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APPENDIX

Supplementary Metrics: In addition to the metrics used in the main paper, we also report backwards
Backward Transfer (BWT) (Lopez-Paz & Ranzato, 2017) and Forgetting (FTG) (Lee et al., 2019).
BWT is a measurement of increase in performance on task n after training across all tasks 1... N.
A higher value is better, indicating that the learner is better at performing task n after learning the
subsequent tasks. A negative value indicates a drop in performance, which is typically expected in
class incremental learning. A weakness of this metric is that it measures performance relative to
local tasks and does not reflect performance on the global task of class incremental learning (i.e.
the softmax outputs are across only the local per-task categories, not across all of the categories
encountered throughout training). FGT is a measurement of decrease in performance on task n with
respect to the global task; it is essentially negative backward transfer adopted for class incremental
learning. A lower value is better, indicating that the learner has experienced less average performance
decrease on task n throughout training. A weakness of this metric is that it does not account for
natural decrease in performance due to the increasingly more difficult global task characteristic in
class incremental learning. A key difference between BWT and FGT is that when evaluating task n
performance for BWT, only task n classes can be returned during inference, whereas for FGT, all
tasks classes 1...n can be returned. We include both of these metrics for experiment results during
all subsequent sections because while neither is regularly used for class incremental learning, they
may be useful to the reader.
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A  DISTILLMATCH ABLATION STUDY

Here, we ablate our method in two experiment scenarios: RandomClass Tasks with Uniform Unla-
beled Data Distribution (Table[3a) and ParentClass Tasks with PositiveSuperclass Unlabeled Data
Distribution (Table[3b). 2 curves for both Tables are given in Figure[d] In the former case, we find that
the hard distillation loss (7)) is the most significant contribution, but the semi-supervised consistency
loss (@), class balancing (3, and soft distillation loss (1) add significant performance gains as well.
In the later case, we actually find the semi-supervised consistency loss (4) and distillation loss (1)) to
be the most important, while class balancing (3)) and hard distillation loss (7) perform very similarly.
This reflects the strength of our method: DM performs well in all of our experiments because it has
components which vary in importance depending on the scenario (i.e. coreset size and object-object
correlations).

Table 3: Results (%) for Selected Ablation Studies on CIFAR-100 with 20% Labeled Data. Results are reported
as an average of 3 runs with mean and standard deviation. Each row represents a part of our method which is
removed as part of the study.

(a) RandomClass Tasks with Uniform Unlabeled Data Distribution, 10 Tasks, no Coreset

Ablation | Ax (D am BWT (1)  FGT ()

Ly - eq. 7705 3204+£02 -58£19 56.6+£1.9
w(k)-eq. @) | 302+1.9 69.6+05 —4.8+0.2 105405
lur -eq. @) 33.3£09 712423 -0.7£03 7.7£0.2
Lyst - €q. 35.2+11 7414+17 —-48£04 8.0%£09
Full Method | 37.5+0.7 769+25 —-1.04+1.0 6.54+0.5
(b) ParentClass Tasks with PositiveSuperclass Unlabeled Distribution, 20 Tasks, 400 image coreset

Ablation | Ax (D am BWT (D FGT ()

Ly - eq. 193+1.1 646+£09 —-179+0.3 28.8+£1.0
w(k)-eq. (3 | 19.4+£06 63.1+14 —-174+04 27.2+0.7
Ly - eq. 171£0.7 576+15 —-14.0+01 21.84+0.6
lgst -eq. (1) | 17.7+0.8 581+15 —-159+0.9 227+1.0
Full Method | 19.7£0.8 63.3+21 —-182=+0.7 24.9+0.6

Figure 4: 2 curves showing task number ¢ on the x-axis and A¢,1.; on the y-axis.
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B ADDITIONAL EXPERIMENT DETAILS

We used used a batch size of 64 for labeled training data and 128 for unlabeled training data. As done
in (Lee et al.||2019), we train over 200 epochs per task with a tuned learning rate decaying by 0.1
after 120, 160, and 180 epochs. When a coreset is present, we include finetuning of the final layer
in our model using only the coreset and class balancing, as introduced in GD (Lee et al.,2019). If
finetuning, the model is trained over the first 180 epochs in the same manner, but after 180 epochs the
learning rate is reset to 10% of the initial learning rate and is trained for 20 additional epochs with
decays by 0.1 after 10, 15 epochs. We use stochastic gradient decent with 0.9 momentum and 0.0005
L2 weight decay.

