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ABSTRACT

Rehearsal is a critical component for class-incremental continual learning, yet
it requires a substantial memory budget. Our work investigates whether we can
significantly reduce this memory budget by leveraging unlabeled data from an
agent’s environment in a realistic and challenging continual learning paradigm.
Specifically, we explore and formalize a novel semi-supervised continual learning
(SSCL) setting, where labeled data is scarce yet non-i.i.d. unlabeled data from
the agent’s environment is plentiful. Importantly, data distributions in the SSCL
setting are realistic and therefore reflect object class correlations between, and
among, the labeled and unlabeled data distributions. We show that a strategy built
on pseudo-labeling, consistency regularization, Out-of-Distribution (OoD) detec-
tion, and knowledge distillation reduces forgetting in this setting. Our approach,
DistillMatch, increases performance over the state-of-the-art by no less than 8.7%
average task accuracy and up to a 54.5% increase in average task accuracy in SSCL
CIFAR-100 experiments. Moreover, we demonstrate that DistillMatch can save
up to 0.23 stored images per processed unlabeled image compared to the next
best method which only saves 0.08. Our results suggest that focusing on realistic
correlated distributions is a significantly new perspective, which accentuates the
importance of leveraging the world’s structure as a continual learning strategy.

1 INTRODUCTION

Computer vision models in the real-world are often frozen and not updated after deployment,
yet they may encounter novel data in the environment. Unlike the typical supervised learning
setting, class-incremental continual learning challenges the learner to incorporate new information
as it sequentially encounters new object classes without forgetting previously-acquired knowledge
(catastrophic forgetting). Research has shown that rehearsal of prior classes is a critical component
for class-incremental continual learning (Hsu et al., 2018; van de Ven & Tolias, 2019). Unfortunately,
rehearsal requires a substantial memory budget, either in the form of a coreset of stored experiences
or a separate learned model to generate samples from past experiences. This is not acceptable for
memory-constrained applications which cannot afford to increase the size of their memory as they
encounter new classes.

Instead, we consider a novel real-world setting where an incremental learner’s labeled task data is
a product of its environment and the learner encounters a vast stream of unlabeled data in addition
to the labeled task data. In such a setting (visualized in Figure 1), the unlabeled datastream is
intrinsically correlated to each learning tasks due to the underlying structure of the environment. We
explore many ways in which this correlation may exist. For example, when an incremental learner
is tasked to learn samples of the previously-unseen class ci at time i in the real world, examples
of ci may be encountered in the environment (in unlabeled form) during some future task. In such
a setting, an incremental learner could use the unlabeled data in its environment as a source of
memory-free rehearsal, though it would need a method to determine which unlabeled data is relevant
to the incremental task (i.e. detecting in-distribution data).

We formalize this realistic paradigm in the semi-supervised continual learning (SSCL) setting,
wherein unlabeled and labeled data are not i.i.d. as they are correlated through the underlying
structure of the environment. We propose and conduct experiments over a realistic setting in which
this correlation may exist, in the form of label super-class structure (e.g. unlabeled examples
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Figure 1: Unlike standard replay (scheme A) which requires a substantial memory budget, we explore the
potential of an unlabeled datastream to serve as replay and significantly reduce the required memory budget.
Unlike previous work which requires access to an external datastream uncorrelated to the environment (scheme
B), we consider the datastream to be a product of the continual learning agent’s environment (scheme C).

of household furniture such as chairs, couches, and tables will appear while learning the labeled
examples of household electrical devices such as lamp, keyboard, and television (Krizhevsky et al.,
2009; Zhu & Bain, 2017)). We measure the final-task accuracy A, the accuracy over all tasks Ω,
and the coreset memory required to attain a specific level of Ω accuracy over several realistic SSCL
settings. Our experiments demonstrate that state-of-the-art continual learning methods (Lee et al.,
2019) perform inconsistently in the novel SSCL paradigm with no prior method performing “best"
across all settings. This leads us to ask "How can an approach to catastrophic forgetting be robust to
several realistic, memory-constrained continual learning scenarios?"

To answer the above question, we propose a novel learning approach that works well in both the
simple (i.e., no correlations) and realistic SSCL settings: DistillMatch. We leverage unlabeled data not
only for knowledge distillation (in which the distilling model is fixed), but also for a semi-supervised
loss (in which the supervisory signal can adapt during training on the new task). Key to our approach
is that we address the distribution mismatch between the labeled and unlabeled data (Oliver et al.,
2018) with out-of-distribution (OoD) detection (and are the first to do so in the continual learning
setting). Compared to nearest prior state-of-the-art (all methods from (Lee et al., 2019)) configured
to work as well as possible in the novel SSCL setting, we outperform the state-of-the-art in all of
our experiment scenarios by as much as a 54.5% increase in Ω and no less than an 8.7% increase.
Furthermore, we find that our method can save up to 0.23 stored images per processed unlabeled
image over naive rehearsal (compared to (Lee et al., 2019) which only saved 0.08 stored images per
processed unlabeled image). In summary, we make the following contributions:

1. We propose the realistic semi-supervised continual learning (SSCL) setting, where object-object
correlations between labeled and unlabeled sets are maintained through a label super-class structure.
We show that state-of-the-art continual learning methods perform inconsistently in the SSCL
setting (i.e. no baseline method is “best" across all settings).

2. We propose a novel continual learning method DistillMatch for the SSCL setting leveraging
pseudo-labeling, strong data augmentations, and out-of-distribution detection. Compared to the
baselines, DistillMatch achieves superior performance on a majority of metrics for 8/8 experiments
and results in substantial memory budget savings.

2 BACKGROUND AND RELATED WORK

Knowledge Distillation in Continual Learning: Several related methods leverage distillation losses
on past tasks to mitigate catastrophic forgetting using soft labels from a frozen copy of the previous
task’s model (Castro et al., 2018; Hou et al., 2018; Li & Hoiem, 2017; Rebuffi et al., 2017). For
example, learning using two teachers, with one teacher distilling knowledge from previous tasks and
another distilling knowledge from the current task, has been found to increase adaptability to a new
task while preserving knowledge on the previous tasks (Hou et al., 2018; Lee et al., 2019). Class-
balancing and fine-tuning have been used to encourage the model’s final predicted class distribution
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to be balanced across all tasks (Castro et al., 2018; Lee et al., 2019). These methods are related in
that they rely on distillation losses to mitigate catastrophic forgetting, but the losses are designed to
distill knowledge about specific local tasks and cannot discriminate between classes from different
tasks (crucial for class incremental learning). More context on where our work fits into the greater
body of continual learning research is provided in Appendix H..

