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A APPENDIX

A.1 BASELINE BAYESIAN FILTER METHODS AND IMPLEMENTATION DETAILS

In this section we define the Kalman filter (KF), Extended Kalman filter (EKF), iterated extended
Kalman filter (IEKF), unscented Kalman filter (UKF), particle filter (PF), and variational Kalman
filter (VKF) as implemented in the experimental section of this paper. We closely follow the defi-
nitions and notation of [Siarkka & Svensson (2023) and refer the reader to that text for proofs and a
more extensive treatment of these topics.

We use this section to state design choices made for each baseline filter when it comes to the exper-
iments reported in the main section.

A.1.1 KALMAN FILTER
Assume the following state space model:

Xt = F_1X4_1 +qi—1
ye = Hyxy + 1y

where x; € R” is the state, y; € R™ is the measurement, F;_; € R"*" is the transition matrix,
H; € R™*" is the measurement model matrix, q;_1 ~ N(0,Q;_1) is the process noise and
r. ~ N (0, R;) is the measurement noise.

The Kalman filter (Kalman, [1960) defines the predictive distribution, filtering distribution, and
marginal likelihood at time step ¢ as
p(xt‘ylztfl) = N(Xt“l‘t_v Et_)’
p(Xt|Y1:t) = N(xtlut, Et)7
p(Yelyri—1) = N(xe|Hipy s Si),

with predict step:
= Fapiq,
S, =F X F | +Q,
and update step:
v =yt — Hipy s
S, =H,X H' +R,,
K,=% H/'S ",
e = py + Koy,
¥ =3 - K;S.K, .

Recursion begins from some xq ~ N (o, o). In the stochastic Lorenz Attractor, the Gaussian
random walk (GRW) case is equivalent to a Kalman filter where F;_; = I3 and H; = I3 at every
time step t. We do not see the linear-Gaussian Kalman filter in any other experiments.

A.1.2 EXTENDED KALMAN FILTER
In the extended Kalman filter (EKF), we use first-order Taylor approximations of the nonlinear

transition function f and measurement model h where appropriate. We denote the Jacobians of
these functions as Fy(-) and Hy(-). The predict step is now

By = f(ﬂtfl),
2 = Fa(p-) o1 Fa(pem1) T + Qi
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and the update step is
v =y — hp, ),
Si. = Hy(p )57 Hy(p)" + Ry,
K, =3y Hx(p;)" 877",
we = py + Koy,
3 =3, - K;S:K,,

with recursion starting from some xo ~ A (o, Xo) as before.

A.1.3 ITERATED EXTENDED KALMAN FILTER

The iterated extended Kalman filter (IEKF) (Gelb, |1974) shares an identical predict step with the

EKF. The update step is redefined as the following iterative procedure, starting from xgo) =y,

from the predict step:
e Fori=1,2,...K:
o) =yi = (V) = He(x )™ = xiY),

S, = Hu(xi' )= Hy(x ™))" + Ry,

K =5 B )T [s0]
) = i + P

* Set py = XEK).

. Set3, = 8 — K gH) [Kt(K)]T.

For both the stochastic Lorenz Attractor and the toy nonlinear system, we ran IEKFs for iterations
K € {1,3,5,10,25,50,100}. We consistently report the IEKF that showed the highest average
RMSE over 100 Monte Carlo experiments.

A.1.4 UNSCENTED KALMAN FILTER
The predict step for the Unscented Kalman filter (UKF) is as follows:

* Form 2n + 1 sigma points where

0
XE—)l = H¢—1,

Xgi_)l =1 +vVn+A [\/Zt—l} ,

i

Xiijln) =p1—Vn+A {\/ th} ;

i
forv =1,...,n where n is the dimension of the state space and ) is a tuneable parameter
defined below.

* Apply the dynamics model to the sigma points:

)A(gz) = f(X§Q1)
fori =0,...,2n.

* Compute the predict step mean and covariance:
2n )
b = 3o,
i=0

o . , T
=2l (W ) (0 - nr) 4 Qi
=0
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where

(m) A

Yo =N
© - AL (1-a’+p)
0 n—+ A ’
my _ A

i T oAy
©_ A

TR

where «, 5 are tuneable parameters.
The update step:

* Form 2n + 1 sigma points as before except replace p;—; and 3;_; with g, and 3; from
the predict step. Denote these sigma points as x, @) for i = 0,...,2n.
* Apply the measurment model to the sigma points:

V= hixi?),
for: =0,...,2n.

e Compute:

2n
_ } : (m) ~y(@)
my = w; t s
=0
2n

S = sz@ (j)t(i) - mt) (j}t(z) - mt)T + Ry,

6= 3oul? (5 - ) (38 - )

* Compute the Kalman gain and perform the update:
Kt == CtS;l,
pe = py + Ky (yr —my),
=3 - K.S.K, .
For both the stochastic Lorenz Attractor and the toy nonlinear system, we set « = 1, § = 3 — n,
A=a? - (n+8)—n.
A.1.5 PARTICLE FILTER

We ran a Bootstrap filter (BF) with 1000 particles for every experiment reported in the main section.
The BF algorithm at every time step is as follows:

e Sample
xi) ~ pxilxi?,)

for every ith particle.

* Compute weights

w? o plyex")

for every ith particle and normalize.
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* Perform resampling.