As also done in (Lee et al., 2019), we hold A4 to a constant value, 1, and include a small temperature
scaling, 2, for the softmax activations used in eq. (I). All results are averaged over 3 repeats and
generated with a common deep learning architecture (WRN-28-2) (He et al.,|[2016). Results were
generated using a combination of Titan X and 2080 Ti GPUs. Although we did not record specific
run-times here as they are machine specific, we find our method to have a similar run-time to GD.

C HYPERPARAMETER SWEEPS

We tuned hyperparameters using a grid search. We did this for two scenarios: (i) RandomClass
Tasks with Uniform Unlabeled Data Distribution and (ii) ParentClass Tasks with PositiveSuperclass
Unlabeled Data Distribution. The former is applied for all experimental scenarios which do not
include a coreset, and the latter is applied for all scenarios which do include a coreset. We chose this
division as we found the coreset size to greatly affect the other hyperparameters. DR and E2E use
hyperparameters chosen for GD (as done in (Lee et al., 2019)), while Base uses hyperparameters from
DM. The hyperparameters were tuned using k-fold cross validation with three folds of the training
data on only half of the tasks. We do not tune hyperparameters on the full task set because tuning
hyperparameters with hold out data from all tasks may violate the principal of continual learning that
states each task in visited only once (van de Ven & Tolias| 2019). The results reported outside of this
section are on the CIFAR-100 testing split (defined in the dataset).

Table 4: Hyperparameters, chosen with grid search

Coreset Yes No
Hyperparameter Range DM | GD | DM | GD
Learning Rate Se-3, le-2, Se-2, le-1, Se-1 le-1 | le-1 | le-1 | 5e-3
Weight FixMatch Loss 0.1,0.5,1,5 1.0 1.0
TPR 0.01, 0.05,0.1,0.2,0.5,0.8,0.95 | 0.05 - 0.5 -
€ (Fix Match) 0.7, 0.85, 0.9, 0.95 0.9 - 09 -

16



Under review as a conference paper at ICLR 2021

D FULL RESULTS

We provide additional detail to the results from Section[5.3]by reporting (i) the original results with
additional metrics and standard deviations (Tables[5]and [6) and (ii) €2 curves for each experiment in

Figure

Table 5: Full results (%) on CIFAR-100 with 20% Labeled Data. Results are reported as an average of 3
runs with standard deviation. The results from these tables do not include a coreset (and use the same set of
hyperparameters, as described in Appendix E])

(a) RandomClass Tasks with Uniform Unlabeled Data Distribution, 5 Tasks

Metric | Ay (1) QM BWT (1) FGT (})

Base | 15.6 0.9 525+2.5 —25.7+26.2 43.8+2.3
E2E 125409 46.1+£0.9 1.4+0.6 425+1.2
DR 16.0+£0.9 53.7+£0.7 0.3£0.7 41.6£1.5
GD 32.1+0.2 69.9+0.9 0.54+0.8 5.0+0.3
DM 448 +1.4 84.4+4+3.0 2.5+0.1 1.24+0.1
(b) RandomClass Tasks with Uniform Unlabeled Data Distribution, 10 Tasks

Metric | Ay (1) QM BWT (1) FGT (})

Base 82401 34.74+08 —322+£24.6 56.2+2.0
E2E 75+0.5 32.3£0.6 —-0.5+0.4 56.0 £ 1.8
DR 83+03 36.4+0.2 —-1.9+0.3 57.4+1.3
GD 21.4+£06 60.0+19 —-146+0.1 184+£1.5
DM 37.5+0.7 T76.9+25 —-1.0+1.0 6.5+0.5

(c) RandomClass Tasks with Uniform Unlabeled Data Distribution, 20 Tasks

Metric | Ay (1) QM) BWT (1) FGT (})

Base 43+04 220+£0.8 —-41.6+13.8 69.44+0.5
E2E 4.04+03 21.1+£0.6 —4.1+0.8 67.7t1.4
DR 4.3+04 224407 —7.1+£0.2 70.6 £1.2
GD 1344+19 427+1.1 —-292+35 3744038
DM 21.1+£1.0 60.8+0.8 —8.8+0.7 173+ 1.7
(d) ParentClass Tasks with Uniform Unlabeled Data Distribution, 20 Tasks

Metric | Ax (1) Q) BWT (1) FGT (})