Global distillation (GD) introduces a global teacher which provides a knowledge ensemble from both
the past tasks and current task (Lee et al., 2019). This addresses a crucial shortcoming of common
knowledge distillation methods which do not reconcile information from the local tasks (i.e. the
groups of object classes presented sequentially to the learner) with the global task (i.e. all object
classes seen at any time). GD leverages a large stream of uncorrelated unlabeled data from sources
such as data mining social media or web data (Lee et al., 2019) to boost its distillation performance.
Similar to GD, we leverage an unlabeled datastream to mitigate forgetting, but we take the perspective
that this datastream is from the agent’s environment and reflects object-object correlation structures
imposed by the world (i.e. correlations between the task data and the unlabeled data).

Out of Distribution Detection: Leveraging unlabeled data for rehearsal is key to our work, but it
can contain a mix of classes not in the distribution of the data seen by the learner thus far. Therefore,
we include Out-of-Distribution (OoD) Detection (Hsu et al., 2020; Lee et al., 2018; Liang et al., 2017)
to select unlabeled data corresponding to the classes our learner has seen so far with high confidence.
Semantic OoD detection is a difficult challenge (Hsu et al., 2020) and we do not have access to any
known OoD data to calibrate our confidence. We therefore build on a recent method, Decomposed
Confidence (DeConf) (Hsu et al., 2020), which can be calibrated using only in-distribution training
data. The method consists of decomposed confidence scoring with a learned temperature scaling in
addition to input pre-processing. For further details, the reader is referred to (Hsu et al., 2020).

Semi-Supervised Learning: In semi-supervised learning (which motivates the SSCL setting), mod-
els are given a (typically small) amount of labeled data and leverage unlabeled data to boost per-
formance. This is an active area of research given that large, labeled datasets are expensive, but
most applications have access to plentiful, cheap unlabeled data. There are several approaches to
semi-supervised learning (Berthelot et al., 2019; Lee, 2013; Kingma et al., 2014; Kuo et al., 2019;
Miyato et al., 2018; Oliver et al., 2018; Sohn et al., 2020; Springenberg, 2015; Tarvainen & Valpola,
2017) which involve balancing a supervised loss `s applied to the labeled data with an unsupervised
loss `ul applied to unlabeled data. Additional details on these methods are provided in Appendix H.

3 SSCL SETTING

In class-incremental continual learning, a model is gradually introduced to labeled data corresponding
toM semantic object classes c1, c2, . . . , cM over a series ofN tasks, where tasks are non-overlapping
subsets of classes. We use the notation Tn to denote the set of classes introduced in task n, with |Tn|
denoting the number of object classes in task n. Each class appears in only a single task, and the
goal is to incrementally learn to classify new object classes as they are introduced while retaining
performance on previously learned classes. The class-incremental learning setting (Hsu et al. (2018))
is a challenging continual learning settings because no task indexes are provided to the learner during
inference and the learner must support classification across all classes seen up to task n.

We extend the class-incremental continual learning setting in the realistic semi-supervised continual
learning (SSCL) setting, where data distributions reflect existing object class correlations between,
and among, the labeled and unlabeled data distributions. The amount of labeled data in this setting is
drastically reduced as is common in semi-supervised learning. For example, our experiments reduce
the number of labeled examples per class by 80% compared to a prior setting (Lee et al., 2019).
At task n, we denote batches of labeled data as Xn = {(xb, yb) : b ∈ (1, · · · , B) | yb ∈ Tn} and
batches of unlabeled data as Un = {ub : b ∈ (1, · · · , µB). Here, B refers to batch-size and µ is a
hyperparameter describing the relative size of Xn to Un. The goal in task n is to learn a model θn
which predicts object class labels for any query input over all classes seen in the current and previous
tasks (T1 ∪ T2 ∪ · · · ∪ Tn). The index n on θn indicates that our model is updated each task; i.e. θn−1
refers to model from the previous task and θn refers to the model from the current task.

To simulate an environment where unlabeled and labeled data are naturally correlated, we leverage
well-defined relationships between objects derived from a super-class structure (i.e. various animals
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Figure 2: Diagram of DistillMatch, our proposed algorithm for semi-supervised continual learning. We use
unlabeled data from the agent’s environment to ground the current model in the past task while simultaneously
learning new knowledge. This is done with a combination of local distillation, consistency regularization, and
pseudo-labeling unlabeled data with confident predictions from an Out-of-Distribution Detector.

within one super-class). We use the CIFAR-100 dataset (Krizhevsky et al., 2009) because object
correlations among classes and parent classes, crucial to our experiments, are well defined and
explored (Zhu & Bain, 2017). This dataset contains eight unbalanced super-classes, which we use
to simulate realistic data environments. Each super-class contains a number of parent classes (e.g.
one super-class contains the parent classes flowers, fruits/vegetables, and trees). There are 20 parent
classes in total which form the 20 continual learning tasks, with each parent class consisting of five
object classes (e.g. flowers parent class consists of orchids, poppies, roses, sunflowers, tulips). For a
single task, when our learner is being shown labeled training data from one of the parent classes (e.g.
flowers, fruit/vegetables, or trees), the unlabeled data for this task will contain examples from the
entire super-class (e.g. flowers, fruits/vegetables, and trees).

SSCL with this realistic super-class “environment" structure is our main setting, but we also explore
several other correlation combinations, including the simple SSCL setting without any super-class
structure. We use the following terminology to describe the correlations of the tasks (i.e. labeled
data): RandomClass Tasks, where no correlations exist in task classes, and ParentClass Tasks, where
tasks are introduced by CIFAR-100 parent classes (i.e. each task is to learn the five classes of a single
CIFAR-100 parent class). For the unlabeled data distribution we have: Uniform Unlabeled, where
all classes are uniformly dsitributed in unlabeled data for all tasks, PositiveSuperclass Unlabeled,
where the unlabeled data of each tasks consists of the parent classes in the same super-class as the
current task, NegativeSuperclass Unlabeled, where the unlabeled data of each tasks consists of parent
classes from different super-class as the current task, and RandomUnlabeled, where the unlabeled
data of each task consists of 20 randomly sampled classes (roughly equal to the average class size in
a super-class). Further discussion and details, including figures depicting example streams for each
task sequence, are provided in Appendix F.