We did multinomial resampling at every time step ¢. For the yearbook dataset, since the transition
distribution was unknown, we used the following transition distribution:

plxelxiy) = N(p (xt|xt 1,0°) (17
where 02 € {0.1,0.05,0.01,0.005,0.001}. Selecting o requires a grid search, which is described
in Appendix[A.4]

A.1.6 VARIATIONAL KALMAN FILTER

A variational Kalman filter (VKF) was used in the Yearbook experiments due to the storage complex-
ity of the EKF and UKF. Similar to the Implicit MAP Filter, the VKF we implemented propagates
a point-mass forward in time but differs in that it models the prior uncertainty explicitly rather than
implicitly.

Assume that the initial distribution is p(wg) = N (WO\O o3I), the transition distribution is
p(wilwi_1) = N(wi|lwy_1,021I), and the likelihood is p(y:| X:) = [T, Pw, (Yri| X+ti), where
pw(y|X) is the output of a neural network with parameters w that produces a distribution over
target y given input X. We assume that p(w;|X1.4,y1.¢) = 0(W; — w;) where §(-) denotes a
Dirac-delta function centered at wy.

The VKEF algorithm at every time step is as follows:
* Predict step:
P(We| X1:—1,Y1:0-1) = /5(VAVt71 - Wtfl)N(Wt‘Wt—hOQI)th,l
= N (wi|Wi_y1,02T)
» Update step:

P(We X1, y1:4) < N(welWio1,0°T) [ [ pw, (91| Xi)
i=1

Now, we approximate p(w|X.¢,y1.:) with a point mass w; such that

Wy = argmax [log./\/'(wﬂwt 1,0%0I) + Zlogpwt (yei| Xt:)
i=1

Tt

1
= arg min | —— E log pw, (yei| Xti) + o2 E (wia — W1 d)
=1
mean binary cross entropy weight decay centered at Wy _ 1

In the yearbook experiment, we run 5 configurations with o2 € {0.1,0.05,0.01,0.005,0.001}. We
optimize using the same procedure as the direct fit case, with the exception that the objective has
explicit regularization.

A.2 VARIATIONAL INFERENCE INTERPRETATION OF THE UPDATE STEP

In this section, we show how truncated gradient descent on the hkehhood@] can be 1nterpreted as
variational inference with the variational distribution q;(x;) = N (x; | m;, M;) where M, L 0is
fixed. The derivation in this section is based on Section 4.1 of |[Khan & Rue| (2023)), but adapts it to
the setting of the update step of a Bayesian filter and further applies the equivalence due to Santos
(1996) in order to deduce the implied filtering covariance 3, . The variational lower bound on the
log marginal likelihood for time step ¢ is:

p(Xt,Yt | Y1:t—1)
qe(x¢)
= Eq, [logp(y: | x¢) +logp(x; | y1:0-1)] + H(qs) (19)

logp(y: | y1:-1) > Eq, |log (18)
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Then the optimal variational distribution is:

q; (x¢) = argmin E, [¢;(x;)] — H(q:), where (20)
qt

é_t(xt) £ logp(y: | x¢) —logp(x¢ | y1:4-1) (2D

= —log N(y: | Hixe, Ry) —log N (x¢ | py . 27) (22)

We take the approach of Khan & Rue|(2023) where the variational optimization is performed using
natural gradient descent. In particular, assume the variational distribution to be of the form

O, (%1) = h(x) exp[(Ag, T(xz)) — A(Ar)] (23)

Natural gradient descent on the variational objective can then be written as:

/\EkJrl) —(1- pgk)))\gk) — pgk)V“Eqim [Et (x¢) + log h(xy)] 24)

With the choice qt(k) (x¢) = N(x¢ | mgk),Mt), we have )\gk) = Mt_lmgk), ugk) = mgk) and
2log h(x;) = Plog|2nM; | — x/ M, 'x,. After substituting, we find that the updates can be
written as follows:

k+1)

Xg — ng) _ pgk)s;lvxft(xt)\m:mgk). (25)
The gradient V, £(x;) takes the following form:
_ | , 1 o
Vi b(xt) = Vi, | Sllye — Hexellg, + 5l1xe — pr (15— (26)
2 2 =
= —H/ Ry (y: — Hexe) + (1) 7 (¢ — 1) (27)

Now if we optimize this to convergence, we would recover the setting m} such that V' (x; |
m;, M;) =~ p(x; | y1.¢). This requires knowledge of both p, and 3, .

On the other hand, consider truncated gradient descent on the negative log-likelihood ¢;(x;):

xFHD xR pg’“)Mtvxtzt(xt)|Xt:m5k>, where (28)

£(x¢) £ - log N (y: | Hix¢, Ry) 29)

Vi l(xt) = Vx, B}% - Htxtlﬂt} (30)

= —H/R;'(y: — Hyx) = (31)

xFD x84 yONGH R (ys — Hixy) (32)

Assume that K such steps of gradient descent are taken where xgo) = p; and pgk) = p; for

k=0,1,..., K — 1. Then by Santos|(1996),

T 1 _
) _ arg min S lve =k, + ol — i[5 | (33)

Xt

where 3, is defined implicitly by the choice of p;, M;, and K, in the sense we make explicit
here. Let C, simultaneously diagonalize (1/p;)M; ! and H] R; 'H, (this is possible since both
are symmetric and (1/p;)M; ! is positive definite as assumed above):

C/ (1/p)M;'C =1 (34)
C/H/R;'H,C, = A, (35)

Then the equivalent 3, is defined to be:

3., = C.diag(o;)C, where (36)
o = (1/X)[(1 = X)) ™F — 1] if \; # 0 and 1 otherwise. (37)
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A.3 JUSTIFICATION SETTING MEASUREMENT NOISE TO IDENTITY

For simplicity, consider the arbitrary specification of R; = I. In an optimization scheme over a
Gaussian likelihood, this is preferable because it reduces the objective function to the mean squared
error loss, which is simple to implement and fast to compute. Such an arbitrary choice implies the
compensated predict step covariance in the Kalman filter ; = X; H, (Ry)™' (H,")", where
3} is the true predict step covariance and R} is the true measurement noise at timestep ¢. The
Moore—Penrose inverse of matrix A is denoted A™.

