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Appendix

In this appendix, we present the following details.

• List of notations used in this paper and their descriptions are in § A.
• Overall algorithm of SAP is presented in § B.
• Implementation details are in § C.
• Expanded dataset-wise tables, and additional experiments are presented in § D.
• Examples of class descriptions generated using GPT-3.5 are presented in § E.
• Limitations and Broader Impact in § F.

A Summary of Notations and Terminology

We use · (dot) to represent various types of multiplication operations – matrix multiplication, matrix-vector
or vector-matrix product, and vector dot-product. Detailed descriptions of notations are presented in Tab. 10.

Notation Description Dimension
θ Image Encoder
ϕ Text Encoder
Y Classification label space
ρ Set of all learnable text and visual prompts
B Batch size
N Size of the set of descriptions
n Number of the learnable prompt tokens
d Dimension of the multimodal space

Ay LLM generated descriptions for class y
A Union of all descriptions of the classification label space

ϕ(A) Class descriptions features RN×d

ϕ(y; Ay) Description-guided text features of class y RN×d

θ(x) Global image feature Rd

θl(x) Local image feature RM×d

θdesc(x) Description-guided image features RN×d

θ̄desc(x) Mean Description-guided image features Rd

θ̂(x) Fused image features Rd

θp(x) Prompted Global image feature Rd

θl
p(x) Prompted Local image feature RM×d

θdesc
p (x) Prompted Description-guided image features RN×d

r Description relevance score for an image RN

α average specificity for all descriptions R

Table 10: Notations used in this paper and their descriptions.

B SAP: Algorithm

Algorithm 1 outlines the SAP methodology. The algorithm is summarized as follows: In a given dataset,
descriptions for each class are acquired by querying the LLM (L1 - L4). Class description features are
then derived by passing the descriptions through ϕ (L5). Unprompted and prompted image features are
obtained by processing images through θ (L7-L8). The description-guided image features are obtained via a
parameter-free cross-attention between local features and description features (L9). The local image features
are a weighted average of the description-guided features based on the relevance of each description to the
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image (L10 - L11). Finally, the mean description-guided image features and global image features are fused
to create the fusion image feature (L12). Unprompted and prompted description-guided text features are
obtained by passing the description-guided text templates through ϕ (L13-L14). Lce, Lv

steer, and Lt
steer loss

functions are employed to train the prompts.

Algorithm 1 SAP Algorithm
Require: Dataset D = {xi, yi}B

i=1; Classification label space: Y; Vision and Language encoders: (θ, ϕ); LLM: ChatGPT-3.5 model;
Hyperparameters: coefficients λ1,λ2, scaling parameter s, learning rate δ; Learnable Prompts: ρ = {ρt, ρv}

Ensure: Trained parameters ρ̂
/* Get descriptions for each class by querying LLM */

1: for all y ∈ Y do
2: Ay = LLM(Visual features for distinguishing y in a photo?)
3: end for
4: A =

⋃
y∈Y

Ay

5: ϕ(A) /* Get class description features */
6: for all epochs do
6: /* Get unprompted and prompted image features for every image x in the batch */
7: θ(x), _ = θ(x)
8: θp(x), θl

p(x) = θ(x; ρv)
/* Get description-guided image features using parameter-free cross-attention */

9: θdesc(x) = Cross_Attention(Q = ϕ(A), K = θl(x), V = θl(x))
/* Get mean description-guided image feature using relevance score */

10: r = softmax(ϕ(A) · θ(x))
11: θ̄desc(x) = θdesc(x)⊺ · r

/* Get fused image feature by fusing global and local feature using description specificity (α) */
12: θ̂(x) = (1 − α) · θ(x) + α · θ̄desc(x)

/* Get unprompted and prompted description guided text features for every class y */
13: ϕ(y, Ay) = ϕ(y, Ay)
14: ϕp(y, Ay) = ϕ(y, Ay ; ρt)

/* Similarity between an image and a class is the aggregate of similarities over pertinent descriptions of a class */
15: ξ(θ̂p(x), ϕp(y; Ay)) = 1

|Ay|

∑
a∈Ay

sim(θ̂p(x), ϕp(y; a))

16: Lce(ρ) = − 1
B

B∑
i=1

log
exp(ξ(θ̂p(xi),ϕp(yi;Ayi

))/τ)∑
y∈Y

exp(ξ(θ̂p(xi),ϕp(y;Ay))/τ)

/* Compute Steering Losses */

17: Lv
steer(ρ) = 1

B

B∑
i=1

∥θp(xi) − θ(xi)∥1

18: Lt
steer(ρ) = 1

|Y|

∑
y∈Y

∥ϕp(y; Ay) − ϕ(y; Ay)∥1

/* Perform gradient descent on the total loss */
19: L(ρ) = Lce(ρ) + λ1Lv

steer(ρ) + λ2Lt
steer(ρ)