4 APPROACH

Local Distillation - Preserve Past Tasks 1 . . . n − 1 Using Unlabeled Data: Our approach, sum-
marized in Figure 2, is a distillation-based approach and therefore uses a standard local distillation
loss (as in prior methods). The intuition of knowledge distillation is that the current model should
make similar predictions to previous models over the set of classes associated with the previous tasks.
Refining prior notation, this loss depends on θi,n: the model of θ at time i that has been trained
up to, and including, data with the classes from task n. For example, θn,1:n refers to the model
trained during task n and its logits associated with all tasks up to and including class n. Let us denote
pθ(y | x) as the predicted class distribution produced by model θ for input x. Using this notation,
`dst during the training of task n is given as:

`dst =
1

n− 1

n−1∑
t=1

(
1

B

B∑
b=1

Ldst(pθn−1,t
(y | α(xb)), pθn,t

(y | α(xb)))

)
(1)

where Ldst is a distance loss such as KL divergence, and α denotes weak data augmentations such as
random horizontal flips and crops. This loss acts as a regularization penalty to encourage the current
model to make similar predictions to the previous model for all tasks 1 . . . n− 1.
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OoD Detector Training and Calibration: We train and calibrate an OoD detector in the SSCL
setting in order to identify unlabeled data previously seen by the agent. OoD detection calculates
a scalar score S(ub) for unlabeled input ub, and rejects ub as out-of-distribution if S(ub) < τOoD,
where τOoD is a calibrated threshold. OoD scores in our SSCL setting include the time index n,
Sn(ub), and are generated from a separate OoD model φn using the method in (Hsu et al., 2020).
We use unlabeled data considered as in-distribution for a hard distillation loss, and we use all
unlabeled data for soft knowledge distillation and consistency losses. We use a separate model
because calibrating the decision threshold τOoD requires labeled hold-out data, which we cannot
afford to sacrifice in our main classification model given we are already working in a limited labeled
data regime. We hold-out 50% of the labeled training data (across all tasks) when training φn for this
calibration decision. At the end of each task n, we calibrate τOoD to operate at a δ% true-positive
ratio (TPR) using the hold-out labeled data, where δ is a scalar hyperparameter. For computational
efficiency, we exclude unlabeled losses when training φn. We note that our implementation uses
the same number of models (and therefore parameters) as used in the prior state-of-the-art method
GD (Lee et al., 2019).

Confidence-Based Hard Distillation - Preserve Past Tasks 1 . . . n − 1 Using Unlabeled Data:
In our experiments, we found that eq. (1) works well at preserving performance on local tasks,
but does not work well on distilling knowledge from the global task (i.e. object classes from
tasks 1 . . . n). We demonstrate hard distillation (cross entropy loss with a one-hot vector label)
is preferable over soft distillation because hard distillation distills knowledge across all classes
(i.e. the global task). Specifically, we distill global knowledge from task n − 1 into task n by
using a frozen copy of θn−1,1:n−1 to pseudo-label unlabeled data by generating predicted class
distributions for unlabeled images as: qb,n−1 = pθn−1,1:n−1

(y | α(ub)), and one-hot pseudo-labels as
q̂b,n−1 = arg max(qb,n−1). We identify highly confident data on task n− 1 using the DeConf OoD
detection described in Section 2. Let Sn−1(ub) denote the score of our OoD detector for past task
classes of our pseudo-label model, θn−1,1:n−1. Then, our confidence-based hard distillation loss for
the pseudo-labeled data `pl becomes:

`pl =
1

Bpl

µB∑
b=1

1(Sn−1(ub) ≥ τOoD)LCE(qb,n−1, pθn,1:n(y | α(ub))) (2)

where LCE(p, q) is the cross-entropy between probability distributions p and q and Bpl is the number
of pseudo-labeled examples in the given batch identified with OoD detection. We normalize the batch
by Bpl and not µB so that `pl can be class balanced alongside the labeled training data (described in
the next subsection). Note that we only need to retain θn−1,1:n−1 at task n.

Semi-Supervised Class Balancing - Balance Past Tasks 1 . . . n − 1 with New Task n Using
Labeled and Unlabeled Data: Our method is designed to work even in the absence of a coreset
(stored images) when unlabeled data from past tasks is available. This is due to the design choice of
including hard pseudo-labeled data from a frozen model copy. A problem arises from this approach
in sensitivity to class imbalance, however. Specifically, the distribution of classes for a given batch
becomes imbalanced when considering both labels y and pseudo-labels q̂b,n−1. This is because the
number of examples per class in the labeled training data is unlikely to equal the number of examples
per class in the pseudo-labeled training data, given these come from two different distributions. To
address this, we weight loss components proportionally to the distribution of both labeled training
data and hard pseudo-labeled unlabeled data. Specifically, we scale the gradient computed from a
data with label or pseudo-label k ∈ (1, · · · ,K) by:

w(k) =
1

K
·
(

|{(x, y) ∈ Xn}|+ |{u ∈ Un}|
|{(x, y) ∈ Xn | y = k}|+ |{u ∈ Un | q̂n−1 = k}|

)
(3)

Consistency Regularization - Learn New Task n Using Unlabeled Data: We examine the effects
of a consistency loss introduced in FixMatch (Sohn et al., 2020) in the SSCL setting to leverage
unlabeled data for learning the current task (rather than only preserving knowledge on the past tasks).
This loss enforces consistency between weakly and strongly augmented versions of unlabeled data
which increases robust decisions on highly confident unlabeled examples. Strong data augmentations,
denoted as A, include RandAugment (Cubuk et al., 2019). The model generates a predicted class
distribution from a weakly-augmented version of the unlabeled image: qb = pθn,1:n(y | α(ub)).
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Using a generated one-hot pseudo-label q̂b = arg max(qb), the unlabeled loss `ul is calculated as:

`ul =
1

µB

µB∑
b=1

1(max(qb) ≥ τFM )LCE(q̂b, pθn,1:n(y | A(ub))) (4)

where τFM is a confidence threshold (scalar hyperparameter) above which a pseudo-label is retained.

Final Loss - Our final, balanced loss `total is given as:

`total =
1

B +Bpl
· (`s + `pl) + λucl`ul + λdst`dst (5)

`s =

B∑
b=1

w(yb) · LCE(yb, pθn,1:n(y | α(xb))) (6)

`pl =

µB∑
b=1

w(q̂b,n−1) · 1(Sn−1(ub) ≥ τOoD)LCE(q̂b,n−1, pθn,1:n
(y | α(ub))) (7)

where `ul is taken from eq. (4), `s is the supervised task loss, `dst is from eq. (1), and λucl, λdst are
hyperparameters which weight of unlabeled consistency loss and local distillation, respectively.

