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A IMPORTANCE-BASED DPP

In this section, we adapt importance-based pruning, which is traditionally popular for model parameter
pruning, e.g. Han et al. (2015b); Li et al. (2018); Sun et al. (2023), into DPP.

Magnitude Pruning (MP). Magnitude pruning Li et al. (2018) drops model weights according to their
magnitudes: less “important” weights with smaller magnitudes are dropped. To extend its application to
pruning delta parameters we evaluate importance in terms of the magnitudes of delta parameters, represented
as �Sij := |�Wij |.

Pruning based on both Weights and activations (WANDA). Recently, WANDA was introduced by Sun et al.
(2023) and was empirically found to achieve state-of-the-art pruning performance for LLMs. It evaluates the
importance of each model weight using a score metric that scales the magnitude of the weight by the Euclidean
norm of the input feature, thus accounting for the input activations. We extend WANDA to encompass delta
parameters by adjusting the importance score to �Sij = |�Wij | · kxjk2.

For their respective scores, MP and WANDA (and any other importance-sampling method adapted to DPP)
maintain the top-k parameters in �W with the highest scores. Let Sk ⇢ [m]⇥ [n] be the set of indices (i, j)
that correspond to weights with the top-k scores �Sij . Moreover, let k := (1� p)mn so that the method
retains the same number of delta parameters as DARE does in expectation. Accordingly, denote the set of
selected weights with respect to p as Sp := Sk. Then, putting in Eq. (1), the change for each output activation
i 2 [m] can be expressed as:

hdi↵
i =

X
{j:(i,j)/2Sp}

�Wijxj , (4)

where the summation extends over all input dimensions j for which the (i, j) entry of �W is dropped due to
a low score. An importance sampling method can perform effectively even for large p ⇡ 1 if the cumulative
contributions from the summation are approximately zero out. This is guaranteed when the distribution
of the entries [�Wijxi]j2[n] has a light tail and high peakedness. We validate this in Secs. C.5 and B and
accordingly propose AdamR-L1 fine-tuning to enhance their pruning performance (algorithm detailed in in
Sec. C.7)

B ANALYSIS ON TWO-LAYER NEURAL-NETWORK

Having gained analytical insights into the key factors that influence the performance of DPP methods in
Sec. 3.2 and Sec. A, we now explore in detail how these factors influence DPP in a two-layer neural network.
Concretely, for an input x 2 Rn, the model output is f(x) = Wo N(�(W1 N(x) + b1)) + bo. Here, N
denotes layer normalization (RMSnorm Zhang & Sennrich (2019) in our case), � is the ReLU activation
function, Wo / bo and W1 / b1 are the weights / biases of the output and the hidden layer respectively, and
are all trainable (during both pre-training and fine-tuning). In our experiments, we pre-train the model on the
CIFAR-10 dataset and use the SVNH dataset Sermanet et al. (2012) for the supervised fine-tuning task.

Influence of variance and mean statistics on DARE (Fig. 5a): Thm. 3.1 establishes how DARE’s
performance, approximated by the magnitude of hdi↵

i , is influenced by the mean and variance statistics of
{cij}. Specifically, smaller values are favorable for performance. To verify this, we compare performance of
DARE when the model is fine-tuned using L1/L2 regularization with respect to the pre-trained parameters.
Formally, recalling that �✓ = ✓F � ✓P denotes the delta parameter of all trainable weights, we use
regularization that penalizes the following: k�✓kr, r 2 {1, 2}. L2 regularization directly corresponds to
a smaller total energy (

P
ij c

2
ij) of the {cij} parameters, which recall capture the degree of change in the

output layer after fine-tuning. This enters the bound in Thm. 3.1 and suggests that L2 regularization improves
DARE’s performance. On the other hand, L1 regularization favors sparse �✓, thus also {cij}. Intuitively,
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Figure 5: Controlled experiments of DPP performance on two-layer neural net. (a) Influence of variance and
mean statistics on DARE. (b) Influence of normalization layer. (c) L1 regularization for importance based
pruning. (d) Methods with best-fitting regularization.

this increases the variance, thus we expect from Thm. 3.1 that L1 regularization might hurt performance.
Fig. 5 (a) shows the test accuracy of DARE for varying values of pruning rate p for three finetuning settings:
no regularization (blue), L2 regularization (orange), and L1 regularization. The results confirm the insights
above and thus support Thm. 3.1.

Influence of normalization layer (Fig. 5b): Normalization layers have become standard practice in deep
learning due to their role in stabilizing training by normalizing the variance of activations, as established in
Xu et al. (2019). In this study, we explore the impact of these layers on the performance of DARE. According
to Thm. 3.1, reduced variance in activations (denoted as xjs in our theorem setup) leads to decreased variance
in the {cij} coefficients, which in turn is predicted to enhance DARE’s effectiveness. This hypothesis is
confirmed in Fig. 5 (b), where the absence of a normalization layer is shown to expedite the performance
decline of DARE as pruning rates increase. Conversely, importance-based methods discussed in Sec. A
demonstrate a higher tolerance to increased pruning rates without normalization. These observations are
consistent with the discussions in Sec. A.

L1 regularization for importance based pruning (Figure 5c): In Sec. A, we discussed how importance-
based DPP methods are favored. Here, we demonstrate this is indeed the case by using L1 regularization
during finetuning to induce sparse delta parameters, which increases the variance. Concretely, as illustrated in
Fig. 5c, introducing L1 regularization improves the performance of importance-based methods. Note also
that, in this scenario, magnitude pruning outperforms WANDA due to the absence of outlier features Wei
et al. (2022); Sun et al. (2023).