Proof: Let X} be the true predict step covariance and R; be the true measurement noise at timestep
t. Suppose we wish to identify the quantity of X that makes the following expression true:

-1 -1

SiH/ (H,S{H] +R;) =XH (HXH/ +1Iy)

This is exactly our Kalman gain expression where the L.H.S represents the optimal estimate and the
R.H.S shows an arbitrary matrix X given R; = I);.

SiH (H,S;H +R}) ' = XH, (HXH, +Iy)
SiH, (H3;H, + R)) ' HXH, +H (H>H +R)) ' =XH

(H,S;H] + R} H,XH + (HXH +R) ' = (H))" (=) XH/
HXH/ + Ly = HSH (H) (=) XH + B (H)" (3" XH/
H,XH +1,, = HXH, +R; (HI)+( =) XH]

X=xiH/ (R) " (H) =37

0

Such a specification considerably simplifies computation in an implicit scheme. By setting R; = I
we do not need to store R, or perform any computations with it. We just need to pick an opti-
mizer that correctly specifies this compensated predict step covariance. The argument extends to the
nonlinear case with only minor adjustments.

A.4 GRID SEARCH DETAILS

The framework proposed in this paper attempts to define Bayesian filtering equations implicitly
via specifying an appropriate optimizer. This requires a small validation set and a hyperparame-
ter search, which we will now describe in the context of our experiments. We also describe the
grid search performed for the extended Kalman filter (EKF) and unscented Kalman filter (UKF) in
Section[5.2]

A.4.1 TOY NONLINEAR SYSTEM & STOCHASTIC LORENZ ATTRACTOR

In both the toy nonlinear system and the stochastic Lorenz attactor system, we perform a grid
search for Adam (Kingma & Ba, 2015), RMSprop (Tieleman & Hinton, [2012)), Adagrad (Duchi
et al., 2011), Adadelta (Zeiler| 2012), and gradient descent. For 5 separate Monte Carlo (MC)
experiments, we test every combination of step size K € {1, 3,5, 10, 25,50, 100}, learning rate
n € {1.0,0.5,0.1,0.05,0.01}, and decay terms v, 531,082 € {0.1,0.5,0.9} where applicable.
Adam’s decay terms are [3; and (5 whereas ~ only applies to RMSprop. For Adam, we always
set B = [ to simplify the search. In total, this corresponds to 7 test configurations for Adadelta,
35 test configurations each for gradient descent and Adagrad, and 105 test configurations each for
RMSprop and Adam.

For only the stochastic Lorenz Attractor, we also perform a grid search for the process noise co-
variance @Q;—;. The process noise covariance Q;_; is determined by a scalar « that defines the
spectral density of a three-dimensional Wiener process. We test four systems in this paper where
a = 1,5,10,20. To optimize Q;_1, which is determined by «, we perform a grid search over 500
evenly spaced values of « € [0.5, 250] for both the EKF and UKF in all four experiments. Compara-
tively, we test roughly 14 times the number of EKF configurations than the Implicit MAP Filter with
gradient descent and roughly 2 times more configurations than all Implicit MAP Filters combined.
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A.4.2 YEARBOOK

For this experiment, we reduce the grid search to only five configurations of Adam where all hyper-
parameters are set to standard settings (7 = 0.001, 81 = 0.9, 82 = 0.999) and the number of steps
K is selected from the set {1, 10, 25, 50, 100}. As described in Appendix 5.5.3, we divide up the 80
filtering years of the yearbook dataset into 40 tuning years and 40 testing years. During the tuning
years, we have a small held-out validation set of 16 examples for each year that we use to calculate
the classification accuracy for the parameters found by each optimizer. In the main paper, we report
the optimizer that performs the best on this validation set.

We similarly perform a grid search for the variational Kalman filter (VKF) and particle filter (PF) for
the o2 term in the transition distribution. Since the transition distribution is unknown, a grid search
is required. We report the results for the VKF and PF that perform the best on the same validation
set, with 02 € {0.1,0.05,0.01, 0.005,0.001}.

A.5 EXTENDED EXPERIMENTAL RESULTS AND DETAILS

We report additional results, tables, and figures from all three experiments in this section. For the
yearbook dataset, we give a complete description of the experiment performed.

A.5.1 TOY NONLINEAR SYSTEM

In the main paper, we report results for 100 Monte Carlo (MC) experiments from the best optimizer
hyperparameters found using a grid search over 5 separate MC experiments. To give the reader some
intuition about good hyperparameters in this system, we show the top 20 performing optimizers from
the grid search in TableH] (Qi—1 = 3, R; = 2). 287 configurations are tested in total across Adam
(Kingma & Ba, 2015), RMSprop (Tieleman & Hinton, 2012), Adadelta (Zeiler, 2012), Adagrad
(Duchi et al., 2011), and gradient descent. Of those 287 configurations, the top 20 performing
configurations are exclusively between Adam and RMSprop.