Base | 3.5£0.1 185+£0.5 —-335£6.0 54.3+08
E2E 32+£02 181+£06 —-146+35 53.0£0.1
DR 3701 194£06 -17.6+13 56.6+0.1
GD 10.5+0.2 374+£18 —-2514+0.1 29.1+£0.8
DM | 208+0.8 57.8+14 —-10.8+08 14.8+0.3
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Table 6: Full results (%) on CIFAR-100 with 20% Labeled Data. Results are reported as an average of 3 runs
with standard deviation. The results from these tables are with a 400 image coreset (and use the same set of
hyperparameters, as described in Appendix E])

(a) ParentClass Tasks with Uniform Unlabeled Data Distribution, 20 Tasks

Metric | Apx (1) QM BWT (1) FGT (/)

Base | 14.6+1.4 534+24 —-147+6.4 29.8+0.6
E2E 195409 59.3+1.7 —-145+0.2 23.1+0.5
DR 201£0.8 57.8+15 —-152+04 319433
GD 21.4+09 57.74+18 —-125+04 8.0+1.7
DM 244+04 6754+13 —-151+£13 219415
(b) ParentClass Tasks with PositiveSuperclass Unlabeled Data Distribution, 20 Tasks

Metric | Ax (1) Q) BWT (1) FGT (1)

Base | 14.6 1.4 534+24 —-147+6.4 29.84+0.6
E2E 189+1.2 594+13 —-166+1.0 2224+0.3
DR 188+1.0 628+1.7 —-176+0.7 27.54+0.3
GD 179+0.8 50.2+0.8 -106+08 —-21+20
DM 19.7+0.8 63.3+£21 —-1824+0.7 24.94+0.6
(c) ParentClass Tasks with NegativeSuperclass Unlabeled Data Distribution, 20 Tasks

Metric | Ax (1) QM) BWT (1) FGT (})

Base 146+14 534+24 —-147+64 298406
E2E 1994+12 60.1+£0.5 -1614+1.0 2254+04
DR 201+£19 6214+£1.8 —-16.84+0.2 28.7+1.0
GD 1814+0.6 505+£07 —-109+12 —-1.7+1.6
DM 20.7+15 64.8+13 —-174+0.7 24.7+1.3
(d) ParentClass Tasks with Random Unlabeled Data Distribution, 20 Tasks

Metric | Ax (1) Q) BWT (1) FGT (1)

Base | 146+14 534+24 —-147+64 29.84+0.6
E2E | 198£05 60.0+15 —-151+£03 23.7+0.6
DR 199+1.7 61.8£1.2 —-15.7+0.6 29.9+1.6
GD |213+05 599+£05 —-13.7+£02 83=£2.7
DM | 2244+13 65.1£1.8 —-16.1+0.3 23.3+£0.9
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Figure 5: €2 curves showing task number ¢ on the x-axis and €2 up to task ¢ on the y-axis
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E PERFORMANCE OF OOD DETECTION

We show AUROC (a metric for OoD detection) over time for DM in both RandomClass Tasks with
Uniform Unlabeled Data Distribution (Figure [6a) and ParentClass Tasks with PositiveSuperclass
Unlabeled Data Distribution (Figure [6b). A high AUROC means the distributions of the ID data
and OoD data are separable. As we can see, AUROC is decreasing over time. In the RandomClass
scenario, this is a smooth decline (as expected). In the ParentClass scenario, the decline is not smooth,
likely due to the correlations between tasks making the task difficulty highly deviate between runs.

Figure 6: AUROC over time for DM showing task number ¢ on the x-axis and AUROC on the y-axis

(a) RandomClass Tasks with Uniform Unlabeled (b) ParentClass Tasks with PositiveSuperclass Un-
Data Distribution labeled Data Distribution
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F SUPER CLASS AND PARENT CLASS ASSOCIATIONS FOR CIFAR-100

We show the relationship between super classes and parent classes for CIFAR-100 (Figure[7) as
defined by (Zhu & Bain, 2017).

large carnivores flowers food containers insects
large omnivores/herbivores fruits + vegetables household electric devices non-insect invertebrates
medium sized mammals trees household furniture
reptiles
small mammals
Super 6 Super 7 Super 8
large, man-made outdoor aquatic mammals vehicles 1
people large, natural outdoor fish vehicles 2