Methods with best-fitting regularization(Fig. 5d): In Fig 5d, we compare three methods with their
corresponding best-fit regularization. As discussed above, DARE benefits from L2 regularization, while
importance-based methods benefit from L1 regularization. We find that that DARE with L2 regularization is
more robust with respect to the increase in pruning rate. On the other hand, importance based methods with
L1 regularization perform the best for medium-range pruning rates.

C ADDITIONAL DETAILS

C.1 ADDITIONAL RELATED WORK

Supervised fine-tuning of Language Models. Supervised fine-tuning (SFT) of pre-trained LLMs is designed
to enhance their capabilities by training on task-specific data, establishing a standard in natural language
processing Dodge et al. (2020); Zhao et al. (2023). SFT can be categorized into full fine-tuning Devlin
et al. (2018); Liu et al. (2019) and parameter-efficient fine-tuning (PEFT) Ding et al. (2023); Li & Liang
(2021); Hu et al. (2021); Deng et al. (2024). However, recent studiesChen et al. (2022); Lu et al. (2023);
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Yao & Klimovic (2023) suggest that PEFT methods may not yet achieve the model quality of full parameter
fine-tuning, particularly in high-resource tasks Chen et al. (2022). Additionally, Liu et al. (2024) indicates
that most models on the Open LLM Leaderboard are derived from full parameter fine-tunes or their merges.
Consequently, this paper focuses on full model fine-tuning.

Sparse finetuning. An orthogonal approach to DPP is sparse fine-tuning, which reduces the size of delta
parameters by modifying the fine-tuning process itself. This is achieved through techniques such as iterative
masking and fine-tuning to create sparse DP (Guo et al., 2020; Liao et al., 2023; Fu et al., 2023). In contrast,
DPP methods like DARE Yu et al. (2023a) are primarily post-hoc procedures that focus on pruning the
delta weights of models that have already been fine-tuned, making DPP particularly valuable for the many
fine-tuned models available on platforms like Hugging Face.

Follow-up work on DARE. The recent development of the DARE (Drops delta parameters And REscales)
technique has significantly advanced the efficiency of finetuned-model pruning. This method sets most
delta parameters to zero, maintaining the efficacy of Supervised Fine-Tuning without loss of performance.
Highlighted in Goddard et al. (2024) within Arcee’s MergeKit, a toolkit for merging large LMs, DARE
has shown great potential enhancing model merging processes and has various practical applications. It
has been successfully implemented in projects such as Prometheus Kim et al. (2024), an open-source LM
for evaluating other LMs, and in medical LMs like Biomistral Labrak et al. (2024), which develops LMs
for medical applications. The technique also supports specialized domains, as seen in Akiba et al. (2024),
which focuses on a Japanese LLM with advanced reasoning capabilities. These implementations highlight
the broad applicability and effectiveness of DARE in enhancing model merging strategies, thus making our
improvements particularly relevant and practical.

C.2 IMPLEMENTATION DETAILS

For decoder LLMs, following Yu et al. (2023a), we set the temperature to 0.0 for greedy decoding and
limit the maximum number of generated tokens to 1,024 on GSM8K. For encoder-based LMs, we fine-tune
BERT-base-uncased and RoBERTa-base for 10 epochs using a warmup strategy and a learning rate of 1e-4.
Experiments are conducted on NVIDIA A100 GPUs.

C.3 PROPOSED FRAMEWORK FOR DPP METHOD SELECTION.

We outline the procedure for selecting appropriate DPP methods in practice. As illustrated in Fig 4, if
fine-tuning is not permitted and the data points (DPs) have large statistics, we recommend using WANDA for
DPP (see Sections 5.3). If the DPs are not large, DARq with 1/qv should be applied when a validation set is
available, otherwise, DARq with 1/qe is recommended (see Sec. 4.1). If the existing DPs are insufficient and
fine-tuning is allowed, we suggest using AdamR-L2 or L1 with appropriate regularization weights to generate
highly prunable DPs for DARq and MP, respectively (see Sec. C.7). Among the two, AdamR-L2+DARq
should be prefered due to flexibility and better performance as shown in Table 9 and Table 5.

C.4 CONTROL PRUNING WITH REGULARIZAITON

In this section, we demonstrate the magnitude of regularization weight can control the degree of pruning that
is required.

Fig 6 (a-d) illustrates the L2 fintuned RoBERTa model with different regularization weights on SST2, MRPC,
COLA and STS-B datasets respectively and we use pruning rate p 2 [0, 0.9, 0.99, 0.999] to prune the delta
parameters. To separate different pruning rates in the figure, we set log scaled pruning �log(1 � p)/3 =
[0, 0.33, 0.67, 1.00] in x axis. With moderate regularization the model has a close performance to models
without regularizaiton (weight 0) (even better i.e.weight 0.01 in Fig 6 (a)). This indicate adding moderate
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Figure 6: Control DARE pruning performance with L2 regularizaiton on RoBERTa.(a-d) demonstrate results
on SST2, MRPC, COLA, and STS-B, respectively. Aligning the degree of regularization proportionally to
the pruning rate can lead to optimal performance.

regularization won’t hurt the model performance. To achieve moderate pruning performance p = 0.99, we can
choose moderate regularization. For example, in fig 6 (c), choose weight 0.05 achieves the best performance
when pruning rate p = 0.99 and outperforms the no regularization by more than 40% . When there is a need
for extreme delta parameters pruning, it is recommended to increase the regularization weight. As shown
in Figure 6 (d), weight 0.1 achieves the best performance when pruning rate p = 0.999 and outperforms no
regualrizaiton by 80 %. It is notable with L2 regualrization, all dataset can achieve 99.9% delta parameter
pruning with minor performance drop. Finally, as shown in Fig 6 (d), a strong regularization weight 0.5
although face original performance drop, but demonstrate robustness (minor performance drop) to different
level of pruning rate.