Table 4: Top 20 optimizers found in grid search for the toy nonlinear system (Q;—1 = 3, R; = 2).
The RMSprop and Adam configurations reported in the main paper are shown in bold. K denotes
the number of steps used at every time step. 7 is the learning rate. -y, 31, B2 are the decay terms
specific to each optimizer.

Method RMSE

RMSprop (K = 5,7 =1.0,v = 0.5) 6.391 £+ 0.230
RMSprop (K = 50,7 = 0.1,y = 0.9) 6.380 £+ 0.230
RMSprop (K = 10,7 =0.5,7 =0.1) 6.293 £ 0.222
RMSprop (K = 10,17 = 0.5,y = 0.5) 6.248 £ 0.240
Adam (K = 10,7 = 0.5, 51, 82 = 0.9) 6.205 £ 0.241
RMSprop (K = 100, = 0.05,v = 0.9) 6.201 + 0.236
Adam (K = 5,7 = 1.0, 51, f2 = 0.9) 6.112 £ 0.239
Adam (K =10, = 0.5, #1, 82 = 0.1) 6.059 £ 0.221
Adam (K = 25,7 = 0.1, 51,82 = 0.9) 6.027 £+ 0.238
RMSprop (K = 50,17 = 0.1,y = 0.5) 6.018 £ 0.223

RMSprop (K = 100, = 0.05,y = 0.5) 6.010 & 0.229
RMSprop (K = 50,7 = 0.1,4 = 0.1)  6.000 & 0.227

RMSprop (K = 100,71 = 0.05,~ = 0.1) 5.987 & 0.225
Adam (K = 5,1 = 1.0, 31, B2 = 0.5) 5.973 4 0.218
Adam (K = 50,7 = 0.05, 31, 8> = 0.9) 5.963 & 0.224
Adam (K = 10,7 = 0.5, 31, B2 = 0.5) 5.953 4 0.219

Adam (K = 50,7 = 0.1, 31,82 = 0.1) 5.842 4 0.231
Adam (K = 100,57 = 0.05, 31, 8> = 0.1)  5.830 £ 0.232
Adam (K = 50,1 = 0.1, 81, B2 = 0.5) 5.794 + 0.216
Adam (K = 100,7 = 0.05, 31, B> = 0.5)  5.780 % 0.220

From Table [4] it is clear that there is a diverse set of optimizer hyperparameters that can produce
good results. The goal of hyperparameter selection in this context is to strike a balance between
overfitting and underfitting the likelihood such that it reflects a similar balance between the prior
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Table 5: RMSEs on the toy nonlinear system (R; = 1). Results show the average RMSE over 100

MC simulations with 95% confidence intervals.

Method RMSE (Q;_;1 =1) RMSE(Q;, ;1 =3) RMSE (Q,_; = 5)
EKF 29.188 + 5.335 38.075 + 5.564 45.102 + 3.876
IEKF (K = 5) 11.252 + 0.643 17.071 + 0.453 19.203 4 0.494
IMAP (Adadelta)* 30.984 + 5.688 33.600 + 8.007 21.210 + 3.865
IMAP (Gradient Descent)*  5.564 - 0.224 7.931 +£0.159 10.142 £ 0.172
IMAP (Adagrad)* 5.181 +0.225 6.549 + 0.223 9.446 + 0.230
IMAP (RMSprop)* 5.138 £0.219 5.966 + 0.224 8.829 & 0.264
IMAP (Adam)* 5.109 + 0.201 5.708 £ 0.239 8.341 £0.315
UKF 4.178 £ 0.274 6.572 + 0.392 12.735 £ 0.616
PF (n = 1000) 1.263 4 0.043 2.406 + 0.128 4.264 & 0.161

*Methods where the reported hyperparameters were found via grid search (see Appendix |A.4).

Table 6: RMSEs on the toy nonlinear system (R; = 3). Results show the average RMSE over 100
MC simulations with 95% confidence intervals.

Method RMSE (Q;-1 =1) RMSE (Q;-1 =3) RMSE (Q;—1 =5)

EKF 24.019 + 3.322 34.099 £ 3.706 39.908 £+ 4.277
IEKF (K = 5) 8.756 £ 0.606 13.860 + 0.494 17.252 £ 0.510
IMAP (Adadelta)* 37.356 £ 12.733 26.783 £6.720 28.075 £ 11.094
IMAP (Gradient Descent)* 5.714 £ 0.251 8.099 +£0.163 10.082 £ 0.184
IMAP (Adagrad)* 5.781 +£0.224 6.630 £ 0.213 9.349 £ 0.238
IMAP (RMSprop)* 5.444 + 0.254 6.120 £ 0.224 8.300 £ 0.408
IMAP (Adam)* 6.045 +£0.176 5.978 £0.209 7.865 £ 0.307
UKF 4.720 £ 0.250 5.665 £ 0.230 8.490 £ 0.334
PF (n = 1000) 1.815 £ 0.055 3.153 £0.104 4.757 £0.152

*Methods where the reported hyperparameters were found via grid search (see Appendix |A.4).

and measurement noise in the explicit filtering sense. It is clear that momentum plays a beneficial
role here, since gradient descent and the EKF do not perform as well as optimizers with momentum.