5 EXPERIMENTS

We evaluate DistillMatch and state-of-the-art baselines under several realistic SSLC scenarios with the
CIFAR-100 dataset using 100 labeled examples per class. We choose recent distillation methods which
can leverage the unlabeled data with distillation losses: Distillation and Retrospection (DR) (Hou
et al., 2018), End-to-End incremental learning (E2E) (Castro et al., 2018), and Global Distillation
(GD) (Lee et al., 2019). Similar to GD (Lee et al., 2019), we do not compare to model-regularization
methods (i.e., methods which penalize changes to model parameters, as discussed in Appendix H)
because distillation methods have been found to perform better in the class-incremental learning
setting (Lee et al., 2019). Besides, these methods are orthogonal to our contribution and could
be combined with our approach (and the competing approaches) for better performance. We use
implementations of DR and E2E from (Lee et al., 2019), which are adapted from incremental task
learning to incremental class learning. These implementations of DR and E2E use the unlabeled data
for their respective knowledge distillation loss(es), as shown in Appendix J. We also compare to a
neural network trained only with cross entropy loss on labeled data (Base).

5.1 METRICS

We evaluate our methods using: (I) final performance, or the performance with respect to all past
classes after having seen all N tasks (referred to as AN,1:N ); and (II) Ω, or the average (over all
tasks) normalized task accuracy with respect to an offline oracle method (Hayes & Kanan, 2019).
As before, we use index i to index tasks through time and index n to index tasks with respect to
test/validation data (for example, Ai,n describes the accuracy of our model after task i on task n data).
Specifically:

Ai,n =
1

|Dtestn |
∑

(x,y)∈Dtest
n

1(ŷ(x, θi,n) = y | ŷ ∈ Tn) (8)

Ω =
1

N

N∑
i=1

i∑
n=1

|Tn|
|T1:i|

Ai,1:n
Aoffline,1:n

(9)

Ω is designed to evaluate the global task and is therefore computed with respect to all previous classes.
For the final task accuracy in our results, we will denote AN,1:N as simply AN .
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Table 1: Results (%) CIFAR-100 with 20% Labeled Data for (a) RandomClass Tasks on for various task sizes
(no Coreset, Uniform Unlabeled Data Distribution) and (b) ParentClass Task for various coreset sizes (20 Tasks,
Uniform Unlabeled Data Distribution). Results are reported as an average of 3 runs, with std provided in the
supplementary material. UB refers to the upper bound, given by the offline oracle.

(a)

Tasks 5 10 20
Metric

(↑) AN Ω AN Ω AN Ω

UB 56.7 100 56.7 100 56.7 100

Base 15.6 52.5 8.2 34.7 4.3 22.0
E2E 12.5 46.1 7.5 32.3 4.0 21.1
DR 16.0 53.7 8.3 36.4 4.3 22.4
GD 32.1 69.9 21.4 60.0 13.4 42.7
DM 44.8 84.4 37.5 76.9 21.0 60.8

(b)

Coreset 0 400
Metric

(↑) AN Ω AN Ω

UB 56.7 100 56.7 100

Base 3.5 18.5 14.6 53.4
E2E 3.2 18.1 19.5 59.3
DR 3.7 19.4 20.1 57.8
GD 10.5 37.4 21.4 57.7
DM 20.8 57.8 24.4 67.5

5.2 OTHER DETAILS

We do not tune hyperparameters on the full task set because tuning hyperparameters with hold out
data from all tasks may violate the principal of continual learning that states each task in visited
only once (van de Ven & Tolias, 2019). Following (Lee et al., 2019), we include a coreset for many
experiments (although we show our method does not need a coreset when certain object correlations
are present between unlabeled and labeled data) which is used for both the labeled cross entropy loss
and the distillation loss. Given that our SSL tasks use 20% of the labeled data from (Lee et al., 2019),
we also reduce the coreset to 20% of their coreset size (from 2000 to 400). Notice that no methods
have a memory budget for unlabeled data (i.e. the unlabeled data is from a stream and discarded after
use rather than stored). We include supplementary details and metrics in our Appendix: additional
ablations (A), additional experiment details (B), hyperparameter selection (C), full results including
standard deviation and plots (D), OoD performance (E), and super-parent class associations (F).

5.3 RESULTS

We do not need to store coreset data in an environment with uniform unlabeled data. We first
evaluate our methods in a scenario where unlabeled data is drawn from a uniform distribution over
all classes (Table 1a). This represents the situation where labeled task data is presented sequentially
by a teacher but unlabeled data from all tasks is freely available. We evaluate these experiments with
no coreset for replay given that unlabeled examples for all classes are present in each task. Across
these experiments, we see that our proposed method (DM) establishes strong performance for SSCL.
With respect to final classification accuracy AN and average normalized task accuracy Ω, we see that
DM has considerably higher performance. The local distillation baselines E2E and DR perform no
better than Base, which makes sense because local distillation does not distill the global task. The
results suggest that when the unlabeled data distribution contains all past task classes, methods which
distill across the global task (GD and DM) achieve high performance despite having no coreset.

Class correlations in the labeled task data negatively affect performance of all distillation meth-
ods. We explore a scenario where object correlations exist in the class distribution of the labeled data
but not the unlabeled data (Table 1b). This extends the previous scenario by considering learning
tasks of similar object types. We evaluate these experiments with and without a coreset to make
direct comparisons with both the previous experiment and the next experiment. Compared to the
previous experiments, we see that the introduction of super-classes entails a more difficult problem, as
every method decreases in performance; yet DM largely outperforms all other methods. For example,
in Table 1b) (no coreset), GD results in 37.4% Ω and DM results in 57.8% Ω, indicating a 54.5%
increase over state of the art. Overall, these results pose an interesting question of why parent class
tasks would negatively affect performance; we plan to more fully explore this in future works.

The DistillMatch approach is robust to several realistic unlabeled data correlations; the other
methods are not. We evaluate our methods with several unlabeled data distributions (beyond a
uniform distribution) with the above ParentClass Tasks (Table 2a). The unlabeled data correlations
represent the realistic SSCL scenario, a vastly different perspective compared to prior experimental
methodologies. We evaluate these experiments with a coreset of 400 images for replay and show
that our method is state of art in each realistic scenario. Surprisingly, we found that the global
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Table 2: Results (%) CIFAR-100 with 20% Labeled Data for (a) ParentClass Task on CIFAR-100 with 20%
Labeled Data for various unlabeled data distributions (20 Tasks, with 400 image Coreset) and (b) Selected
Ablation Studies (RandomClass Tasks with Uniform Unlabeled Data Distribution, 10 Tasks, no Coreset). Results
are reported as an average of 3 runs, with std provided in the supplementary material. For (b), Each row
represents a part of our method which is removed as part of the study. UB refers to the upper bound, given by
the offline oracle.