Fig 7 (a-d) depicts L2 fine-tuned BERT models with varied regularization weights on SST2, MRPC, COLA,
and STS-B datasets, respectively. Pruning rates p 2 [0, 0.9, 0.99, 0.999] are used. Log-scaled pruning
�log(1�p)/3 = [0, 0.33, 0.67, 1.00] are plot to separate different rates on the x-axis. Moderate regularization
yields performance close to models without regularization (weight 0), sometimes even better (e.g., weight
0.05 in Fig 7 (a)), suggesting it won’t hurt model performance. For moderate pruning (p = 0.99), moderate
regularization suffices. For instance, in Fig 7 (a), weight 0.05 achieves optimal performance, outperforming
no regularization by about 40%. For extreme pruning needs, increase the regularization weight. As in Fig 7
(b), weight 0.1 achieves peak performance at p = 0.999, surpassing no regularization by 60%. Notably, with
AdamR-L2, all datasets can achieve 99.9% DPP with minimal performance drop. Lastly, Fig 7 (c) shows that
a strong weight of 0.1, despite an initial performance drop, exhibits robustness (minor drop) across different
pruning rates.

C.5 ADAMR-L1 FINETUNING

In this section, we focus on MP (Han et al., 2015a) and WANDA (Sun et al., 2023), utilizing AdamR-L1 to
enhance pruning performance for importance-based methods.
MP: We demonstrate AdamR-L1 results in Table 7: the pruning rate consistently increased on datasets when
applying magnitude pruning on L1 fintuned models. This indicates AdamR-L1 is an effective strategy in
producing highly prunbale DPs for MP.
WANDA: As shown in Table 7, AdamR-L1 improved WANDA’s performance in most datasets. However,
in the SST2 and STS-B datasets (Table 7), adding AdamR-L1 negatively impacted pruning performance,
as indicated by the numbers in red. This is because WANDA considers outlier activations Dettmers et al.
(2022) in LLMs and uses �Sij = |�Wij | · |xj | as its metric. Thus, some important DPs may be pruned
when AdamR-L1 is applied due to their small |xj |. This suggests that important DPs are not always aligned
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Figure 7: Control DARE pruning performance with L2 regularization on BERT. (a-d) demonstrate results on
SST2, MRPC, COLA, and STS-B, respectively. Aligning the degree of regularization proportionally to the
pruning rate can lead to optimal performance.

Table 7: MP and WANDA with AdamR-L1 on BERT and RoBERTa across various datasets

SST2 COLA
Models p=0.0 p=0.90 p=0.95 p=0.99 p=0.0 p=0.90 p=0.95 p=0.99

original L1 original L1 original L1 original L1 original L1 original L1 original L1 original L1

BERT-MP 90.25 89.91 91.40 89.68 84.29 89.22 51.15 83.14 56.24 56.52 37.47 47.49 21.58 44.59 8.49 12.30

BERT-WANDA 90.51 88.53 86.93 79.93 52.64 63.19 37.34 45.29 19.24 46.09 8.37 10.85

RoBERTa-MP 92.09 92.55 90.27 92.78 84.86 92.78 68.00 91.86 62.10 60.16 24.88 50.78 6.56 43.81 0.00 32.81

RoBERTa-WANDA 92.12 91.74 92.35 89.45 76.15 72.82 34.64 42.54 0.07 36.55 0.00 29.80

MRPC STS-B
Models p=0.0 p=0.90 p=0.95 p=0.99 p=0.0 p=0.90 p=0.95 p=0.99

original L1 original L1 original L1 original L1 original L1 original L1 original L1 original L1

BERT-MP 85.01 84.35 66.14 67.22 15.81 26.52 15.81 15.81 88.51 85.12 82.79 84.98 42.31 84.42 55.80 75.71

BERT-WANDA 72.85 64.22 22.75 23.49 15.81 15.81 80.71 76.11 50.70 70.80 40.92 54.21

RoBERTa-MP 90.05 90.07 76.39 85.17 75.17 78.93 74.80 74.80 90.57 89.87 82.70 87.43 74.58 86.25 21.26 58.53

RoBERTa-WANDA 82.21 84.68 76.24 78.86 74.80 74.80 84.56 78.13 76.17 65.42 20.91 25.87

with outlier activations, and that AdamR-L1 may not be the optimal strategy for improving WANDA. For
further analysis of outlier activations, see Appendix D.

C.6 SCALE OF DELTA PARAMETERS

As demonstrated in Theorem 3.1, DARE is effective at pruning DPs when the mean and variance of cij are
small, and it generally outperforms importance-based methods in such conditions, as shown in Table 12.
While most fine-tuned LLMs typically introduce small DPs Yao & Klimovic (2023); Lee et al. (2019),
and x is small, as indicated in Table 8, where |�Wijxj | ⌧ |�Wij |, there are still instances where delta
parameters are large. Specifically, Table 8 reports the magnitudes of �W and cij across various LLMs.
For instance, the MetaMath-LLaMA-7B Yu et al. (2023b), which fine-tunes LLaMA2-7B using two large
datasets—MetaMathQA Yu et al. (2023b) and Proof-Pile-2 Azerbayev et al. (2023)—yields a mean delta
parameter magnitude of 0.017, significantly larger than that of Abel-7B and MetaMath-7B. As illustrated in
Table 6, DARE experiences a substantial performance drop when the pruning rate exceeds 0.1.