In the main paper, we reported results where the true process noise Q;_1 = 1,3,5 and the true
measurement noise R, = 2. In Table|5| we show results for Q;—1 = 1,3,5 and R; = 1. In Table
|6l we show results for Q;—1 = 1,3,5 and R; = 3. This demonstrates 6 additional configurations
of the toy nonlinear system, each showing a similar result. In low to medium process noise settings,
the Implicit MAP Filter is comparable to the Unscented Kalman Filter (UKF). In high process noise
settings, the UKF is outperformed by the Implicit MAP Filter. The particle filter (PF) performs
the best universally. The extended Kalman filter (EKF) and iterated extended Kalman filter (IEKF)
diverged under all settings.

In summary, Table[I] Table[5] and Table[6]show that the PF outperforms our Implicit MAP Filter in
9 out of 9 experiments, the UKF outperforms the Implicit MAP Filter in 5 out 9 experiments (with
performance being relatively comparable across all 9 experiments), and the EKF/IEKF outperforms
the Implicit MAP Filter in O out of 9 experiments.

In Figure 3, we take a random experimental seed (for Q;—1 = 3, R; = 2) and show the filtering
distributions from every other time step produced by a particle filter with 100, 000 particles. On
top of the filtering distributions, we show the maximum a posteriori (MAP) estimates produced by
Adam with gradient steps n = 50, learning rate = 0.1, and momentum terms (1, B2 = 0.1 (red).
On most time steps, our Implicit MAP Filter exactly maximizes the filtering distribution maintained
by the particle filter, despite all time steps being non-convex optimization problems. The trials where
the Implicit MAP Filter estimates do not correspond to the true MAP most often come on transition
trials, where the state is making an aggressive crossing over the barrier in the double-well. These are
the trials where the EKF tends to diverge and the UKF equivalently struggles to produce accurate
estimates.
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Figure 3: Filtering distribution from the particle filter (blue) for 100000 particles and the MAP
estimates from the Implicit MAP Filter (red) using a single random experiment (Q;_1 = 3, R; = 2).

In Figure 4, we visualize the update steps of both an EKF and an Implicit MAP Filter with an Adam
optimizer (K = 25,7 = 0.1, 51 = 0.9, B2 = 0.9). Both of these methods rely on similar gradient
information so it is important to understand why the EKF fails catastrophically and diverges but
adaptive optimizers, such as Adam, do not suffer the same effect in this system. This figure sheds
some light on the situation, showing that the toy nonlinear system can be broken into three different
modes: pre-transition, transition, and post-transition. At time step ¢ = 5, we are in the pre-transition
stage where the objective is approximately convex within the local optimization region. Both Adam
and the EKF produce similar estimates in this pre-transition stage. At time steps t = 12 and ¢t = 15,
we are entering the transition phase where the double well shape of the likelihood begins to flatten
out. Time step ¢ = 16 is the most important step. Here, the update step must cross the barrier at 0
in order to avoid divergence. Adam crosses the barrier at 0 because its incorporation of momentum,
which continues to move the estimates despite there being a lack of gradient. The EKF update step
does not have momentum. At time step ¢ = 17, post-transition, the EKF finds itself on the wrong
side of the double well. Since measurements occur only on one side of the double well, as shown at
time step 7' = 27, the EKF cannot recover, hence the divergence.

Finally, in Table [7] we show the effect of changing the number of gradient steps for the Adam
optimizer we report in the main section, holding all other hyperparameters fixed. The number of
gradient steps, K, is the most natural hyperparameter to adjust, and Table [7] demonstrates that the
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Figure 4: Likelihood and gradient visualization for the toy nonlinear system. (a) pre-transition time
steps, (b,c,d) transition time steps. (e, f) post-transition time steps. In (a), the objective function
is locally convex and gradient information can be used effectively. The likelihood takes the shape
of a double-well. In (b, c, d), gradients approach zero as the double-well flattens out. In (e,f), the
double-well picks up again, requiring estimates to be on the correct side of the double-well in order
to perform close to optimal. Experiment was run with a random seed and Q;_1 = 3, R; = 2. Other
random seeds produce nearly identical observations.

specification of K plays a strong role in performance when attempting to implicitly filter in a time-

varying setting.
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Table 7: The effect of modifying the number of gradient steps using the optimizer configuration
reported in the main section for Adam on the toy nonlinear system. Ordered by RMSE.

Method RMSE

Adam (K = 1,7 =0.1,81,8, =0.1)  10.510 & 0.263
Adam (K = 25,7 =0.1, 51,3, = 0.1)  10.478 = 0.409

Adam (K = 3,1 = 0.1, 31, B2 = 0.1) 9.749 & 0.288
Adam (K = 5,1 = 0.1, 31, B> = 0.1) 9.244 4 0.266
Adam (K = 10,5 = 0.1, 31, 2 = 0.1)  9.218 £ 0.291
Adam (K = 100,17 = 0.1, 31, B2 = 0.1)  6.575 £ 0.347
Adam (K = 50,1 = 0.1, 31, 3> = 0.1)  5.842+0.231

A.5.2 STOCHASTIC LORENZ ATTRACTOR

Similar to the previous section, we report the top 20 optimizers found from the grid search in Table
[Blusing the ideal condition (RK4) (ov = 10). Exactly as before, we tested 287 configurations in total
across Adam, RMSprop, Adadelta, Adagrad, and gradient descent. Of those 287 configurations, we
achieve a more diverse set of optimizers that performed well compared to the previous system.