20: ρ̂ = ρ - δ∇ L(ρ)
21: end for
22: return ρ̂

C Implementation Details

Training Details. We use the ViT-B/16 (Dosovitskiy et al., 2021)-based CLIP model as our backbone.
For the GZS and B2N benchmarks, we fine-tune the model on K = 16 shot training data from the base
classes. Prompts are learned in the first three layers for the Cross-dataset benchmark and the first nine
layers for the remaining two benchmarks. We introduce a d-dimensional bias as the sole additional parame-
ter compared to (Khattak et al., 2023). The text prompts in the initial layer are initialized with the word
embeddings of ‘a photo of a’, and the rest are randomly initialized from a normal distribution, similar
to (Khattak et al., 2023). Our models are trained on a single Tesla V100 GPU with Nvidia driver version
470.199.02. We train for 20 epochs, with a batch size of 4 images, λ1 = 10 and λ2 = 25. The hyperparam-
eter setup is common across all datasets. We use the SGD optimizer with a momentum of 0.9, a learning
rate of 0.0025, and weight decay 5e − 4. A cosine learning rate scheduler is applied with a warmup epoch
of 1. We do not tune the temperature, and leave it at the default value of 100, also used by CLIP and
PSRC. Image pre-processing involves random crops, random horizontal and vertical flips, and normaliza-
tion using mean values of [0.48, 0.46, 0.41] and standard deviation values of [0.27, 0.26, 0.27]. All baselines
utilize publicly available codes and models. All results are averages over three seeds. We use PyTorch
1.12, CUDA 11.3, and build on the Dassl code repository: https://github.com/KaiyangZhou/Dassl.pytorch.
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Our code is available at https://github.com/HariChandana1102/Semantic-Alignment-for-Prompt-Tuning-
in-Vision-Language-Models

D Expanded Tables and Additional Results

Using Random Text in place of Class Descriptions. To study the usefulness of valid descriptions,
we replace the descriptions for each class by randomly generated texting in Tab. 11. Examples of random
descriptions are “Raindrops pattered softly against the roof”, “A solitary figure walked down the empty
street”. We observe that descriptions matter for unusual datasets having texture-based images, satellite
images, aircraft images and action recognition images. The average HM using random text across 11 datasets
on B2N benchmark is 78.27%, while SAP reports an average HM of 80.94%. A drop of 2.67% is noted.
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Base 86.27 95.83 83.1 95.07 78.2 97.5 90.13 41.37 81.87 98.07 76.7 84.01
Novel 76.37 69.23 54.1 95.33 72.33 75.53 89.9 34.8 76.63 94.1 67.7 73.27
HM 81.02 80.39 65.54 95.2 75.15 85.12 90.01 37.8 79.16 96.04 72.17 78.27

Table 11: B2N benchmark results using random text in place of class descriptions. The results show that
using irrelevant descriptions hurts model performance.

Using Class Descriptions of Only Ground Truth Classes Using class descriptions of the ground-truth
class makes sense during training but may lead to noisy local features at inference. Our intention of using
class descriptions of all training classes, is to construct a generalizable local view of the image, rather than
a biased one. Due to the unbiased nature of the feature, it can help with tasks like Classification-without-
Classnames. Tab. 12. shows the impact of using just the ground-truth class descriptions during training on
three benchmarks. We do not change any hyperparameters. These results corroborate our perspective.

B2N Base Novel HM
all descriptions (Ours) 84.68 77.51 80.94
gnd truth descriptions 84.58 76.93 80.58

GZS Base Novel HM
all descriptions (Ours) 79.46 69.75 74.29
gnd truth descriptions 79.27 68.96 73.76

CwC Base Novel HM
all descriptions (Ours) 43.30 45.60 44.40
gnd truth descriptions 41.76 43.45 42.59

Table 12: Comparison with ground truth class descriptions for B2N, GZS and CwC benchmarks.

Using class descriptions from other LLMs. We generate class descriptions from two other LLMs
- OpenAI’s GPT4o-mini OpenAI (2024) and Anthropic’s Claude Haiku Anthropic (2024). Both LLMs
considered are fast and cheap – for instance generating class descriptions for all classes of all 11 datasets
from Claude Haiku takes 40 mins and costs 0.5$. The results are presented in the Tab. 13. for both B2N
and GZS benchmarks:

LLM Base Novel HM
GPT-3.5 84.68 77.51 80.94

Claude Haiku 84.64 77.05 80.67
GPT4o-mini 84.74 77.16 80.77

LLM Base Novel HM
GPT-3.5 79.47 69.75 74.29

Claude Haiku 79.31 69.14 73.88
GPT4o-mini 79.54 69.53 74.2

Table 13: Comparison with class descriptions generated from other LLMs on Base-to-Novel benchmark on
the left, and Generalized Zero-Shot benchmark on the right.
The results indicate that we get similar results across varying quality of outputs from different LLMs. We
believe that in the future obtaining text semantics is going to be cheaper and easier, which necessitates
algorithms that can make use of such cheap semantic information.

Few-shot Setting. Our main objective is to train prompts that can generalize effectively to novel classes and
datasets. As such, we present results primarily on settings that test generalizability, such as the GZS bench-
mark, Base-to-Novel benchmark, and the Classification without Class-names benchmark. For completeness,
we present results in a few-shot classification setting, where limited training samples are provided for all
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classes. Note that there are no novel classes in this setting. We showcase outcomes for K = 1, 2, 4, 8, and 16
shots. As shown in Fig. 6, on average, across 11 datasets, we perform competitively against the best baseline
PSRC.
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Figure 6: Performance of SAP in the few-shot setting. Our method achieves competitive performance
compared to all baselines on average across 11 datasets.

Source Target
ImageNet -V2 -A -S -R Avg

MaPLe 77.10 71.00 53.70 50.00 77.70 63.10
PSRC 76.30 71.00 54.10 50.00 77.80 63.22
SAP 76.40 71.10 55.70 49.80 77.50 63.52

Table 14: DG benchmark. SAP outperforms baselines
on avg.