Figure 7: Super-parent class relationships for CIFAR-100

We also visualize example streams for each task sequence in (Figure[8). As a reminder, we use the
following terminology to describe the correlations of the tasks (i.e. labeled data): RandomClass
Tasks, where no correlations exist in task classes, and ParentClass Tasks, where tasks are introduced
by CIFAR-100 parent classes (i.e. each task is to learn the five classes of a single CIFAR-100
parent class). For the unlabeled data distribution we have: Uniform Unlabeled, where all classes
are uniformly dsitributed in unlabeled data for all tasks, PositiveSuperclass Unlabeled, where the
unlabeled data of each tasks consists of the parent classes in the same super-class as the current task,
NegativeSuperclass Unlabeled, where the unlabeled data of each tasks consists of parent classes from
different super-class as the current task, and RandomUnlabeled, where the unlabeled data of each task
consists of 20 randomly sampled classes (roughly equal to the average class size in a super-class).
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poppies, roses,
sunflowers, tulips,
apples, mushrooms,
oranges, pears,oak,
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Task 1 Task 2 Task 3 Task 20
Flowers Insects Trees Eish

Labeled: orchids,
poppies, roses,
sunflowers, tulips
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oranges, television | ! ! clock, beetle [ pickup truck, otter
ParentClass Tasks with Random Unlabeled Data Distribution

Figure 8: Example streams for each task sequence
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G ADDITIONAL STUDIES

We found that confidence calibration in GD |Lee et al. (2019) had mixed effects in our experiments.
We ablate this contribution for RandomClass Tasks with Uniform Unlabeled Data Distribution
(Table , ParentClass Tasks with PositiveSuperclass Unlabeled Data Distribution (Table @), and
ParentClass Tasks with Random Unlabeled Data Distribution (Table[7c). We contribute this finding
to the assumption made in GD that the unlabeled data does not contain data from the current task
(which is heavily violated in some of our experiments). Even though removing this mechanism can
boost GD performance for some of the experiments (Tables[7a]and[7b) and makes it worse for others
(Table[7c), it is still significantly below our method (DM) in each case.

Table 7: Results (%) for GD Confidence Calibration Ablation on CIFAR-100 with 20% Labeled Data. Results
are reported as an average of 3 runs with mean and standard deviation.

(a) RandomClass Tasks with Uniform Unlabeled Data Distribution, 10 Tasks, no Coreset

Confidence
Calibration An Q BWT FGT
v’ 214406 600+19 —-146+0.1 184+1.5
23.7+1.2 67.043.1 —-55+1.8 20.3+2.0

(b) ParentClass Tasks with PositiveSuperclass Unlabeled Distribution, 20 Tasks, 400 image coreset

Confidence
Calibration AN & BWT FGT
v’ 1794+0.8 50.2+08 —-106+0.8 —-2.14+2.0
19.5+04 544+3.8 —-12.6=+1.0 7.2+ 3.5

(c) ParentClass Tasks with Random Unlabeled Distribution, 20 Tasks, 400 image coreset

Confidence
Calibration AN & BWT FGT
v’ 21.3+£0.5 599405 —-13.7+0.2 83427
181+0.9 54.1+£0.7 -120+1.2 20.3+2.8
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H ADDITIONAL BACKGROUND AND RELATED WORK

Continual Learning Approaches: Approaches to mitigate catastrophic forgetting in continual
learning can be broadly organized into three types: rehearsal, architectural, and regularization (Parisi
et al.,|2019). Rehearsal methods include storage to "replay" data or experiences from previous tasks
to mitigate catastrophic forgetting (Aljundi et al., 2019ajb; Chaudhry et al., 2019aib; |Gepperth &
Karaoguz, |2017; Hayes et al., 2019; |Kemker et al.,2018; |Lopez-Paz & Ranzatol 2017} |Rebuffi et al.,
2017; [Robins| [1995; |[Rolnick et al.} 2019; von Oswald et al.,|2019). Rather than storing raw data,
some methods train a generative model (Kamra et al., 2017 |Kemker & Kanan, |2018; [Shin et al.}
2017) or replay compressed data representations in a late layer (Liu et al., [2020). Architectural
approaches typically avoid overwriting the current model by expanding the model parameters to
make room for knowledge related to novel tasks (Ebrahimi et al.,|[2020; |Lee et al., 2020; Lomonaco
& Maltoni, [2017; [Maltoni & Lomonaco,[2019; Rusu et al.|[2016). Finally, regularization approaches
focus on penalizing changes to parameters important to past tasks. Approaches include regularization
penalties (Aljundi et al.| 2018} |[Ebrahimi et al.,|[2019; |[Kirkpatrick et al.,|2017; [Tits1as et al.,|2019;
Zenke et al.,2017), meta learning (Javed & White, [2019), model compression (Beaulieu et al.| [2020;
He et al., 2019; Saha et al.,[2020), or knowledge distillation (Castro et al.,|2018; Hou et al., [2018;
Lee et al., 2019; Li & Hoiem, [2017).