Table 8: Top 20 optimizers found in grid search for the stochastic Lorenz attractor (o« = 10) with
respect to the RK4 case. We also show performance of the same optimizer configurations for Eu-
ler and GRW cases. RMSEs that outperform the EKF (original Q;_1) are shown in bold. The
same configuration is robust from RK4 — Euler. GRW requires different hyperparameters for the
optimizer since the top RK4 optimizers do not correspond to top GRW optimizers.

Method RMSE (RK4) RMSE (Euler) RMSE (GRW)
Adam (K = 10,1 = 0.05, 81,82 = 0.5)  0.903+£0.014 1.18940.025 6.728 +0.101
RMSprop (K = 10,7 = 0.05,y = 0.5) 0.903 £ 0.112 1.525 + 0.009 7.526 &+ 0.105
RMSprop (K = 50,7 =0.01,y =0.1) 0.900 £+ 0.079 1.470 £+ 0.111 7.516 +0.105
RMSprop (K = 50,7 = 0.01,7 = 0.5)  0.896 £0.077 1.473+£0.111  7.518 +0.105
Adam (K = 25,1 = 0.01, 81,8 = 0.9)  0.895+0.015 1.221 +0.026  8.335 & 0.108
Adam (K = 5,17 = 0.1, 81, B2 = 0.5) 0.8034+0.014 1.219+0.026  6.896 + 0.102
RMSprop (K = 5,1 = 0.1, = 0.5) 0.893+£0.102 1.118 £0.015  7.531 4+ 0.105
RMSprop (K = 10,7 = 0.05,7 = 0.1) 0.890 + 0.064 1.472 £+ 0.112 7.517+0.105
Gradient Descent (K = 10,7 = 0.01) 0.888 +£0.090 2.286 £ 0.148 5.962 4+ 0.088
Adam (K = 5,7 =0.1,51,8, =0.1)  0.88240.049 1.416+0.105 7.411 +0.104
RMSprop (K = 10,17 = 0.05,7 = 0.9) 0.881 +0.114 1.540 +£0.123 7.554 +0.104
RMSprop (K =5,7=0.1,7=0.9) 0.881 +£0.113 1.545 +0.124 7.555 +£0.104
Adam (K = 10,7 = 0.05, 81,82 = 0.1) 0.8774+0.039 1.417 +0.122  7.395 + 0.104
Adam (K = 50,7 = 0.01, 81, B = 0.1) 0.876 & 0.037 1.391 +0.083  7.384 + 0.104
Gradient Descent (K = 1,7 =0.1) 0.849 +£0.077 2.114+4+0.125 5.852 + 0.086
Adagrad (K = 50,7 = 0.05) 0.846 +0.014 1.213 £+ 0.027  6.905 +£0.102
Gradient Descent (K = 3,7 = 0.1) 0.799 +£0.009 0.960 +0.012 3.061 £ 0.038
Gradient Descent (K = 5,7 = 0.05) 0.743 £0.010 0.996 £+ 0.014 3.575 £ 0.046
Gradient Descent (K = 25, = 0.01) 0.738 £0.010 1.002+0.015 3.627 +0.047
Gradient Descent (K = 3,7 = 0.05) 0.701 £0.018 1.316 +£0.027  4.911 +0.068

It is clear that the same optimizers perform well when the accuracy of the numerical integration
degrades. The number of optimizers that outperform the EKF (original Q;_1) increases as we move
from 4th order Runge-Kutta (RK4) to Euler’s Method. This reflects a robustness property that is
desirable in this implicit formulation. When numerical integration is completely removed, as it is for
the Gaussian random walk, most of the optimizers that work well with RK4 do not work well here,
demonstrating that the Implicit MAP Filter is not perfectly robust to dynamics misspecification. This
result is sensible, as the transition distribution itself changed, not just the numerical approximation
of it.

In Figure 5, we show the fitted trajectories for 8 different stochastic Lorenz attractor experiments
using gradient descent with 3 steps and learning rate = 0.05. Two things are important to note: (i)
the stochastic Lorenz attractor has extreme variation in the trajectories it produces and (ii) gradient
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— MAP

True State

Figure 5: Eight random trajectories for the stochastic Lorenz attractor with 4th order Runge-Kutta
and the filter estimates for IMAP with gradient descent. 3 steps with learning rate 7 = 0.05.

descent does a remarkably good job of fitting this system despite the stochastic differential equation
being chaotic. The extreme variation in the trajectories makes every random seed a different filtering
problem.

Table 9: The effect of modifying the number of gradient steps using the optimizer configuration
reported in the main section for Gradient Descent on the stochastic Lorenz attractor (RK4). Ordered
by RMSE.

Method RMSE

Gradient Descent (K = 100, = 0.05) 1.985 £ 0.011
Gradient Descent (K = 1,7 = 0.05) 1.937 + 0.282
Gradient Descent () = 50,7 = 0.05)  1.847 £ 0.010
Gradient Descent (K = 25,1 = 0.05) 1.493 4+ 0.009
Gradient Descent (K = 10,7 = 0.05) 0.987 £+ 0.008
Gradient Descent (i = 5,1 = 0.05) 0.743 £ 0.010
Gradient Descent (K = 3,7 = 0.05) 0.701 £0.018

Table 10: RMSEs on the stochastic Lorenz attractor (o = 1). Results show the average RMSE over
100 MC simulations with 95% confidence intervals. RK4 indicates 4th order Runge-Kutta method.
Euler indicates Euler’s method. GRW indicates a Gaussian random walk.