Domain Generalization. We show results on Do-
main Generalization in Tab. 14. We train on K =
16 shot training data from base classes of source
dataset ImageNet and evaluation on ImageNetV2,
ImageNet-A, ImageNet-Setch, and ImageNet-R tar-
get datasets. SAP outperforms two strong baselines
PSRC and MaPLe.

ResNet-50 Backbone as Image Encoder. Here we show the GZS and B2N performance of SAP using
the ResNet-50 CLIP model as a backbone. We compare against five baselines which also use the ResNet-50
backbone and present our results in Tab. 15. For all methods including ours, we train the models without
tuning any hyperparameters such as prompt-depth, regularization weight, learning rate etc. and use the
same values as those of ViT-B/16 CLIP backbone. We observe that PSRC performs particularly poorly with
a ResNet backbone. Although we use similar hyperparameters as PSRC, SAP shows good results, indicating
that class descriptions help greatly in this setting. We show a gain of +0.98% on average gHM for GZS,
and +2.32% on average HM in the B2N setting.

Depth 1 3 5 7 9 11
HM 76.84 79.35 79.25 80.85 81.76 80.68

Table 16: Prompt depth analysis

Prompt Depth. Tab. 16 shows the average HM for the B2N
benchmark across nine datasets, excluding SUN397 and Ima-
geNet. As seen from the table, adding prompts till depth 9 for
image and text encoders is ideal for SAP performance and is
used for B2N, GZS and CwC benchmarks.

Class Activation Maps (CAMs). We show additional CAMs for the ResNet-50(He et al., 2015) backbone
encoder to visualize image regions that most correlate to a given description. Fig. 7 shows the GradCAM (Sel-
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Dataset CLIP CoOp KgCoOp ProGrad PSRC SAP (Ours)

Generalized Zero-Shot Learning Benchmark

Average
on 11
datasets

gBase 57.01 68.65 69.25 69.89 47.41 71.52 (+1.63)
gNovel 60.73 50.35 59.08 52.26 29.16 59.13 (-1.60)
gHM 58.81 58.1 63.76 59.81 36.12 64.74 (+0.98)

Base-to-Novel Generalization Benchmark

Average
on 11
datasets

Base 65.27 77.24 75.51 77.98 55.13 78.49 (+0.51)
Novel 68.14 57.40 67.53 63.41 38.72 69.32 (+1.79)
HM 66.68 65.86 71.30 69.94 45.49 73.62 (+2.32)

Table 15: Results on GZS and B2N settings using a ResNet-50 backbone. On average, SAP outperforms all
the baselines.

varaju et al., 2017) visualizations for base classes “Floor gymnastics”, “Hammering”, “Cape Flower” and
“Highway”. SAP effectively localizes the text semantics in the image compared to baselines. In Tab. 17, we
show quantitative results using an occlusion metric to measure the localization capabilities of our learned
prompts. Given a description, we mask out parts of the image which are most activated w.r.t. the descrip-
tion. The occluded image is then classified by the pre-trained CLIP model. A CAM localizes the description
well if occluding image regions with the highest activations leads to a large drop in accuracy.

Method Archery Baby Crawling Band Marching Apply Eye Makeup Apply Lipstick Biking Body Weight Squats
CoOp 57.39 64.42 61.99 75.00 78.66 55.15 53.97
PSRC 47.87 53.69 54.29 50.00 69.33 50.35 50.72
Ours 44.34 49.66 51.58 40.90 62.66 47.96 48.73

707-320 747-200 737-200 727-200 C-130 CRJ-200 Boeing-717
CoOp 15.21 11.82 23.47 6.13 75.81 38.22 20.63
PSRC 6.14 8.84 21.42 3.06 75.86 32.45 23.58
Ours 3.00 5.92 15.30 0.00 60.61 26.58 14.72

Table 17: Occlusion benchmark (lower number is better): Images are masked at regions of highest activation
relevant to a given class description, as identified by prompted image and text encoders, and then evaluated
using the pre-trained CLIP model. The lower the accuracy, the better are the localizations. We show results
for a few specific classes from the UCF101 dataset (top) and FGVC-Aircraft dataset (bottom). For example,
for the class ‘body weight squats’, we use the description ‘person bending knees and hips’.

For instance, for the text phrase ‘a photo of a 737-200, which has two engines on the wings’ we find that
masking out important regions given by our prompted image encoder leads to an accuracy of 15.30%. This
drop is higher than that of PSRC, whose accuracy drops only to 21.42%. This suggests that regions which
are deemed important by SAP are highly correlated to the text phrase. Our parameter-free cross-attention
module helps us learn prompts that focus on part-level image information.

Expanded Dataset-wise Tables. We present the elaborate tables dataset-wise for the Generalized Zero-
Shot setting in Tab. 18 and Base-to-Novel generalization setting in Tab. 21. SAP outperforms the best-
performing baseline, PSRC, in 7 of the 11 considered datasets. We perform very well in challenging datasets
such as EuroSAT, DTD, and UCF-101. We present dataset-wise results for the Classification without Class-
names benchmark in Tab. 19. Tab. 20 has the dataset-wise results for the Cross-Dataset generalizatin
benchmark. In Tab. 15 we show average results on the GZS benchmark and the Base-to-Novel benchmark
for the ResNet-50 backbone Image Encoder. We also present detailed, dataset-wise results for the same in
Tab. 22.