C.7 ALGORITHM OF ADAMR

With a simple model, Sec. B demonstrated how L1 and L2 regularization can enhance DPP. We now show
that when modifications to model finetuning are allowed, our approach can scale up to LLMs. In order to
implement our regularization strategy, we propose replacing the weight decay of AdamW—the standard
choice for training LLMs—with our custom regularization, as described in Sec. 5.2 and Sec. C.5. However,
we do this carefully since Xie et al. (2024) found recently that weight decay can lead to large gradient norms
in the final training phase, deteriorating convergence. To address this issue, following Xie et al. (2024) we
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Table 8: Magnitude Statistics of �Wij and �Wijxj of Llama2-7B fintuned LLMs on all dimensions and
layers.

Models Magnitude
mean(|�Wij|) mean(|�Wijxj|)

Abel-7B 7.3e-4 (4.3e-7) 2.89e-5 (5.41e-9)
MetaMath-7B 7.2e-4 (3.3e-7) 2.85e-5 (6.02e-9)

Wizardmath-7B 4.0e-4 (1.0e-7) 1.56e-5 (1.67e-9)
MetaMath-llema-7B 0.017 (1.9e-4) 7.0e-4 (3.02 e-6)

adjust our regularization strength based on the gradient norm. We call our new optimizer as AdamR. Note
regularization here is based on the DP rather than simply on the weights of the finetuned model. The detailed
algorithm, which we call AdamR, is presented in Algorithm 1.

Algorithm 1 AdamR
Input: Pre-trained model ✓p,

1: gt = rL(✓t�1)
2: mt = �1mt�1 + (1� �1)gt
3: vt = �2vt�1 + (1� �2)g2

t
4: m̂t =

mt

1��t
1

5: v̂t =
vt

1��t
2

6: v̄t = mean(v̂t)
7: ✓t = ✓t�1 �

⌘p
v̂t+✏

m̂t �
⌘p
v̄t+✏

�(✓t�1 � ✓p) . L2 regularization
8: ✓t = ✓t�1 �

⌘p
v̂t+✏

m̂t �
⌘p
v̄t+✏

�sign(✓t�1 � ✓p) . L1 regularization

Recall from Sec. B that L2 regularization promotes a small mean and variance of delta parameters, while
L1 regularization encourages sparse updates on important parameters, leading to larger variance. We also
emphasize that our regularization here is based on the DP rather than simply on the weights of the finetuned
model.
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C.8 ALGORITHMS OF RESCALING-PARAMETER MODIFICATION

Algorithm 2 Empirically Find q

Input: Delta Weight �✓, Input Dataset DI , Pre-trained Model ✓P , Pruning Rate p, Step Size �q (�⌘),
Rounds N .

1: initialization: errormin = inf
2: for t 1! N do

3: if Find global q then

4: qt = 1� p+ t⇥�q . q � 1� p
5: �✓

0 = P(�✓, qt) . Prune and rescale by qt
6: else

7: ⌘t = t⇥�⌘
8: qt = Algorithm 3(⌘t) . Resolve per-layer rescaling factor.
9: �✓

0 = P(�✓,qt) . Prune and rescale by qt

10: end if

11: ✓0 = ✓P +�✓
0 . Add pruned delta parameters to ✓P

12: if DI is Validation Dataset then

13: error = E(x,y)2DI
(f(✓0, x) 6= y) . (1) Validation qv

14: else

15: error = Ex2DI abs(f(✓
0, x)L � f(✓P +�✓, x)L) . (2) Last Layer’s change qe

16: end if

17: if error  errormin then

18: errormin = error and qbest = qt (qbest = qt)
19: end if

20: end for

21: Return qbest(qbest)

Algorithm 3 Analytically calculate q

Input: Delta Weight �✓, Input x, Pre-trained Model ✓P , Pruning Rate p, Step Size �q, Rounds N  1/�q,
Empty q List q = [ ], Probability �, Constant ⌘:

1: initialization: x0 = x . Initialize layer input
2: for �W,WP 2�✓, ✓P do . Loop each MLP layer
3: initialization: errormin = inf
4: for t 1! N do

5: qt = 1� p+ t⇥�q . q � 1� p
6: error = Eq (5)(�W, qt, �, x0, ⌘) . Evaluate the objective in Eq (5) for the given q = qt
7: if error  errormin and t 6= N then

8: errormin = error and qbest = qt
9: end if

10: end for

11: q.append(qbest) . Add best q for current layer
12: x0 = f(�W +WP , x) . Calculate the output of the current layer of the fine-tuned model.
13: end for

14: Return q
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In this section, we propose and describe three strategies to determine the global rescaling factor. The per-layer
rescaling factor follows a similar approach to the global one, with slight adjustments in determining the ⌘ and
resolving 1/q (see details in Algorithm 2 step 6.)

Empirically finding 1/qv using validation data: In this approach, we use a validation dataset {xv, yv} 2
V to empirically determine the best rescaling factor q. The goal is to solve the optimization problem
argminq EV(fq(xv) = yv), where fq represents the pruned model rescaled by 1/q. The process is as
follows:

• Optimization Process: We iterate over a range of q values, adjusting the pruned model by rescaling
with 1/q. For each q, we measure the model’s performance on the validation set by comparing the
model’s predictions fq(xv) to the true labels yv .

• Outcome: The q value that results in the best performance on the validation set is selected as 1/qv .
This 1/qv is expected to provide the best overall performance across all layers when evaluated
against the validation set.