Method RMSE (RK4) RMSE (Euler) RMSE (GRW)
EKF (original Q;_1) 4.948 £ 0.600 8.940 £ 0.310 5.953 £ 0.041
EKF (optimized Q;—1)* 0.621 +0.028 0.939+0.011 1.568 +0.011
IEKF (K = 5) 4.948 + 0.600 8.940 £ 0.310 5.953 £ 0.041
IMAP (Adadelta)* 6.480 £+ 0.450 7.713 £0.441 10.774 £ 0.216
IMAP (Adam)* 0.845 £ 0.035 1.168 £ 0.014 1.897 £0.011
IMAP (Adagrad)* 0.824 +0.067 1.098 £ 0.017 1.797 £ 0.010
IMAP (RMSprop)* 0.823 +£0.082 1.076 £ 0.014 1.752 £ 0.015
IMAP (Gradient Descent)* 0.626 & 0.031 0.947 +0.011 1.568 & 0.011
UKEF (original Q;_1) 5.834 £0.251 6.232 £ 0.255 9.398 £0.183
UKEF (optimized Q;—1)* 1.396 £ 0.011 1.410 £ 0.011 1.738 £0.012
PF (n = 1000) 1.461 £ 0.021 1.725 £ 0.031 15.280 + 0.232

*Methods where the reported hyperparameters were found via grid search (see Appendix[A.4).
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Table 11: RMSEs on the stochastic Lorenz attractor (o« = 5). Results show the average RMSE over
100 MC simulations with 95% confidence intervals. RK4 indicates 4th order Runge-Kutta method.
Euler indicates Euler’s method. GRW indicates a Gaussian random walk.

Method RMSE (RK4) RMSE (Euler) RMSE (GRW)
EKF (original Q;_1) 1.510 £ 0.305 5.430 £ 0.302 3.954 £ 0.032
EKF (optimized Q;—1)* 0.651 +0.025 0.938 +£0.012 1.564 +0.010
IEKF (K = 5) 1.510 £ 0.305 5.430 £ 0.302 3.954 £ 0.032
IMAP (Adadelta)* 6.212 +0.424 7.560 £ 0.477 10.736 +0.232
IMAP (Adam)* 0.870 £ 0.015 1.163 £ 0.021 1.899 + 0.011
IMAP (Adagrad)* 0.843 +0.114 1.126 £ 0.011 1.797 £0.010
IMAP (RMSprop)* 0.835+0.119 1.076 = 0.016 1.755 £ 0.0165
IMAP (Gradient Descent)* 0.665 4+ 0.045 0.947 +0.012 1.566 £ 0.010
UKEF (original Q;_1) 4.066 £ 0.124 4.208 £ 0.127 7.106 £ 0.083
UKEF (optimized Q;_1)* 1.396 £ 0.010 1.410 £ 0.010 1.736 £ 0.012
PF (n = 1000) 1.531 £ 0.022 1.877 £ 0.058 14.690 + 0.312

*Methods where the reported hyperparameters were found via grid search (see Appendix[A.4).

Table 12: RMSE:s on the stochastic Lorenz attractor (o = 20). Results show the average RMSE over
100 MC simulations with 95% confidence intervals. RK4 indicates 4th order Runge-Kutta method.
Euler indicates Euler’s method. GRW indicates a Gaussian random walk.

Method RMSE (RK4) RMSE (Euler) RMSE (GRW)
EKF (original Q;_1) 0.852 £0.016 1.193 £+ 0.027 2.294 4+ 0.045
EKF (optimized Q;—1)* 0.838 £0.012 1.000+0.013 1.558 4= 0.012
IEKF (K =5) 0.852 + 0.016 1.193 £ 0.027 2.294 + 0.045
IMAP (Adadelta)* 5.795 + 0.421 7.244 + 0.468 10.490 £ 0.288
IMAP (Adam)* 0.987 £+ 0.028 1.183 £ 0.015 1.889 £+ 0.010
IMAP (Adagrad)* 0.981 £ 0.011 1.148 £0.014 1.813 + 0.019
IMAP (RMSprop)* 0.991 £ 0.011 1.127 £ 0.017 1.781 + 0.016
IMAP (Gradient Descent)* 0.841 +0.011 1.013 £0.015 1.587 4 0.010
UKF (original Q;_1) 2.000 +0.034 2.049 £ 0.038 4.293 £ 0.092
UKF (optimized Q;—1)* 1.428 £ 0.011 1.445 4+ 0.012 1.734 £ 0.014
PF (n = 1000) 1.612 4+ 0.033 1.698 4+ 0.034 13.535 £0.474

*Methods where the reported hyperparameters were found via grid search (see Appendix [A.4).

In Table[9] we show the affect of modifying the number of gradient steps. In Table[I0] Table[T] and
Table[T2|we show additional results for the stochastic Lorenz attractor for o = 1, 5, 20, respectively.
These additional results show both the original EKFs and UKFs and the EKFs and UKFs with Q;_;
optimized by grid search. For the optimized EKFs and UKFs, we test 500 Q;_1 matrices and report
the best one. For the Implicit MAP Filters, we test 287 in total (35 Implicit MAP Filters are gradient
descent). Again, we use 5 separate Monte Carlo simulations to select the Implicit MAP Filters to
report.