E Generation of Class Descriptions

Tab. 23 shows class names sampled from different datasets and their respective descriptions retrieved us-
ing GPT-3.5 (Hagendorff et al., 2022). We use the query – “What are useful visual features for
distinguishing a [classname] in a photo? Answer concisely.” Class descriptions differ from well-
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Figure 7: Figure displays GradCAM visualizations that highlight the regions of highest activation relevant to
specific text phrases. These visualizations use a ResNet-50 backbone as the image encoder for all baselines,
including ours. SAP localizes better than the existing baselines.

curated attributes found in datasets with annotated attributes such as AwA (Lampert et al., 2009) and
CUB (Wah et al., 2011) in three ways: (i) Our class descriptions may be noisy since no manual curation is
used; (ii) They may not necessarily contain class-discriminative information, especially for similar classes;
and (iii) Descriptions of a class are generated independently, and may not contain comparative traits w.r.t.
other classes. These choices are primarily to keep our approach low-cost while integrating these finer details
into fine-tuning of VLMs. It’s important to note that our description generation occurs at the class level,
not the image level, making it cost-efficient.

F Limitations and Broader Impact

A key dependency of our framework is the need for an LLM to provide descriptions at a class level. We
however believe that this has become increasingly feasible in recent times, especially since we require at a class
level and not at the image level. Our work deals with learning prompts for generalizable image classification
by leveraging cheaply available semantic knowledge in the form of class descriptions. We believe that our
work can serve as a stepping stone for incorporating semantic information to solve multi-modal tasks like
captioning and VQA. To the best of our knowledge, there are no direct detrimental effects of our work.
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Dataset CLIP CoOp VPT CoCoOp MaPLe KgCoOp ProGrad PSRC CLIP-VDT SAP
(ICML ’21) (IJCV ’22) (ECCV ’22) (CVPR ’22) (CVPR ’23) (CVPR ’23) (ICCV ’23) (ICCV ’23) (ICCVW ’23) (Ours)

Average gBase 60.81 75.19 73.48 73.13 75.47 76.86 70.15 78.81 63.75 79.47 (+0.66)
on 11 gNovel 63.21 60.39 66.62 65.23 67.09 62.12 55.07 68.13 63.89 69.75 (+1.62)

datasets gHM 61.99 66.99 69.89 68.96 71.04 68.71 61.70 73.08 63.82 74.29 (+1.21)

UCF101
gBase 62.70 80.26 75.76 76.56 76.90 78.96 74.63 82.67 66.19 82.23
gNovel 64.40 84.76 67.73 64.76 70.40 62.33 51.36 71.40 67.00 76.40
gHM 63.53 82.45 71.52 70.17 73.51 69.67 60.85 76.62 66.59 79.21

EuroSAT
gBase 51.40 69.26 88.22 70.86 84.06 82.02 76.26 86.60 55.09 94.37
gNovel 38.90 36.26 53.36 41.03 43.90 31.26 23.43 54.16 50.79 58.53
gHM 44.28 47.60 66.50 51.97 57.68 45.28 35.85 66.65 52.85 72.25

DTD
gBase 42.70 65.36 58.92 60.29 63.00 66.42 57.19 68.73 55.79 66.47
gNovel 45.79 34.30 44.26 46.09 47.49 39.73 33.36 47.53 51.00 54.27
gHM 44.19 44.99 50.55 52.25 54.16 49.72 42.14 56.20 53.28 59.75

Oxford
Pets

gBase 84.80 89.56 89.06 91.12 91.69 91.99 88.36 93.00 83.80 91.97
gNovel 90.19 90.46 93.23 92.50 93.93 92.69 87.76 91.00 90.40 92.30
gHM 87.41 90.01 91.10 91.81 92.80 92.34 88.06 91.99 86.97 92.13

Stanford
Cars

gBase 56.00 74.43 65.13 67.29 69.33 72.56 64.46 74.77 59.50 76.40
gNovel 64.19 57.16 70.56 68.82 69.86 66.56 55.66 71.23 61.59 69.33
gHM 59.81 64.67 67.74 68.05 69.61 69.43 59.74 72.96 60.52 72.69

Flowers102
gBase 62.09 93.40 83.12 87.36 91.19 92.80 84.86 95.00 69.90 95.69
gNovel 69.80 56.92 65.56 65.53 68.29 65.76 62.39 71.00 77.00 71.13
gHM 65.71 70.74 73.31 74.89 78.10 76.97 71.92 81.27 73.20 81.60

Food101
gBase 79.90 83.59 85.96 86.15 86.76 85.76 78.46 87.07 75.90 86.43
gNovel 80.90 76.82 84.99 86.50 87.20 83.72 76.23 85.90 77.69 86.09
gHM 80.39 80.07 85.49 86.33 86.98 84.73 77.33 86.48 76.78 86.26

FGVC
Aircraft

gBase 14.50 29.92 25.12 25.90 25.90 32.69 23.93 34.90 16.10 35.00
gNovel 23.79 22.83 28.03 26.36 28.53 22.06 15.63 28.40 18.60 30.23
gHM 18.01 25.90 26.50 26.13 27.15 26.35 18.93 31.32 17.59 32.44

SUN397
gBase 60.50 72.56 69.40 71.19 72.76 73.36 67.69 75.63 63.09 75.40
gNovel 63.70 56.52 67.50 67.26 68.93 61.75 57.00 68.70 66.00 69.80
gHM 62.05 63.55 68.44 69.17 70.79 67.06 61.89 72.00 64.51 72.30

Caltech101
gBase 91.40 95.92 95.66 95.09 95.83 95.89 91.53 96.20 93.59 96.30
gNovel 91.69 85.09 92.26 90.93 92.03 92.06 85.26 91.73 86.19 92.82
gHM 91.54 90.19 93.94 92.97 93.89 93.94 88.29 93.91 89.73 94.53