(a)

UL Data
Corr. Positive Negative Random

Sample

Metric (↑) AN Ω AN Ω AN Ω

UB 56.7 100 56.7 100 56.7 100

Base 14.6 53.4 14.6 53.4 14.6 53.4
E2E 18.9 59.4 19.9 60.1 19.8 60.0
DR 18.8 62.8 20.1 62.1 19.9 61.8
GD 17.9 50.2 18.1 50.5 21.3 59.9
DM 19.7 63.3 20.7 64.8 22.4 65.1

(b)

Ablation AN Ω

`pl - eq. (7) 7.7 32.0
w(k) - eq. (3) 30.2 69.6
`ul - eq. (4) 33.3 71.2
`dst - eq. (1) 35.2 74.1
Full Method 37.5 76.9

Figure 3: Ω (%) vs Coreset Size for Base, with GD
and DM (no corset) plotted horizontally. We show base
requires roughly 935 and 338 stored images to match
the performance of DM and GD, respectfully. This is
equivalent to 0.23 and 0.08 stored images per unlabeled
image (calculated using the number of unlabeled images
per task in this scenario, which is 4,000).

distillation method actually performs worse than Base. This can be explained in that the global
distillation loss expects the unlabeled data to contain examples which are either in the distribution of
the past tasks or out of distribution for the global task (i.e. it assumes the unlabeled data does not
contain examples of the current task), and actually hurts performance when this assumption is not
held. Our method, on the other hand, performs the same or better compared to the other methods (DR,
E2E) which have no such an assumption. These results suggest that our reminding based solution is
the only evaluated method which performs well in a memory constrained setting regardless of the
correlations between unlabeled and labeled data.

The DistillMatch approach saves memory. Here, we perform a study to quantify the memory
budget savings from our method (Figure 3). We see that DM performs considerably higher than the
leading baseline, GD, in the RandomClass Tasks with Uniform Unlabeled Data Distribution scenario
(10 task). All other methods require a large coreset to match DM. We specifically find the necessary
coreset size for Base required to match our performance. We show base requires roughly 935 and
338 stored images to match the performance of DM and GD, respectfully. This is equivalent to 0.23
and 0.08 stored images per unlabeled image (calculated using the number of unlabeled images per
task in this scenario, which is 4000).

Each component of DistillMatch contributes to its performance gains. We perform an extensive
ablation study of our method in Table 2b for the scenario with no coreset (further ablations are found
in Appendix-A). We show that while the semi-supervised consistency loss (4), class balancing (3),
and soft distillation loss (1) are all important to our method, the most important contribution is
the hard distillation loss (7). In summary, we find that our design performs well across a range
of conditions, namely with different amounts of coresets (including none at all), as well as under
different unlabeled distributions. This is a key aspect of our experimental setting, which better reflects
the flexibility that is necessary from a continual learning algorithm.

6 CONCLUSIONS

We formalize the SSCL setting, which mirrors the underlying structure in the real world where
a continual agent’s learning task is a product of its environment, and determine its effect on the
continual learning problem. To address the unique challenges of the SSCL setting, we propose a

8
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novel learning approach that works within these constraints, DistillMatch, notably outperforming
closest prior art. Our approach consists of pseudo-labeling and consistency regularization, distillation
for continual learning, and out-of-distribution (OoD) detection for confidence selection. Our analysis
shows that our reminding-based approach performs well in a memory constrained setting regardless
of the correlations between unlabeled and labeled data, unlike existing approaches. A challenge for
future work is increasing the effectiveness of semantic OoD detection, and exploring better techniques
for calibrating OoD detectors in a continual (online) manner. We acknowledge other concurrent
works push realistic continual learning settings as well (Mundt et al., 2020; Ren et al., 2020), but the
contributions are orthogonal to our setting.
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APPENDIX

Supplementary Metrics: In addition to the metrics used in the main paper, we also report backwards
Backward Transfer (BWT) (Lopez-Paz & Ranzato, 2017) and Forgetting (FTG) (Lee et al., 2019).
BWT is a measurement of increase in performance on task n after training across all tasks 1 . . . N .
A higher value is better, indicating that the learner is better at performing task n after learning the
subsequent tasks. A negative value indicates a drop in performance, which is typically expected in
class incremental learning. A weakness of this metric is that it measures performance relative to
local tasks and does not reflect performance on the global task of class incremental learning (i.e.
the softmax outputs are across only the local per-task categories, not across all of the categories
encountered throughout training). FGT is a measurement of decrease in performance on task n with
respect to the global task; it is essentially negative backward transfer adopted for class incremental
learning. A lower value is better, indicating that the learner has experienced less average performance
decrease on task n throughout training. A weakness of this metric is that it does not account for
natural decrease in performance due to the increasingly more difficult global task characteristic in
class incremental learning. A key difference between BWT and FGT is that when evaluating task n
performance for BWT, only task n classes can be returned during inference, whereas for FGT, all
tasks classes 1 . . . n can be returned. We include both of these metrics for experiment results during
all subsequent sections because while neither is regularly used for class incremental learning, they
may be useful to the reader.

BWT =
1

N − 1

N−1∑
n=1

(AN,n −An,n) (10)

FGT =
1

N − 1

N∑
i=2

i−1∑
n=1

|Tn|
|T1:i|

(Rn,n −Ri,n) (11)

where:

Ri,n =
1

|Dtestn |
∑

(x,y)∈Dtest
n

1(ŷ(x, θi,1:n) = y) (12)
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A DISTILLMATCH ABLATION STUDY

Here, we ablate our method in two experiment scenarios: RandomClass Tasks with Uniform Unla-
beled Data Distribution (Table 3a) and ParentClass Tasks with PositiveSuperclass Unlabeled Data
Distribution (Table 3b). Ω curves for both Tables are given in Figure 4. In the former case, we find that
the hard distillation loss (7) is the most significant contribution, but the semi-supervised consistency
loss (4), class balancing (3), and soft distillation loss (1) add significant performance gains as well.
In the later case, we actually find the semi-supervised consistency loss (4) and distillation loss (1) to
be the most important, while class balancing (3) and hard distillation loss (7) perform very similarly.
This reflects the strength of our method: DM performs well in all of our experiments because it has
components which vary in importance depending on the scenario (i.e. coreset size and object-object
correlations).

Table 3: Results (%) for Selected Ablation Studies on CIFAR-100 with 20% Labeled Data. Results are reported
as an average of 3 runs with mean and standard deviation. Each row represents a part of our method which is
removed as part of the study.