• Algorithm Details: This process is detailed in Algorithm 2 with objective (1), which outlines the
specific steps taken to find 1/qv .

Empirically finding 1/qe using output change: This method builds on the core idea from Thm 3.1, aiming
to empirically determine a global rescaling factor qe that balances the mean and variance in output embedding
differences. Unlike the validation-based approach, this method does not rely on labeled data. Instead, it uses
an unsupervised objective function based on the difference in the last layer’s output embedding before and
after pruning and rescaling. Procedure:

• Data Usage: We select a single fixed batch of data, which could be drawn from the training set or
any natural dataset.

• Inference: The selected batch is passed through both the pruned and original models, and the output
embeddings are compared.

• Optimization: The goal is to find the rescaling factor qe that minimizes the difference between these
embeddings, ensuring that the rescaled pruned model closely approximates the original model’s
output.

Efficiency: This method is highly efficient as it only requires inference on a single batch of data, avoiding the
need for a full validation set. Algorithm Details: The specific steps for this method are outlined in Algorithm 2
with objective (2), which provides a detailed procedure for determining 1/qe.

C.9 PER-LAYER 1/q

The challenge in naively implementing a per-layer tuning of the rescaling factor is that if q` were selected to
optimize, say, the mean output change |hdi↵

i | averaged over all neurons in the `-th layer, this would require L
searches, which is computationally intractable. Instead, we turn to theory for a more efficient solution.

Our approach extends Thm.3.1 , which bounds |hdi↵
i | for q = 1� p, to obtain a high-probability bound for

arbitrary q. This involves bounding both the mean (which is now non-zero) and the variance, then optimizing
this bound over q for each layer. In view of Thm. 3.1, it is unsurprising that the bound depends on the first-
and second-order statistics of the coefficients cij . Consequently, the optimal q can indeed vary per layer,
depending on these statistics.

We need a high-probability bound that holds for all values of q, even as q becomes small (on the order of,
but still larger than, 1� p). In more detail, following the machinery of Thm. 3.1 to bound |hdi↵

i |, we apply
Markov’s inequality to the Laplace transform E[e⌘|hdiff

i |], ⌘ > 0. After some careful calculations (see App.
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E.2), for each fixed ⌘, we can define q`(⌘) by solving a one-dimensional minimization problem involving ⌘,
p, and the statistics of c`ij of the respective `-th layer (which are measurable). Specifically, this is given as
follows, for some probability of failure � 2 (0, 1):

q(⌘) := argmin
q

| log
2

�
+ ⌘

✓
1�

1

q
(1� p)

◆X

j

cij +
⌘2�(p)

P
j c

2
ij

4q2
| (5)

In typical concentration bounds, one selects the optimal ⌘ by minimizing the upper bound obtained via
Markov’s inequality. However, this optimal ⌘ is inversely proportional to q2. For the small q values we are
interested in here (on the order of 1� p), this makes Markov’s inequality loose. Instead, we propose selecting
⌘ by a grid search over the mean output change of the last layer after rescaling with qL(⌘). This yields a
value of ⌘ = ⌘e.

To give flexibility to the rescaling factors of other layers, allowing them to adjust based on the individual statis-
tics of cij , while avoiding grid searches for all layers, we use the same value of ⌘ = ⌘e and rescale each layer
with q`(⌘e). We denote the vector of selected per-layer rescaling factors as 1/qe = [1/q1(⌘e), . . . , 1/qL(⌘e)].
Additionally, by selecting ⌘ by optimizing the performance on validation set rather than the mean output
change (denote this ⌘v), we can arrive at an alternative implementation, 1/qv = [1/q1(⌘v), . . . , 1/qL(⌘v)],
when labeled validation data are available.

C.10 STRUCTURAL PRUNING

Table 9: Structural Pruning on BERT.

Dataset (p = 0.99) SST2 COLA
DARE 51.00 (0.23) 6.25 (1.41)
Struct-DARq-1/qv 83.40 (1.92) 39.09 (1.50)
Struct-DARq-L2-1/qv 87.64 (0.47) 53.71 (1.74)

Our random-based DARq can also be utilized
for structural DPP for enhanced hardware effi-
ciency (Shen et al., 2022; Yao & Klimovic, 2023).
In this setup, we randomly select a% of the input
dimensions of a MLP layer and randomly retain
b% of the DPs within the selected dimensions,
achieving a total structured DP pruning rate of
p = a · b%. In Table 9 we use a = 5, b = 20, resulting in an equivalent pruning ratio p = 0.99. Our results
show that DARq significantly outperforms DARE, achieving over a 30% improvement. AdamR-L2 unlocks
the potential of random-based DPP for structural pruning, improving DARE without L2 finetuning by over
40%.

C.11 COMPARISON TO SPARSE FINETUNING

Sparse Finetuning (SFT) selects key weights by directly altering the fine-tuning process, using methods like
iterative masking and fine-tuning to achieve sparse parameterization. In contrast, our DARq are primarily
post-hoc techniques that prune the weights of models after they have been fine-tuned.
We compare DPP with sparse fine-tuning Guo et al. (2020), evaluating both on the BERT-Large model.
Consistent with Guo et al. (2020), we assess the performance of vanilla DARE and our DARq with a rescaling
factor of 1/qv , using a pruning rate of p = 0.995 (retaining only 0.5% of weights). As shown in Table 10, for
MRPC and SST2, vanilla DARE performs slightly below the Diff-struct method, while DARq-qv remains
competitive with Diff-struct and surpasses Diff. For STS-B and COLA, vanilla DARE underperforms, but our
DARq-qv restores performance, making it competitive with Diff-struct and superior to Diff. Moreover, a key
advantage of our DARq is that it is a post-hoc method, allowing for easy application to pre-fine-tuned models,
and is simpler to implement.