Imagenet
gBase 63.00 72.80 71.9 72.59 72.80 73.00 64.19 72.30 61.79 73.97
gNovel 62.00 63.20 65.40 67.80 67.40 65.40 57.70 68.40 56.59 66.66
gHM 62.49 67.66 68.50 70.11 70.00 68.99 60.77 70.30 59.07 70.13

Table 18: Accuracy comparison on the GZS benchmark. gNovel & gBase indicate the accuracy of the novel classes and base
classes respectively under the joint classification label space. gHM is the harmonic mean of gBase and gNovel. The best numbers
are in bold, and the second best are underlined. As reported in the first row, SAP outperforms all baselines on average gBase
(by +0.66%), gNovel (by +1.62%), and gHM (by 1.21%) computed across all datasets. We indicate the margin of improvement
over the corresponding best-performing baseline for each metric in green.
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Dataset CLIP CoOp VPT CoCoOp MaPLe KgCoOp ProGrad PSRC SAP

Average Base 33.28 36.97 40.28 40.12 41.56 37.95 34.00 40.40 43.31 (+1.75)
on 11 Novel 38.55 43.90 43.72 40.80 43.30 40.69 35.01 43.78 45.66 (+1.76)

datasets HM 35.72 40.14 41.93 40.46 42.41 39.27 34.50 42.02 44.46 (+2.04)

UCF101
Base 56.60 61.20 61.20 61.70 64.20 62.00 59.70 63.10 64.70
Novel 62.20 66.80 63.20 70.70 70.40 68.80 63.50 69.40 69.10
HM 59.27 63.88 62.18 65.89 67.16 65.22 61.54 66.10 66.83

EuroSAT
Base 39.90 47.10 76.50 62.90 84.30 59.70 47.60 71.4 88.70
Novel 71.10 78.70 83.20 49.00 58.30 57.60 45.80 82.10 80.90
HM 51.12 58.93 79.71 55.09 68.93 58.63 46.68 76.38 84.62

DTD
Base 40.20 40.90 47.20 44.20 44.90 41.90 39.20 42.70 52.40
Novel 42.40 44.10 44.30 47.10 42.90 44.40 40.20 44.00 49.00
HM 41.27 42.44 45.70 45.60 43.88 43.11 39.69 43.34 50.64

Oxford
Pets

Base 24.50 32.00 22.30 34.20 32.80 25.40 23.10 27.40 23.60
Novel 35.20 40.80 40.70 44.10 46.40 39.70 36.00 41.60 44.10
HM 28.89 35.87 28.81 38.52 38.43 30.98 28.14 33.04 30.75

Stanford
Cars

Base 13.50 15.60 17.60 16.30 10.30 12.50 10.00 21.00 22.50
Novel 15.90 20.70 18.90 11.70 25.80 15.30 8.50 20.40 23.40
HM 14.60 17.79 18.23 13.62 14.72 13.76 9.19 20.70 22.94

Flowers102
Base 7.40 14.10 12.40 17.70 18.30 12.00 16.40 18.80 19.60
Novel 9.30 20.40 18.40 17.60 23.20 12.30 13.80 19.30 26.00
HM 8.24 16.67 14.82 17.65 20.46 12.15 14.99 19.05 22.35

Food101
Base 35.10 42.70 44.00 43.40 35.50 47.10 42.10 41.20 42.20
Novel 33.80 45.40 44.80 44.40 38.90 44.60 41.80 40.50 44.20
HM 34.44 44.01 44.40 43.89 37.12 45.82 41.95 40.85 43.18

FGVC
Aircraft

Base 6.10 9.50 8.00 7.00 13.40 6.80 5.20 8.30 9.40
Novel 7.90 15.80 12.80 8.30 15.50 10.70 8.20 12.30 12.30
HM 6.88 11.87 9.85 7.59 14.37 8.32 6.36 9.91 10.66

SUN397
Base 46.60 49.20 50.50 51.30 50.20 50.10 40.10 50.00 51.40
Novel 48.30 50.00 51.40 52.50 52.20 53.20 42.90 51.40 51.40
HM 47.43 49.60 50.95 51.89 51.18 51.60 41.45 50.69 51.40

Caltech101
Base 77.80 76.00 83.00 83.00 82.30 80.80 72.30 81.10 81.70
Novel 74.80 74.30 75.90 75.80 75.50 76.20 63.20 75.10 75.20
HM 76.27 75.14 79.29 79.24 78.75 78.43 67.44 77.98 78.32

ImageNet
Base 18.40 18.40 20.40 19.70 21.00 19.20 18.30 19.4 20.30
Novel 23.20 26.00 27.40 27.60 27.30 24.80 21.30 25.50 26.70
HM 20.52 21.55 23.39 22.99 23.74 21.64 19.69 22.04 23.06