(a) RandomClass Tasks with Uniform Unlabeled Data Distribution, 10 Tasks, no Coreset

Ablation AN (↑) Ω (↑) BWT (↑) FGT (↓)
`pl - eq. (7) 7.7± 0.5 32.0± 0.2 −5.8± 1.9 56.6± 1.9
w(k) - eq. (3) 30.2± 1.9 69.6± 0.5 −4.8± 0.2 10.5± 0.5
`ul - eq. (4) 33.3± 0.9 71.2± 2.3 −0.7± 0.3 7.7± 0.2
`dst - eq. (1) 35.2± 1.1 74.1± 1.7 −4.8± 0.4 8.0± 0.9
Full Method 37.5± 0.7 76.9± 2.5 −1.0± 1.0 6.5± 0.5

(b) ParentClass Tasks with PositiveSuperclass Unlabeled Distribution, 20 Tasks, 400 image coreset

Ablation AN (↑) Ω (↑) BWT (↑) FGT (↓)
`pl - eq. (7) 19.3± 1.1 64.6± 0.9 −17.9± 0.3 28.8± 1.0
w(k) - eq. (3) 19.4± 0.6 63.1± 1.4 −17.4± 0.4 27.2± 0.7
`ul - eq. (4) 17.1± 0.7 57.6± 1.5 −14.0± 0.1 21.8± 0.6
`dst - eq. (1) 17.7± 0.8 58.1± 1.5 −15.9± 0.9 22.7± 1.0
Full Method 19.7± 0.8 63.3± 2.1 −18.2± 0.7 24.9± 0.6

Figure 4: Ω curves showing task number t on the x-axis and At,1:t on the y-axis.

(a) Ω curve for Table 3a (b) Ω curve for Table 3b
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B ADDITIONAL EXPERIMENT DETAILS

We used used a batch size of 64 for labeled training data and 128 for unlabeled training data. As done
in (Lee et al., 2019), we train over 200 epochs per task with a tuned learning rate decaying by 0.1
after 120, 160, and 180 epochs. When a coreset is present, we include finetuning of the final layer
in our model using only the coreset and class balancing, as introduced in GD (Lee et al., 2019). If
finetuning, the model is trained over the first 180 epochs in the same manner, but after 180 epochs the
learning rate is reset to 10% of the initial learning rate and is trained for 20 additional epochs with
decays by 0.1 after 10, 15 epochs. We use stochastic gradient decent with 0.9 momentum and 0.0005
L2 weight decay.

As also done in (Lee et al., 2019), we hold λdst to a constant value, 1, and include a small temperature
scaling, 2, for the softmax activations used in eq. (1). All results are averaged over 3 repeats and
generated with a common deep learning architecture (WRN-28-2) (He et al., 2016). Results were
generated using a combination of Titan X and 2080 Ti GPUs. Although we did not record specific
run-times here as they are machine specific, we find our method to have a similar run-time to GD.

C HYPERPARAMETER SWEEPS

We tuned hyperparameters using a grid search. We did this for two scenarios: (i) RandomClass
Tasks with Uniform Unlabeled Data Distribution and (ii) ParentClass Tasks with PositiveSuperclass
Unlabeled Data Distribution. The former is applied for all experimental scenarios which do not
include a coreset, and the latter is applied for all scenarios which do include a coreset. We chose this
division as we found the coreset size to greatly affect the other hyperparameters. DR and E2E use
hyperparameters chosen for GD (as done in (Lee et al., 2019)), while Base uses hyperparameters from
DM. The hyperparameters were tuned using k-fold cross validation with three folds of the training
data on only half of the tasks. We do not tune hyperparameters on the full task set because tuning
hyperparameters with hold out data from all tasks may violate the principal of continual learning that
states each task in visited only once (van de Ven & Tolias, 2019). The results reported outside of this
section are on the CIFAR-100 testing split (defined in the dataset).

Table 4: Hyperparameters, chosen with grid search

Coreset Yes No
Hyperparameter Range DM GD DM GD
Learning Rate 5e-3, 1e-2, 5e-2, 1e-1, 5e-1 1e-1 1e-1 1e-1 5e-3

Weight FixMatch Loss 0.1, 0.5, 1, 5 1.0 1.0
TPR 0.01, 0.05, 0.1, 0.2, 0.5, 0.8, 0.95 0.05 - 0.5 -

ε (Fix Match) 0.7, 0.85, 0.9, 0.95 0.9 - 0.9 -
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D FULL RESULTS

We provide additional detail to the results from Section 5.3 by reporting (i) the original results with
additional metrics and standard deviations (Tables 5 and 6) and (ii) Ω curves for each experiment in
Figure 5.

Table 5: Full results (%) on CIFAR-100 with 20% Labeled Data. Results are reported as an average of 3
runs with standard deviation. The results from these tables do not include a coreset (and use the same set of
hyperparameters, as described in Appendix C)

(a) RandomClass Tasks with Uniform Unlabeled Data Distribution, 5 Tasks

Metric AN (↑) Ω (↑) BWT (↑) FGT (↓)
Base 15.6± 0.9 52.5± 2.5 −25.7± 26.2 43.8± 2.3
E2E 12.5± 0.9 46.1± 0.9 1.4± 0.6 42.5± 1.2
DR 16.0± 0.9 53.7± 0.7 0.3± 0.7 41.6± 1.5
GD 32.1± 0.2 69.9± 0.9 0.5± 0.8 5.0± 0.3
DM 44.8± 1.4 84.4± 3.0 2.5± 0.1 1.2± 0.1

(b) RandomClass Tasks with Uniform Unlabeled Data Distribution, 10 Tasks

Metric AN (↑) Ω (↑) BWT (↑) FGT (↓)
Base 8.2± 0.1 34.7± 0.8 −32.2± 24.6 56.2± 2.0
E2E 7.5± 0.5 32.3± 0.6 −0.5± 0.4 56.0± 1.8
DR 8.3± 0.3 36.4± 0.2 −1.9± 0.3 57.4± 1.3
GD 21.4± 0.6 60.0± 1.9 −14.6± 0.1 18.4± 1.5
DM 37.5± 0.7 76.9± 2.5 −1.0± 1.0 6.5± 0.5

(c) RandomClass Tasks with Uniform Unlabeled Data Distribution, 20 Tasks

Metric AN (↑) Ω (↑) BWT (↑) FGT (↓)
Base 4.3± 0.4 22.0± 0.8 −41.6± 13.8 69.4± 0.5
E2E 4.0± 0.3 21.1± 0.6 −4.1± 0.8 67.7± 1.4
DR 4.3± 0.4 22.4± 0.7 −7.1± 0.2 70.6± 1.2
GD 13.4± 1.9 42.7± 1.1 −29.2± 3.5 37.4± 0.8
DM 21.1± 1.0 60.8± 0.8 −8.8± 0.7 17.3± 1.7