Next, we conduct an additional experiment to examine how our proposed method—combining the post-hoc
DARE with our in-training modification, AdamR-L2—compares to sparse fine-tuning. As shown in Table 11,
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Table 10: Comparison Post-hoc with SFT

p = 0.995 MRPC STS-B COLA SST2
Full-tune 91.0 86.9 61.2 93.2

Diff 87.0 83.5 60.5 92.5
Diff-struct 89.7 86.0 61.1 93.1

DARE 89.6 0.00 53.2 90.1
DARq-1/qv 89.9 84.2 60.1 92.2

Table 11: Comparison AdamR with SFT

p = 0.999 MRPC STS-B
Full-tune 91.0 86.9

Diff 86.2 82.9
Diff-struct 88.2 85.2

DARE 70.2 0.00
AdamR-L2 (ours) 88.5 86.3

Table 12: Similar to Table 2, DARq consistently provides significant gains for decoder models.

Dataset GSM8K

Methods Abel-7B MetaMath-7B WizardMath-7B MetaMath-Qwen2-0.5B
p = 0.95 p = 0.99 p = 0.95 p = 0.99 p = 0.95 p = 0.99 p = 0.95 p = 0.99

No Pruning 58.32 65.50 54.90 42.00
WANDA 18.20 0.00 23.58 0.00 21.50 0.00 0.00 0.00

MP 15.16 0.00 22.82 0.00 12.00 14.50 0.00 0.00
DARE 37.30 0.00 58.22 0.00 47.10 0.00 0.00 0.00

DARq-1/qv 47.20 20.20 59.05 34.87 49.81 35.63 30.70 19.17

DARq-1/qv 44.50 20.00 59.28 32.06 50.64 34.34 29.56 18.65
DARq-1/qe 42.99 21.30 60.34 32.60 49.05 33.97 30.32 18.95
DARq-1/qe 42.84 19.63 59.28 28.05 50.64 33.58 28.80 17.66

for a pruning rate of p = 0.999, AdamR-L2+DARE outperforms the baseline across both datasets. It’s
important to note that, similar to sparse fine-tuning, AdamR-L2+DARE modifies the fine-tuning process.
However, AdamR-L2 only replaces the original AdamW optimizer while keeping the same task loss objective,
making it a simpler implementation compared to methods like Diff, which require additional modifications.

C.12 RANDOM-BASED METHODS GENERALLY OUTPERFORMS IMPORTANCE-BASED DPP

When DPs are not large, we show that random-based methods consistently outperform importance-based
methods across all cases on decoder models, as presented in Table 12, with our DARq achieving more than a
30% improvement.

C.13 BROADER IMPACT

As discussed in Section 1 and demonstrated in prior work, DPP offers potential advantages for online serving,
gradient communication in Federated Learning, and storage efficiency. Our systematic study of DPP methods
and the proposed strategies that improve performance of existing methods can thus positively impact the
usage of LLMs. We analyzed the impact of our approach on the efficiency of the machine learning system.

As stated in the introduction, a high pruning rate can benefit online serving, gradient communication in
Federated Learning, and storage saving. To showcase this effectiveness, we compare the delta parameter
loading time, the number of communication parameters, and the storage size at various pruning rates,
as detailed in Table 13. Firstly, we found that the time to load the sparse compressed model decreases
significantly as the pruning rate increases. In Federated Learning, only p% of the parameters need to be
communicated, greatly enhancing communication efficiency. Additionally, when applied to storage saving,
we further reduce memory usage by converting sparse tensors to CSR format, resulting in only 1.7 MB and
7.5 MB of storage with a 99.9% pruning rate for BERT and RoBERTa respectively. Consequently, pruning
delta parameters can effectively enhance the efficiency of machine learning systems.
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Table 13: Loading, Communication, Storage Efficiency with different pruning rate

Models
Loading Time (s) Communication Size (# parameters) CSR Storage Size (MB)

pruning rate p pruning rate p pruning rate p
No Pruning 0.9 0.99 0.999 No Pruning 0.9 0.99 0.999 No Pruning 0.9 0.99 0.999

BERT 0.143 0.120 0.035 0.023 ⇡ 110 M ⇡ 11 M ⇡ 1.1 M ⇡ 0.11 M 417.7 108.7 11.4 1.7
RoBERTa 0.165 0.125 0.038 0.026 ⇡ 125M ⇡ 12.5M ⇡ 1.25M ⇡ 0.125M 475.6 102.3 16.2 7.5

Figure 8: Analysis Outlier Features and the �Wx with SST2 fintuned RoBERTa. Mean (green line) means
average of all feature dimensions. The �Wx is extremely small on average.

D MASSIVE ACTIVATION AND OUTLIER FEATURES

Since Transformer-based models contain significantly large outliers that tend to concentrate in a few embed-
ding dimensions Wei et al. (2022), and LLMs exhibit massive activations with high magnitude values on
unique dimensions for specific tokens Sun et al. (2024), we analyze the influence of these large magnitude
values in our study.

D.1 OUTLIER FEATURES (ACTIVATIONS)

In this section, we empirically show the influence of outlier features. As shown in Table 7, WANDA
outperforms MP on SST2, MRPC in original fintuned model, which indicates the validity of considering
outlier features in DPP. Although outlier features will introduce larger activation inputs than normal features
(Fig 8 (a)), with small delta parameter change, the mean and variance of �Wijxij is still small (Fig 8 (b-c))
thus making DARE works well in delta parameter pruning. As a result, DARE results (Table 5 and Fig 7)
outperforms that of WANDA and MP.