Table 19: Accuracy comparison in the Classification without Class-names setting. We show average Base, Novel, and HM
accuracies over all 11 datasets. During evaluation, descriptions of each class are provided instead of the class name, and visual
recognition is conducted based on these descriptions. SAP outperforms baselines by average Base (by +1.75%), Novel (by
+1.76%) and HM (by +2.04%) computed over all datasets.
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CoOp 71.51 93.70 89.14 64.51 68.71 85.30 18.47 64.15 41.92 46.39 66.55 63.88
CoCoOp 71.02 94.43 90.14 65.32 71.88 86.06 22.94 67.36 45.73 45.37 68.21 65.74
VPT 70.60 91.80 90.40 63.70 67.30 83.10 22.70 66.10 46.10 37.10 65.90 63.42
MaPLe 70.72 93.53 90.49 65.57 72.23 86.20 24.74 67.01 46.49 48.06 68.69 66.30
KgCoOp 69.94 94.08 90.13 65.63 71.21 86.48 23.85 67.47 45.80 41.98 68.33 65.49
ProGrad 62.17 88.30 86.43 55.61 62.69 76.76 15.76 60.16 39.48 28.47 58.70 57.36
PSRC 71.27 93.60 90.25 65.70 70.25 86.15 23.90 67.10 46.87 45.50 68.75 65.81
CLIP-VDT 68.10 85.40 83.50 50.30 56.00 72.50 14.60 56.30 42.70 24.70 53.80 53.98
KAPT N/A 88.90 89.40 58.15 68.00 79.95 17.95 N/A 44.80 41.35 65.05 61.50
SAP (Ours) 71.40 94.53 90.14 64.58 71.31 86.23 24.47 68.09 48.61 49.10 71.52 66.85

Table 20: Cross-Dataset Generalization benchmark. Models are trained on Imagenet and tested on the
entire label space of new datasets without fine-tuning. SAP outperforms all baselines on average. N/A: not
available in (Kan et al., 2023).
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Dataset CLIP CoOp VPT CoCoOp ProDA MaPLe KgCoOp ProGrad PSRC L.Prompt CLIP-VDT KAPT SAP

Average Base 69.34 82.69 80.81 80.47 81.56 82.28 80.73 82.48 84.26 84.47 82.48 81.10 84.68 (+0.21)
on 11 Novel 74.22 63.22 70.36 71.69 72.30 75.14 73.60 70.75 76.10 74.24 74.50 72.24 77.51 (+1.41)

datasets HM 71.70 71.66 70.36 75.83 76.65 78.55 77.00 76.16 79.97 79.03 78.28 76.41 80.94 (+0.97)

UCF101
Base 70.53 84.69 82.67 82.33 85.23 83.00 82.89 84.33 87.10 86.19 84.10 80.83 86.60
Novel 77.50 56.05 74.54 77.64 78.04 80.77 76.67 76.94 78.80 73.07 76.40 67.10 83.90
HM 73.85 67.46 78.39 77.64 78.04 80.77 79.65 79.35 82.74 79.09 80.07 73.33 85.23

EuroSAT
Base 56.48 92.19 93.01 87.49 83.90 94.07 85.64 90.11 92.90 93.67 88.50 84.80 96.10
Novel 64.05 54.74 54.89 60.04 66.00 73.23 64.34 60.89 73.90 69.44 70.50 67.57 81.13
HM 60.03 68.69 69.04 71.21 73.88 82.35 73.48 72.67 82.32 79.75 78.48 75.21 87.98

DTD
Base 53.24 79.44 79.15 77.01 80.67 80.36 77.55 77.35 83.37 82.87 81.80 75.97 84.27
Novel 59.90 41.18 50.76 56.00 56.48 59.18 54.99 52.35 62.97 60.14 62.30 58.30 67.03
HM 56.37 54.24 61.85 64.85 66.44 68.16 64.35 62.45 71.75 69.70 70.73 65.97 74.67

Oxford
Pets

Base 91.17 93.67 94.81 95.20 95.43 95.43 94.65 95.07 95.33 96.07 94.40 93.13 95.27
Novel 97.26 95.29 96.00 97.69 97.83 97.76 97.76 97.63 97.30 96.31 97.70 96.53 96.90
HM 94.12 94.47 95.40 96.43 96.62 96.58 96.18 96.33 96.30 96.18 95.68 94.80 96.08

Stanford
Cars

Base 63.37 78.12 72.46 70.49 74.70 72.94 71.76 77.68 78.27 78.36 76.80 69.47 79.70
Novel 74.89 60.40 73.38 73.59 71.20 74.00 75.04 68.63 74.97 72.39 72.90 66.20 73.47
HM 68.65 68.13 72.92 72.01 72.91 73.47 73.36 72.88 76.58 75.26 74.80 67.79 76.46

Flowers102
Base 72.08 97.60 95.39 94.87 97.70 95.92 95.00 95.54 98.07 99.05 97.40 95.00 97.83
Novel 77.80 59.67 73.87 71.75 68.68 72.46 74.73 71.87 76.50 76.52 75.30 71.20 76.50
HM 74.83 74.06 83.26 81.71 80.66 82.56 83.65 82.03 85.95 86.34 84.94 81.40 86.86

Food101
Base 90.10 88.33 89.88 90.70 90.30 90.71 90.50 90.37 90.67 90.82 90.40 86.13 90.40
Novel 91.22 82.26 87.76 91.29 88.57 92.05 91.70 89.59 91.53 91.41 91.20 87.06 91.43
HM 90.66 85.19 88.81 90.99 89.43 91.38 91.09 89.98 91.10 91.11 90.80 86.59 90.91

FGVC
Aircraft

Base 27.19 40.44 33.10 33.41 36.90 37.44 36.21 40.54 42.73 45.98 37.80 29.67 42.93
Novel 36.29 22.30 30.49 23.71 34.13 35.61 33.55 27.57 37.87 34.67 33.00 28.73 38.87
HM 31.09 28.75 31.74 27.74 35.46 36.50 34.83 32.82 40.15 39.53 35.24 29.19 40.80