(d) ParentClass Tasks with Uniform Unlabeled Data Distribution, 20 Tasks

Metric AN (↑) Ω (↑) BWT (↑) FGT (↓)
Base 3.5± 0.1 18.5± 0.5 −33.5± 6.0 54.3± 0.8
E2E 3.2± 0.2 18.1± 0.6 −14.6± 3.5 53.0± 0.1
DR 3.7± 0.1 19.4± 0.6 −17.6± 1.3 56.6± 0.1
GD 10.5± 0.2 37.4± 1.8 −25.1± 0.1 29.1± 0.8
DM 20.8± 0.8 57.8± 1.4 −10.8± 0.8 14.8± 0.3
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Table 6: Full results (%) on CIFAR-100 with 20% Labeled Data. Results are reported as an average of 3 runs
with standard deviation. The results from these tables are with a 400 image coreset (and use the same set of
hyperparameters, as described in Appendix C)

(a) ParentClass Tasks with Uniform Unlabeled Data Distribution, 20 Tasks

Metric AN (↑) Ω (↑) BWT (↑) FGT (↓)
Base 14.6± 1.4 53.4± 2.4 −14.7± 6.4 29.8± 0.6
E2E 19.5± 0.9 59.3± 1.7 −14.5± 0.2 23.1± 0.5
DR 20.1± 0.8 57.8± 1.5 −15.2± 0.4 31.9± 3.3
GD 21.4± 0.9 57.7± 1.8 −12.5± 0.4 8.0± 1.7
DM 24.4± 0.4 67.5± 1.3 −15.1± 1.3 21.9± 1.5

(b) ParentClass Tasks with PositiveSuperclass Unlabeled Data Distribution, 20 Tasks

Metric AN (↑) Ω (↑) BWT (↑) FGT (↓)
Base 14.6± 1.4 53.4± 2.4 −14.7± 6.4 29.8± 0.6
E2E 18.9± 1.2 59.4± 1.3 −16.6± 1.0 22.2± 0.3
DR 18.8± 1.0 62.8± 1.7 −17.6± 0.7 27.5± 0.3
GD 17.9± 0.8 50.2± 0.8 −10.6± 0.8 −2.1± 2.0
DM 19.7± 0.8 63.3± 2.1 −18.2± 0.7 24.9± 0.6

(c) ParentClass Tasks with NegativeSuperclass Unlabeled Data Distribution, 20 Tasks

Metric AN (↑) Ω (↑) BWT (↑) FGT (↓)
Base 14.6± 1.4 53.4± 2.4 −14.7± 6.4 29.8± 0.6
E2E 19.9± 1.2 60.1± 0.5 −16.1± 1.0 22.5± 0.4
DR 20.1± 1.9 62.1± 1.8 −16.8± 0.2 28.7± 1.0
GD 18.1± 0.6 50.5± 0.7 −10.9± 1.2 −1.7± 1.6
DM 20.7± 1.5 64.8± 1.3 −17.4± 0.7 24.7± 1.3

(d) ParentClass Tasks with Random Unlabeled Data Distribution, 20 Tasks

Metric AN (↑) Ω (↑) BWT (↑) FGT (↓)
Base 14.6± 1.4 53.4± 2.4 −14.7± 6.4 29.8± 0.6
E2E 19.8± 0.5 60.0± 1.5 −15.1± 0.3 23.7± 0.6
DR 19.9± 1.7 61.8± 1.2 −15.7± 0.6 29.9± 1.6
GD 21.3± 0.5 59.9± 0.5 −13.7± 0.2 8.3± 2.7
DM 22.4± 1.3 65.1± 1.8 −16.1± 0.3 23.3± 0.9
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Figure 5: Ω curves showing task number t on the x-axis and Ω up to task t on the y-axis

(a) Ω curve for Table 5a (b) Ω curve for Table 5b

(c) Ω curve for Table 5c (d) Ω curve for Table 5d

(e) Ω curve for Table 6a (f) Ω curve for Table 6b

(g) Ω curve for Table 6c (h) Ω curve for Table 6d
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E PERFORMANCE OF OOD DETECTION

We show AUROC (a metric for OoD detection) over time for DM in both RandomClass Tasks with
Uniform Unlabeled Data Distribution (Figure 6a) and ParentClass Tasks with PositiveSuperclass
Unlabeled Data Distribution (Figure 6b). A high AUROC means the distributions of the ID data
and OoD data are separable. As we can see, AUROC is decreasing over time. In the RandomClass
scenario, this is a smooth decline (as expected). In the ParentClass scenario, the decline is not smooth,
likely due to the correlations between tasks making the task difficulty highly deviate between runs.

Figure 6: AUROC over time for DM showing task number t on the x-axis and AUROC on the y-axis

(a) RandomClass Tasks with Uniform Unlabeled
Data Distribution

(b) ParentClass Tasks with PositiveSuperclass Un-
labeled Data Distribution

F SUPER CLASS AND PARENT CLASS ASSOCIATIONS FOR CIFAR-100

We show the relationship between super classes and parent classes for CIFAR-100 (Figure 7) as
defined by (Zhu & Bain, 2017).

Figure 7: Super-parent class relationships for CIFAR-100

We also visualize example streams for each task sequence in (Figure 8). As a reminder, we use the
following terminology to describe the correlations of the tasks (i.e. labeled data): RandomClass
Tasks, where no correlations exist in task classes, and ParentClass Tasks, where tasks are introduced
by CIFAR-100 parent classes (i.e. each task is to learn the five classes of a single CIFAR-100
parent class). For the unlabeled data distribution we have: Uniform Unlabeled, where all classes
are uniformly dsitributed in unlabeled data for all tasks, PositiveSuperclass Unlabeled, where the
unlabeled data of each tasks consists of the parent classes in the same super-class as the current task,
NegativeSuperclass Unlabeled, where the unlabeled data of each tasks consists of parent classes from
different super-class as the current task, and RandomUnlabeled, where the unlabeled data of each task
consists of 20 randomly sampled classes (roughly equal to the average class size in a super-class).
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Figure 8: Example streams for each task sequence
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G ADDITIONAL STUDIES

We found that confidence calibration in GD Lee et al. (2019) had mixed effects in our experiments.
We ablate this contribution for RandomClass Tasks with Uniform Unlabeled Data Distribution
(Table 7a), ParentClass Tasks with PositiveSuperclass Unlabeled Data Distribution (Table 7b), and
ParentClass Tasks with Random Unlabeled Data Distribution (Table 7c). We contribute this finding
to the assumption made in GD that the unlabeled data does not contain data from the current task
(which is heavily violated in some of our experiments). Even though removing this mechanism can
boost GD performance for some of the experiments (Tables 7a and 7b) and makes it worse for others
(Table 7c), it is still significantly below our method (DM) in each case.

Table 7: Results (%) for GD Confidence Calibration Ablation on CIFAR-100 with 20% Labeled Data. Results
are reported as an average of 3 runs with mean and standard deviation.