D.2 MASSIVE ACTIVATION

The decoder based large language models (larger than 7-B) have massive activation Sun et al. (2024) that
embrace large value on unique dimension on unique tokens (i.e.first token of a input). We leverage MetaMath-
llema-7B Yu et al. (2023b) which finetune Llama2-7B with math datasets. We analyze each attention
layer’s input activations and identified the 2533-th,1415-th and 1512-th dimension as the massive activations,
and shown in Fig 9 (a). It is notable 2533-th and 1415-th dimension is aligned with the pretrain model
Llama2-7B’s massive activation dimension Sun et al. (2024), but we have one new 1512-th dimension in
MetaMath-llema-7B. When then studied the impact of layer normalization and found the massive activations
is heavily downscaled by the layer normalizaiton’s scale multiplier, which may fail to being considered as
important by Wanda. We furtherly study the influence on removing the delta parameters that correspond
to the those large manitude features by evaluating the results on GSM8K dataset. As shown in Table 14,
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Figure 9: Analysis on Massive Activation and Outlier Features on MetaMath-llema-7B

removing the 1512-th massive activation features will bring significant performance drop. As a result, we
suggest to maintain the delta parameters related to new massive activation features.

Table 14: Influnece of the delta parameters that correspond to large manitude features. Evaluation accuracy
on GSM8K dataset.

ID Prune Status Accuracy
None No Pruning 64.50
2533 Massive Activations 62.50
1512 Massive Activations 48.00
1415 Massive Activations 65.50
3431 Outlier Feature 61.00
2158 Outlier Feature 64.50
2350 Outlier Feature 62.50

E PROOFS

E.1 PROOF OF THEOREM 3.1

The proof employs Hoeffding’s inequality for subgaussian random variables. However, a straightforward
application results in suboptimal dependence of the bound on the drop-rate p. Instead, we utilize a refinement
of Hoeffding’s bound tailored for (generalized) Bernoulli random variables, as developed by Kearns and
Saul Kearns & Saul (2013). For large values of p, we adopt the improved bound proposed by Berend and
Kontorovich Berend & Kontorovich (2013). These adaptations are detailed below.
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Recall from Eq. (2) that the entries of hdi↵ are given as

hdi↵
i =

nX

j=1

�Wijxj �

nX

j=1

1

1� p
�ij�Wijxj =

nX

j=1

�
1�

1

1� p
�ij
�
�Wijxj ,

where �ij are iid Bernoulli(1� p) random variables. Fix any i 2 [m]. Note hdi↵
i is weighted sum of n iid

random variables
Aij :=

�
1�

1

1� p
�ij
�
.

We make the following observations about these random variables. First, a simple calculation gives that
they are zero-mean, i.e. E[Aij ] = 0 for all j 2 [n]. Second, the random variables are bounded satisfying
�

p
1�p  Aij  1. Third, a simple calculations yields their variance V(Aij) = p/(1� p).

Based on these, perhaps a first attempt in bounding |hdi↵
i | is applying Chebychev’s inequality: For any t > 0,

Pr(|hdi↵
i � E(hdi↵

i )| � t) 
V(hdi↵

i )

t2
.

Using the mean and variance calculations above, this yields with probability at least 1� �:

|hdi↵
i | 

1
p
�

r
p

1� p

vuut
nX

j=1

�W 2
ijx

2
j .

The drawback is of course that this scales poorly with �.

The natural way to improve the dependence of the bound on � is to use stronger concentration as materialized
by a Chernoff bound. Since Aijs are bounded, we can immediately apply Hoeffdings inequality for bounded
random variables (Vershynin, 2020, Thm. 2.2.6) to find that for any t > 0:

Pr
�
|hdi↵

i � E(hdi↵
i )| > t

�
 2 exp

 
�
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Therefore, for any � 2 (0, 1) the following holds with probability at least 1� �:

|hdi↵
i | 

 
1/
p
2

(1� p)

!sX

j2[n]

c2ij

s

log

✓
2

�

◆
.

Note the significant improvement over Chebychev’s bound with respect to the scaling factor �. However, the
bound remains relatively loose in terms of p for values of p near the extremes of its range. To see this note
that as p ⇡ 0, for which Aij ⇡ 0 and V(Aij) = p/(1� p) ⇡ 0. Conversely, Hoeffding’s bound, which scales
as 1/(1� p), does not decrease as p gets smaller. To get an improved bound, we can apply the Kearns-Saul
ineqaulity (Kearns & Saul, 2013, Theorem 2), which is better suited for managing the characteristics of the
distribution as p approaches extremal values.
Theorem E.1 (Kearns & Saul (2013)). Let Rj 2 {0, 1} be iid Bernoulli(1 � pj) for j 2 [n]. Let also

constants ↵j , j 2 [n]. Then, for all t > 0

Pr

0

@
���
X

j2[n]

↵j(Rj � (1� pj))
��� > t

1

A  2 exp

✓
�

t2

�2

◆
, (6)

where �2 :=
P

j2[n] ↵
2
j�(pj), and

�(x) =
1� 2x

log
�
1�x
x

� . (7)
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Figure 10: Visualization of the Hoeffding, Kearns-Saul and Berend-Kontorovich bounds. Note that the
last is significantly improved over the vanilla Hoeffding bound for small/large values of p. Large values
of p corresponding to large drop-rates are particularly interesting in the DPP setting. Note also that all
three bounds diverge as p ! 1. This is because of the rescaling factor 1/(1 � p). However, note that the
Berend-Kontorovich bound diverges significantly slower. This further signifies the importance of using this
versus the vanilla Hoeffding bound to provide an explanation on why DARE performs well even for large
values of p. See proof of Thm. 3.1 for details.