The results are consistent with Table [2|in Section In all cases the EKF with optimized Q;_1
is statistically equivalent in performance to the Implicit MAP Filter with gradient descent. Notably,
the EKF has access to a larger search space. Further, the stochastic Lorenz attractor is relatively
convex, which suits the EKF, but the EKF diverges in highly nonlinear systems. The Implicit MAP
Filter does not have this issue, working well in both Section[5.1]and Section[5.2]

A.5.3 YEARBOOK

The yearbook dataset consists of 37,921 frontal-facing American high school yearbook photos from
1905 - 2013 from 128 high schools in 27 states. Each image is resized to a 32 x 32 x 1 grayscale
image and paired with a binary label y, representing the student’s gender. The years 1905 - 1930
only have 20 years with images available and years with as little as one photo available, making
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them not ideal for training and testing. Thus, we use these 20 years as a single pre-training dataset
of 886 images.

For all five methods we test, we use a 4-layer convolutional neural network (CNN). Each convo-
lutional layer has a kernel size of 3 x 3, stride of 1 x 1, same padding, 32 output channels, ReLU
activation, and a 2D max pool layer with kernel size 2 x 2. We use stochastic gradient descent (SGD)
with a fixed learning rate of 10~3, the pre-training dataset of 886 images, and a batch size of 64 to
train the initial network for 200 steps. Since the results we report are the average over 10 random
seeds, we pre-train the initial network 10 different times in exactly this fashion. This is supposed to
resemble samples from some approximate initial starting distribution over neural network weights.

From 1931 - 2010, we take 32 randomly chosen images as a training set and 100 randomly chosen
images as a test set at every time step. From 1931 - 1970, we take an additional 16 images as a
validation set. In the main paper, we report test accuracy of the configurations with the best average
validation performance from 1931 - 1970. The years 1941 and 2006 only had 93 and 70 images
available, respectively. Thus, 1941 has a test set size of 45 and 2006 has a test set size of 38. All
other training sets, validation sets, and test sets are exactly as described.

For the static weights approach, we do not do any additional training after the 200 steps of SGD
over the pre-training dataset. We report the accuracy of those weights from 1931 - 2010 without any
adaptation.

The direct fit approach uses 1000 full batch steps of the Adam optimizer at a fixed learning rate of
1072 at every time step. This resembles what a practitioners might do to fit the training data. Instead
of re-training from scratch, they would likely use the weight initialization from the previous time
step. This inherently resembles the Implicit MAP filtering approach we propose here, but we are
misspecifying the number of gradient steps by using 1000. 1000 gradient steps, or optimization to
near convergence, assumes that the measurement noise is close to 0 at every time step. By using this
overfitting Implicit MAP Filter, which we call direct fit, we are trying to show why it is important to
appropriately define the implicit filtering equations. It is naive to not consider the number of gradient
steps as an important hyperparameter when working with time-varying objectives.

For the particle filter (PF) and variational Kalman filter (VKF), we explicitly specify a transition
distribution p(w|w;_1) = N (w;|w;_1,02I) where o2 € {0.1,0.05,0.01,0.005,0.001}. We run
both of these methods exactly as described in Appendix[A.T]

Finally, we test five configurations of Adam for the Implicit MAP Filter where all hyperparameters
were set to standard settings (n = 0.001, 81 = 0.9, 52 = 0.999) and the number of steps K was
selected from the set {1, 10,25, 50, 100}. We use the validation set from the first 40 years to select
the number of steps to report in the main paper.

Figures 6, 7, and 8 show the classification accuracy of every IMAP filter, PF, and VKE, respectively.
For Adam, performance was maximized by K = 50 and K = 100. The static weights case can be
seen as an Implicit MAP Filter with O process noise over a transition function that is the identity
function. This approach is a clear misspecification.

The particle filters were generally only marginally better than the static weights case. This is due to a
poorly defined proposal distribution, since it is hard to imagine that we could find the true transition
distribution via grid search.

The VKF saw better performance than the PF for nearly all configurations tested. This is due to
the fact that we are explicitly optimizing the network weights. However, by explicitly regularizing
the network instead of implicitly regularizing via early stopping, we do not match the performance
of the Implicit MAP Filter or even the direct fit approach. This is likely due to the fact that the
transition distribution is far from correctly specified. Again, we cannot imagine that we could find
the correct transition distribution via grid search.
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Figure 6: Yearbook dataset filtering results using standard Adam hyperparameters over number of

steps K € {1, 10,25, 50, 100}. We also plot the static weights case and direct fit case as comparative

baselines.
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Figure 7: Yearbook dataset filtering results using a particle filter with transition 0% &
{0.1,0.05,0.01,0.005,0.001}. We plot the static weights case as a comparative baselines.

= Static Weights === 02=0.1 === 02=0.05 === 02=0.01 == 02=0.005 = 02=0.001
1.0 {

o
©

o
©

Classification Accruacy

1930 1940 1950 1960 1970 1980 1990 2000 2010
Year

Figure 8: Yearbook dataset filtering results using a variational Kalman filter with transition o €
{0.1,0.05,0.01,0.005,0.001}. We plot the static weights case as a comparative baselines.
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