SUN397
Base 69.36 80.60 79.66 79.74 78.67 80.82 80.29 81.26 82.67 81.20 81.40 79.40 82.57
Novel 75.35 65.89 72.68 76.86 76.93 78.70 76.53 74.17 78.47 78.12 76.80 74.33 79.20
HM 72.23 72.51 79.63 78.27 77.79 79.75 78.36 77.55 80.52 79.63 79.03 76.78 80.85

Caltech101
Base 96.84 98.00 97.86 97.96 98.27 97.74 97.72 98.02 98.10 98.19 98.30 97.10 98.23
Novel 94.00 89.91 93.76 93.81 93.23 94.36 94.39 93.89 94.03 93.78 95.90 93.53 94.37
HM 95.40 93.73 95.77 95.84 95.68 96.02 96.03 95.91 96.02 95.93 97.09 95.28 96.26

ImageNet
Base 72.43 76.47 70.93 75.98 75.40 76.66 75.83 77.02 77.60 76.74 76.40 71.10 77.60
Novel 68.14 67.88 65.90 70.43 70.23 70.54 69.96 66.66 70.73 70.83 68.30 65.20 69.83
HM 70.22 71.92 73.66 73.10 72.72 73.47 72.78 71.46 74.01 73.66 72.12 68.02 73.51

Table 21: Accuracy comparison on Base-to-Novel Generalization benchmark. The best numbers are in bold,
and the second best are underlined. SAP outperforms all baselines on average Base (by +0.21%), Novel (by
+1.41%) and HM (by +0.97%) computed over all datasets. We indicate the margin of improvement over
the corresponding best-performing baseline for each metric in green.

GZS Benchmark Base-to-Novel Benchmark

Dataset CLIP CoOp KgCoOp Pro- PSRC SAP CLIP CoOp KgCoOp Pro- PSRC SAP
Grad Grad

Average gBase 57.01 68.65 69.25 69.89 47.41 71.52 (+1.63) Base 65.27 77.24 75.51 77.98 55.13 78.49 (+0.51)
on 11 gNovel 60.73 50.35 59.08 52.26 29.16 59.13 (-1.60) Novel 68.14 57.40 67.53 63.41 38.72 69.32 (+1.79)

datasets gHM 58.81 58.10 63.76 59.81 36.12 64.74 (+0.98) HM 66.68 65.86 71.30 69.94 45.49 73.62 (+2.32)

UCF101
gBase 61.20 73.20 71.05 72.75 51.55 74.73 Base 68.40 79.78 77.16 81.04 59.95 80.70
gNovel 61.79 45.10 56.95 48.05 30.25 63.80 Novel 61.50 48.31 70.13 60.07 38.85 72.67
gHM 61.49 55.81 63.22 57.87 38.13 68.33 HM 64.77 60.18 73.48 69.00 47.15 76.47

EuroSAT
gBase 32.79 62.70 71.25 73.60 61.15 72.77 Base 55.80 90.25 84.28 88.44 70.35 91.33
gNovel 46.50 23.45 33.95 19.40 09.00 32.32 Novel 66.90 31.30 53.53 49.49 33.90 67.00
gHM 38.46 34.13 45.99 30.71 15.69 44.76 HM 60.85 46.48 65.47 63.47 45.75 77.30

DTD
gBase 43.50 60.60 64.80 62.30 42.60 62.73 Base 53.70 75.12 74.73 73.80 51.35 75.97
gNovel 41.29 27.05 40.45 27.05 18.30 44.27 Novel 55.60 37.08 48.39 46.38 29.85 57.90
gHM 42.37 37.40 49.81 37.72 25.60 51.91 HM 54.63 49.65 58.74 56.96 37.75 65.72

Oxford
Pets

gBase 85.90 84.70 85.75 85.95 67.65 87.00 Base 91.20 90.15 92.57 92.36 77.60 91.90
gNovel 85.59 85.25 90.45 87.10 65.65 89.27 Novel 93.90 90.70 94.61 94.48 79.40 94.57
gHM 85.74 84.97 88.04 86.52 66.63 88.12 HM 92.53 90.42 93.58 93.41 78.49 93.22

Stanford
Cars

gBase 48.29 64.70 62.25 64.30 17.35 68.20 Base 55.50 68.89 63.28 71.79 26.35 71.43
gNovel 64.09 48.05 59.20 53.45 21.65 57.60 Novel 66.50 57.13 66.92 59.36 25.50 64.77
gHM 55.08 55.15 60.69 58.38 19.26 62.45 HM 60.50 62.46 65.05 64.99 25.92 67.94

Flowers102
gBase 62.59 89.40 85.70 88.80 65.00 92.52 Base 69.70 95.22 91.45 94.71 73.75 96.40
gNovel 68.30 50.70 63.85 52.75 10.85 61.62 Novel 73.90 59.53 71.75 68.86 19.75 70.30
gHM 65.32 64.70 73.18 66.18 18.60 73.97 HM 71.74 73.26 80.41 79.74 31.16 81.31

Food101
gBase 75.80 73.80 78.30 76.30 32.65 77.97 Base 83.10 81.70 83.90 83.77 37.85 83.57
gNovel 78.90 68.50 78.25 72.90 17.60 76.60 Novel 84.50 78.13 85.23 83.74 27.15 84.13
gHM 77.32 71.05 78.27 74.56 22.87 77.28 HM 83.79 79.88 84.56 83.75 31.62 83.85