Applied to our setting, let Rj  �ij and ↵j  
1

1�pcij . Then, the sum on the LHS of (6) is equal to

�
P

j2[n] Aij and �2 = �(p)
(1�p)2

P
j2[n] c

2
ij . Put together, this gives for any t > 0:
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where �(p) := 1�2p
log((1�p)/p) . Thus, for any � 2 (0, 1) the following holds with probability at least 1� �:
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To see why this improves upon Hoeffding’s bound, note that the following hold for �(p):

1. �(p)  1/2 for all p 2 [0, 1]

2. �(0)! 0 as p! 0 or p! 1.

The first property shows that the bound is strictly better than Hoeffding’s for all values of p. The second
property shows that the bound approaches 0 as p ⇡ 0, which is intuitive since in that case Aij ⇡ 0 and
V(Aij) ⇡ 0. On the other hand, for p ! 1, it is easy to show that

p
�(p)/(1 � p) ! +1. Hence, both

Hoeffding and this improved bound predict that |hdi↵
i | can be large as p! 1.

It turns out that the Kearns-Saul bound can be further improved for p � 1/2. Such an improvement is
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important in our setting, since large drop-rates p � 1/2 are of particular interest in DPP. The improved
inequality is due to (Berend & Kontorovich, 2013, Lemma 5). When applied to our setting, it improves the
first term in to

q
2p
p�1 .

To arrive now at the advertised statement of the theorem simply rewrite
P

j2[n] c
2
ij in terms of the mean and

variance of the influence statistics

1

n

nX

j=1

�W 2
ijx

2
j =

1

n

nX

j=1

c2ij = c̄2i + �2
i .

This completes the proof of the theorem.

For completeness, we visualize the three bounds that we discussed above in Figure 10. The lower the better,
thus note how the Kearns-Saul bound improves over naive Hoeffding and the Berend-Kontorovich bound
improves over both for p > 1/2.

E.2 FINDING A RESCALING FACTOR BALANCING MEAN AND VARIANCE

This section complements Sec. C.9 that describes the per-layer version of DARq. Specifically, we show how
to derive Eq. (5).

We study a more general version of DARE that rescales with a parameter q that is not necessarily set to
1/(1� p). In this case, we have Aij =

⇣
1� 1

q �ij
⌘
cij , which we can rewrite as follows:
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Following Kearns & Saul (2013), for any random variable X , it holds that Pr(X > 0) = 1
2E
h
1 + X

|X|

i
.

Observe that 1
2 (1 +

X
|X| )  e⌘X for any positive number ⌘ > 0, where⌘ is a small positive number to ensure

tightness of Eq. (9). Then, we obtain (alternatively, but equivalently, we can apply Markov’s inequality to the
Laplace transform):
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X

j
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h
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P
j µij� 1

q cij(�ij�(1�p))�⌘✏
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j µijE

2

4
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e�
⌘
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3

5 = e�⌘✏+⌘
P

j µij
Y

j

E
h
e�

⌘
q cij(�ij�(1�p))

i

= e�⌘✏+⌘
P

j µij
Y

j

(pe
⌘
q cij(1�p) + (1� p)e�

⌘
q cijp)

 e
⌘(

P
j µij�✏)+ ⌘2

4

P
j

c2ij

q2
�(p)

, (Kearns & Saul, 2013, Lemma 1) . (10)
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Since c2ij
q2 �(p) � 0, choosing the optimal ⌘ =

�2(
P

j µij�✏)
�(p)

q2

P
j c2ij

minimizes Eq. (10). However, this may result in

a large ⌘ especially for small q that is of interest to us. When ⌘ =
�2(

P
j µij�✏)

�(p)

q2

P
j c2ij

, for all ✏ > 0, we have:
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q2(Pj µij�✏)2

�(p)
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j c2ij . (11)

Since µij :=
⇣
1� 1

q (1� p)
⌘
cij , then with probability 1� �, we have:
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2
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Since ⌘ � 0, the second condition is always satisfied. Therefore,

• If 1
q

r
log
⇣

2
�

⌘P
j c

2
ij�(p) = 0, then 1� p is simply the optimal rescaling.

• If 1
q

r
log
⇣

2
�

⌘P
j c

2
ij�(p) > 0, we can increase q to compute the optimal scaling factor:

q = argmin
q
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Then the min value can be obtained by taking

q = 1� p�

q
log( 2� )�(p)

P
j c

2
ij

P
j cij

If
P

j cij > 0 and
r
log
⇣

2
�

⌘
�(p)

P
j c

2
ij > (1 � p)

P
j cij , since the optimal q > 0, this suggests that

increasing q towards infinity is favorable. However, given ⌘ =
�2(

P
j µij�✏)

P
j

c2ij

q2
�(p)

, ⌘ also tends to infinity, causing

the loosening of Eq. (9). Thus, we propose selecting a fixed ⌘? to ensure the overall consistency of the
inequalities in Eq. (9) and Eq. (10). Specifically, in our implementation of DARq with per-layer tuning, ⌘⇤ is
computed via grid search (see Sec. C.9). Substituting ⌘ = ⌘? into Eq. (10), we obtain:

✏ = log
2

�
+ ⌘?

✓
1�

1

q
(1� p)

◆X

j

cij +
⌘2?�(p)

P
j c

2
ij

4q2
. (12)

Given ⌘?, we can find the optimal q to minimize |✏| in Eq. (12), which arrives at Eq. (5).
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