(a) RandomClass Tasks with Uniform Unlabeled Data Distribution, 10 Tasks, no Coreset

Confidence
Calibration AN Ω BWT FGT

21.4± 0.6 60.0± 1.9 −14.6± 0.1 18.4± 1.5
23.7± 1.2 67.0± 3.1 −5.5± 1.8 20.3± 2.0

(b) ParentClass Tasks with PositiveSuperclass Unlabeled Distribution, 20 Tasks, 400 image coreset

Confidence
Calibration AN Ω BWT FGT

17.9± 0.8 50.2± 0.8 −10.6± 0.8 −2.1± 2.0
19.5± 0.4 54.4± 3.8 −12.6± 1.0 7.2± 3.5

(c) ParentClass Tasks with Random Unlabeled Distribution, 20 Tasks, 400 image coreset

Confidence
Calibration AN Ω BWT FGT

21.3± 0.5 59.9± 0.5 −13.7± 0.2 8.3± 2.7
18.1± 0.9 54.1± 0.7 −12.0± 1.2 20.3± 2.8
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H ADDITIONAL BACKGROUND AND RELATED WORK

Continual Learning Approaches: Approaches to mitigate catastrophic forgetting in continual
learning can be broadly organized into three types: rehearsal, architectural, and regularization (Parisi
et al., 2019). Rehearsal methods include storage to "replay" data or experiences from previous tasks
to mitigate catastrophic forgetting (Aljundi et al., 2019a;b; Chaudhry et al., 2019a;b; Gepperth &
Karaoguz, 2017; Hayes et al., 2019; Kemker et al., 2018; Lopez-Paz & Ranzato, 2017; Rebuffi et al.,
2017; Robins, 1995; Rolnick et al., 2019; von Oswald et al., 2019). Rather than storing raw data,
some methods train a generative model (Kamra et al., 2017; Kemker & Kanan, 2018; Shin et al.,
2017) or replay compressed data representations in a late layer (Liu et al., 2020). Architectural
approaches typically avoid overwriting the current model by expanding the model parameters to
make room for knowledge related to novel tasks (Ebrahimi et al., 2020; Lee et al., 2020; Lomonaco
& Maltoni, 2017; Maltoni & Lomonaco, 2019; Rusu et al., 2016). Finally, regularization approaches
focus on penalizing changes to parameters important to past tasks. Approaches include regularization
penalties (Aljundi et al., 2018; Ebrahimi et al., 2019; Kirkpatrick et al., 2017; Titsias et al., 2019;
Zenke et al., 2017), meta learning (Javed & White, 2019), model compression (Beaulieu et al., 2020;
He et al., 2019; Saha et al., 2020), or knowledge distillation (Castro et al., 2018; Hou et al., 2018;
Lee et al., 2019; Li & Hoiem, 2017).

Semi-Supervised Learning: Semi-supervised learning leverages plentiful available unlabeled data
to boost model performance when given a (typically small) amount of labeled data. Semi-supervised
learning is popular because labeling large datasets is an expensive process. A simple yet popular
technique is to provide pseudo-labels (Lee, 2013) for confident unlabeled data based on the current
model’s predictions and to treat this pair (the unlabeled data and pseudo-label) as if it were a labeled
data pair. Many following methods build on this idea of using predictions on the unlabeled data to
boost performance. For example, mean teachers (Tarvainen & Valpola, 2017) involve averaging model
weights for a temporal ensembling approach which encourages consistent label predictions over time.
Virtual Adversarial Training (VAT) smooths the decision boundary around each unlabeled data point
to be robust against adversarial perturbations. More recent methods include MixMatch (Berthelot
et al., 2019), which involves using low-entropy labels and strong data augmentations for a Mix-Up
loss, and FixMatch (Sohn et al., 2020), which enforces consistent labeling between weakly and
strongly augmented versions of unlabeled data. Other approaches for leveraging unlabeled data is
to use it for an auxiliary loss such as generative loss (Kingma et al., 2014; Springenberg, 2015) or
self-supervised learning (Jing & Tian, 2020). The reader is referred to (Oliver et al., 2018) for a
recent survey of popular techniques and evaluations.
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I DETAILED COMPARISON OF METHODS

In Table 8 we visualize the high level differences of each method, including how the unlabeled data
is used by each method. Not that E2E, DR, and GD all use both a coreset (if available) and unlabeled
data from the environment, so the comparison is fair.

Table 8: Comparison of distillation methods. L refers to labeled data from the current task, C refers to labeled
coreset data from past tasks (if available), and U refers to unlabeled data from the environment

Component Base E2E DR GD DM (ours)
Classification Loss L/C L/C L/C L/C L/C

Per-Task Distillation over Previous Tasks - C/U - - C/U
Single-Task Distillation over Previous Tasks - - C/U C/U -

Distill Current Task from Separate Trained Model - - L/U L/U -
Soft Global Distillation (All-Tasks) - - - U -
Hard Global Distillation (All-Tasks) - - - - U

Consistency Loss (All-Tasks) - - - - U
Confidence Calibration - - - C/U -

OoD Detection - - - - U
Fine-Tuning - L/C - L/C L/C

Class-Balancing - L/C - L/C L/C/U
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J ADDITIONAL EXPERIMENT FOR SCALIBILITY

We report results for the Tiny-ImageNet dataset (Le & Yang, 2015), which contains 200 classes of
64x64 resolution images with 500 training images per class, in Table 9 and Figure 9. We experimented
in a similar setting to Table 1a (20% labeled data with RandomClass Tasks, no Coreset, Uniform
Unlabeled Data Distribution) with a ten-task sequence (20 classes per task). In this experiment, there
are 20,000 labeled images and 80,000 unlabeled images; thus, we both double the number of data
and double the image resolution. We find that the conclusions from Table 1a scale to this experiment.

Table 9: Full results (%) on Tiny-ImageNet with 20% Labeled Data for RandomClass Tasks with Uniform
Unlabeled Data Distribution (10 Tasks, no Coreset). Results are reported as an average of 3 runs with standard
deviation. The results from this table use the set of hyperparameters described in Appendix C

Metric AN (↑) Ω (↑) BWT (↑) FGT (↓)
UB 40.7± 0.3 100.0± 0.0 3.8± 0.5 5.2± 0.5

Base 6.5± 0.6 35.1± 1.5 −10.4± 2.4 45.1± 2.9
E2E 5.8± 0.6 30.3± 1.9 0.9± 0.6 39.3± 3.1
DR 6.8± 0.4 35.3± 1.1 −1.7± 0.7 45.0± 2.7
GD 11.9± 1.3 50.6± 2.9 −17.4± 2.6 12.5± 1.3
DM 24.8± 0.7 74.7± 1.6 −5.9± 0.4 7.6± 0.1

Figure 9: Ω curve for Table 9 showing task number t on the x-axis and Ω up to task t on the y-axis
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