FGVC
Aircraft

gBase 12.69 24.15 20.20 21.60 8.65 23.17 Base 18.80 28.39 24.91 30.17 14.20 28.97
gNovel 22.10 14.75 18.20 14.25 6.95 17.45 Novel 26.00 20.02 25.69 19.70 9.05 25.33
gHM 16.12 18.31 19.15 17.17 7.71 19.91 HM 21.82 23.48 25.29 23.84 11.05 27.03

SUN397
gBase 56.70 66.65 67.05 67.15 54.25 70.40 Base 66.40 76.33 75.33 76.90 63.25 78.20
gNovel 60.50 53.30 61.80 56.50 45.85 62.20 Novel 70.10 62.89 72.25 68.09 57.50 73.27
gHM 58.54 59.23 64.32 61.37 49.70 66.05 HM 70.10 68.96 73.76 72.23 60.24 75.65

Caltech101
gBase 88.59 91.35 91.65 91.50 79.35 92.13 Base 91.00 95.20 95.35 95.72 84.80 95.67
gNovel 81.69 82.15 88.05 86.30 58.65 87.50 Novel 90.60 87.55 91.92 89.92 65.65 91.13
gHM 85.00 86.51 89.81 88.82 67.45 89.76 HM 90.80 91.21 93.60 92.73 74.01 93.34

ImageNet
gBase 59.09 63.90 63.75 64.55 41.40 65.05 Base 64.40 68.5 67.67 69.13 47.00 69.20
gNovel 57.29 55.60 58.75 57.15 36.05 57.85 Novel 60.10 58.76 62.45 57.39 39.35 61.40
gHM 58.18 59.46 61.15 60.63 38.54 61.24 HM 62.18 63.29 64.96 62.72 42.84 65.07

Table 22: GZS benchmark and Base-to-Novel Generalization benchmark using ResNet backbone. Metrics
for the GZS benchmark, such as gBase, gNovel, and gHM, are employed in the left section of the table.
Conversely, metrics like Base, Novel, and HM are utilized to assess the Base-to-Novel benchmark in the right
section. On average, our method outperforms all the baselines.
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Class Descriptions Class Descriptions
(Dataset) (Dataset)

Breast stroke 1. Arms moving in a circular motion Diving 1. Person in mid-air or jumping
(UCF101) 2. Kicking legs in a frog-like motion (UCF101) 2. Person wearing diving gear

3. Head above water during stroke 3. water splashing or ripples
4. Positioned horizontally in the water 4. Person wearing gogglesr
5. Pushing water forward and outwards 5. Person wearing swim cap

Highway or road 1. Long and straight path Permanent cropland 1. Uniform vegetation or crops
(EuroSAT) 2. Multiple lanes for traffic (EuroSAT) 2. Irrigation systems or canals

3. Traffic signs 3. Organized rows or patterns
4. Smooth and paved surface 4. Fences or boundaries
5. Guardrails or barriers 5. Distinct crop types or varieties

Striped 1. Alternating bands or lines Wrinkled 1. Irregular and uneven surface
(DTD) 2. Regular pattern of stripes (DTD) 2. Creases or folds

3. Varying widths of stripes 3. Shadows indicating unevenness
4. Contrasting colors between stripes 4. Lack of smoothness
5. Horizontal, vertical, diagonal stripes 5. Distorted or crumpled appearance

Maine coon 1. Large domestic cat Chihuahua 1. Small breed of dog
(Oxford Pets) 2. Long, bushy tail (Oxford Pets) 2. Rounded apple-shaped head

3. Tufted ears with lynx-like tips 3. Erect, pointy ears
4. Rectangular body shape 4. Short snout
5. Tufted paws 5. Short legs and long tail

2008 chrysler pt 1. Convertible top 2012 ferrari ff coupe 1. Sleek and sporty design
cruiser convertible 2. Chrome grille (Stanford Cars) 2. Large and stylish alloy wheels
(Stanford Cars) 3. PT cruiser badge 3. Low and wide stance

4. Alloy wheels 4. Ferrari logo on the front and rear
5. Boxy shape 5. Dual exhaust pipes

Watercress 1. Small, round-shaped leaves Trumpet creeper 1. Bright orange or red flowers
(Flowers102) 2. Vibrant green color (Flowers102) 2. Trumpet-shaped blossoms

3. Thin, delicate stems 3. Long, tubular petals
4. Water or moist environments 4. Green leaves with serrated edges
5. Clusters of small white flowers 5. Hummingbirds and bees

Hot dog 1. Cylindrical-shaped food Sushi 1. Bite-sized and compact
(Food101) 2. Bun or bread (Food101) 2. Rice as a base

3. Sausage or frankfurter 3. Raw or cooked fish
4. Visible grill marks 4. Seaweed wrapping (nori)
5. Toppings like onions or relish 5. Served with soy sauce

737-200 1. Two engines on the wings Industrial area 1. Factories or warehouses
(FGVC Aircraft) 2. Low wing configuration (SUN397) 2. Smokestacks or chimneys

3. Narrow body 3. Cranes or heavy machinery
4. Distinctive short fuselage 4. Conveyor belts or assembly lines
5. Swept-back wings 5. Trucks or shipping containers

Gramophone 1. Phonograph Cylinder or Disc Buckle 1. Metal or plastic object
(Caltech101) 2. Horn Speaker (Imagenet) 2. Rectangular or circular shape

3. Hand-Cranked Operation 3. Fastening or securing
4. Nostalgic and Vintage Appeal 4. Opened and closed
5. Vinyl or Shellac Records 5. Found on belts or straps

Table 23: Sample classes from various datasets and the corresponding descriptions provided by GPT-3.5.
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