Joint Probability p(s, a)
	Diffusion Models

	Approach
	Behavioral Cloning Loss
	Learning a Diffusion Model and Guiding Policy Learning
	Learning a Diffusion Model
	Learning a Policy with Diffusion Model Loss

	Combining the Two Objectives

	Experiments
	Experimental Setup
	Baselines
	Experimental Results
	Comparing Modeling Conditional Probability and Joint Probability
	Comparing Different Generative Models
	Ablation Study
	Effect of the Diffusion Model Loss Coefficient
	Effect of the Normalization Term Ldiffexpert

	Conclusion
	References
	
	List of Tables
	List of Figures
	Environment & Task Details
	Maze
	FetchPick & FetchPush
	HandRotate
	Walker

	Algorithm
	Model Architecture
	Model Architecture of BC, Implicit BC, Diffusion Policy, and DBC
	Model Architecture of EBM, VAE, and GAN

	Training and Inference Details
	Computation Resource
	Hyperparamters
	Inference Details
	Comparing Different Generative Models
	Energy-Based Model
	Variational Autoencoder
	Generative Adversarial Network

	Generalization Experiments in FetchPick and FetchPush
	Qualitative Results and Additional Analysis
	Qualitative Results
	Learning Progress Analysis
	Episode Length Analysis of Goal-Directed Tasks

	On the Theoretical Motivation for Guiding Policy Learning with Diffusion Model
	Limitations
	Broader Impacts