Semi-Supervised Learning: Semi-supervised learning leverages plentiful available unlabeled data
to boost model performance when given a (typically small) amount of labeled data. Semi-supervised
learning is popular because labeling large datasets is an expensive process. A simple yet popular
technique is to provide pseudo-labels (Lee,|[2013) for confident unlabeled data based on the current
model’s predictions and to treat this pair (the unlabeled data and pseudo-label) as if it were a labeled
data pair. Many following methods build on this idea of using predictions on the unlabeled data to
boost performance. For example, mean teachers (Tarvainen & Valpola,[2017) involve averaging model
weights for a temporal ensembling approach which encourages consistent label predictions over time.
Virtual Adversarial Training (VAT) smooths the decision boundary around each unlabeled data point
to be robust against adversarial perturbations. More recent methods include MixMatch (Berthelot
et al.,|2019), which involves using low-entropy labels and strong data augmentations for a Mix-Up
loss, and FixMatch (Sohn et al.| |2020), which enforces consistent labeling between weakly and
strongly augmented versions of unlabeled data. Other approaches for leveraging unlabeled data is
to use it for an auxiliary loss such as generative loss (Kingma et al.,|2014; |Springenberg, |2015) or
self-supervised learning (Jing & 'Tian, [2020). The reader is referred to (Oliver et al., 2018) for a
recent survey of popular techniques and evaluations.
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I DETAILED COMPARISON OF METHODS

In Table 8| we visualize the high level differences of each method, including how the unlabeled data
is used by each method. Not that E2E, DR, and GD all use both a coreset (if available) and unlabeled

data from the environment, so the comparison is fair.

Table 8: Comparison of distillation methods. L refers to labeled data from the current task, C refers to labeled
coreset data from past tasks (if available), and U refers to unlabeled data from the environment

Component [ Base [ E2E | DR [ GD [[ DM (ours)
Classification Loss L/C | L/C | L/IC | L/IC L/C
Per-Task Distillation over Previous Tasks - Cc/u - - C/U
Single-Task Distillation over Previous Tasks - - C/U | C/U -
Distill Current Task from Separate Trained Model - - L/U | L/U -
Soft Global Distillation (All-Tasks) - - - U -
Hard Global Distillation (All-Tasks) - - - - U
Consistency Loss (All-Tasks) - - - - U
Confidence Calibration - - - Cc/u -
OoD Detection - - - - U
Fine-Tuning - L/C - L/C L/C
Class-Balancing - L/C - L/C L/C/U
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J  ADDITIONAL EXPERIMENT FOR SCALIBILITY

We report results for the Tiny-ImageNet dataset (Le & Yang,|2015), which contains 200 classes of
64x64 resolution images with 500 training images per class, in Table[9)and Figure[d] We experimented
in a similar setting to Table |1a|(20% labeled data with RandomClass Tasks, no Coreset, Uniform
Unlabeled Data Distribution) with a ten-task sequence (20 classes per task). In this experiment, there
are 20,000 labeled images and 80,000 unlabeled images; thus, we both double the number of data
and double the image resolution. We find that the conclusions from Table [Ta scale to this experiment.

Table 9: Full results (%) on Tiny-ImageNet with 20% Labeled Data for RandomClass Tasks with Uniform
Unlabeled Data Distribution (10 Tasks, no Coreset). Results are reported as an average of 3 runs with standard
deviation. The results from this table use the set of hyperparameters described in Appendix

Metric \ Ax (D) QM BWT (1) FGT (})

UB [40.7£0.3 100.0£0.0 3.8£0.5 5.2£0.5

Base | 6.5+0.6 3514+15 —-104+24 451429
E2E 5.8+0.6 30.3£19 0.9+0.6 39.3£3.1
DR 6.8+04 353£1.1 —1.7£0.7 45.0+2.7
GD 119+13 50.6+29 —-174+£26 125+1.3
DM | 248+0.7 747+£1.6 -59+04 76=x+0.1

Figure 9: €2 curve for Table@showing task number ¢ on the x-axis and 2 up to task ¢ on the y-axis
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