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Capturing Resting Cardiovascular Coupling as an 
Indicator of Orthostatic Hypotension using a 

Multimodal Chest-Worn Patch

Abstract—Orthostatic hypotension (OH), caused by efferent 
baroreflex failure, can lead to syncope and is associated with high 
mortality rates among individuals with neurodegenerative 
diseases. Several studies in recent years have aimed to estimate 
baroreflex sensitivity (BRS) during orthostatic stressors using 
measures of cardiovascular coupling (CVC): the degree of 
synchronization between time series cardiovascular signals. 
However, these efforts have relied on blood pressure sensing using 
bulky, wired setups, and the majority have only quantified 
changes in CVC during or after the occurrence of OH. In this 
study, we characterized CVC at rest in 𝑵 = 26 participants (20 
with a neurodegenerative disease) using a chest-worn patch that 
recorded electrocardiogram (ECG) and photoplethysmogram 
(PPG) signals. From the ECG and PPG data recorded during a 5-
minute supine rest period prior to an orthostatic challenge, we 
derived interbeat interval (IBI) and PPG amplitude (PPGamp) time 
series features as indices of cardiac rhythm and vascular function, 
respectively. We then quantified the coupling between IBI and 
PPGamp using time delay stability (TDS). Following an active 
standing test, 12 participants experienced OH. We found that 
mean TDS during the rest period was 22.9% lower in the OH 
group than in the no-OH group (𝒑 < 0.01). Furthermore, we found 
that resting TDS was moderately correlated with the change in 
systolic blood pressure from supine to standing (𝝆 = 0.43, 𝒑 < 
0.05). Thus, we demonstrated the effectiveness of a multimodal 
wearable in capturing a marker of impaired resting CVC prior to 
OH occurrence. This work enables the deployment of wearable 
sensing for estimating BRS to assist with early screening of 
autonomic dysfunction in the future. 
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I. INTRODUCTION 
Cardiovascular autonomic dysfunction (CVAD) is a common 

feature of neurodegenerative synucleinopathies, including 
Parkinson’s disease (PD), multiple system atrophy (MSA), and 
dementia with Lewy bodies (DLB) [1]. CVAD often manifests 
in orthostatic hypotension (OH), a sustained fall in systolic 
blood pressure (SBP) following a postural change from supine 
to standing [1], [2]. Clinically, OH is defined as a fall in systolic 
blood pressure (SBP) of at least 20 mmHg and/or a fall in 
diastolic blood pressure (DBP) of at least 10 mmHg within 3 
minutes of upright posture [3]. OH is associated with 
incapacitating dizziness, syncope (fainting) and catastrophic 
injuries, and is an independent predictor of mortality risk, 
especially in the elderly population [4]. Consequently, early 
detection of OH—or, ideally, the risk of developing OH—is of 

critical importance, particularly in the elderly and those with 
neurodegenerative diseases associated with autonomic failure. 

Neurogenic OH is most commonly caused by failed postural 
blood pressure regulation due to efferent baroreflex failure [5]. 
Recently, several studies have estimated baroreflex sensitivity 
(BRS)—the relationship between changes in cardiac interbeat 
interval changes and subsequent changes in blood pressure—in 
those with OH using signal processing techniques that quantify 
changes in cardiovascular coupling (CVC). These techniques 
entail computing the degree of synchronization or information 
transfer between interbeat interval (IBI) and SBP time series 
during different phases of an orthostatic challenge [6]–[8]. 
However, most prior studies focused on changes in CVC from 
rest during or after an orthostatic stressor. Moreover, all of these 
studies relied on bulky, wired electrocardiogram (ECG) and 
SBP recording setups for their analyses, which limit 

Vikram Abbaraju 1, John A. Berkebile 1, Paul A. Beach 2, and Omer T. Inan 1 
 

1 School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA 
2 Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA 

 
 
Fig. 1. Overview of the analysis presented in this work. We used a wireless 
chest-worn patch to record electrocardiogram (ECG) and photoplethysmogram 
(PPG) signals during an orthostatic challenge in 𝑁 = 26 participants. We also 
collected reference continuous (CBP) signals, from which we assessed whether 
each participant experienced orthostatic hypotension (OH) following the 
challenge. From the ECG and PPG signals during the supine rest period, we 
estimated time series indices of cardiac rhythm and vascular function, 
respectively. From these indices, we computed the degree of cardiovascular 
coupling during supine rest using time delay stability (TDS) and statistically 
compared the distribution of TDS between those who experienced OH and those 
who did not following the orthostatic challenge. 

 



generalizability, especially in ambulatory settings. Therefore, 
there is a need to elucidate alterations in CVC before OH occurs, 
and to do so using more convenient sensing methods. 

In prior work from our group, we demonstrated the utility of 
the CardioTag (Cardiosense, Chicago, IL, USA), a wireless, 
multimodal, chest-worn patch, in capturing cardiovascular 
responses that were predictive of OH in individuals with 
synucleinopathies [9], [10]. In this work, we applied a new 
analysis on this dataset by quantifying the coupling between 
cardiac and vascular function using time series features derived 
from the CardioTag. We found that those who experienced 
OH—induced by an orthostatic challenge—exhibited lower 
CVC during the supine rest period prior to the challenge than 
those who did not experience OH. To our knowledge, this is the 
first study to capture, during rest and prior to OH occurrence, an 
index of impaired CVC in those with OH using a compact, 
wearable patch. Our findings reinforce the effectiveness of 
wireless cardiovascular sensing technology for early screening 
and remote monitoring of CVAD using features derived from 
interactions between different signal modalities. 

II. METHODS 

A. Study Cohort and Protocol 
We collected data from 26 participants, which included 20 

individuals with synucleinopathies (13 with PD, 6 with MSA, 
1 with DLB) and 6 healthy controls. During study recruitment, 
those with neurological conditions beyond PD, MSA or DLB 
or with a history of uncontrolled cardiovascular or psychiatric 
disorders were excluded. All participants completed a clinical 
protocol approved by the institutional review boards of the 
Georgia Institute of Technology (#H21492) and the Emory 
University School of Medicine (#00003055). 

The orthostatic challenge protocol began by ensuring 
stabilization of supine hemodynamics with 5-15 minutes of 
supine rest. Then, each participant performed several 
autonomic testing maneuvers (e.g., paced breathing, Valsalva 
maneuver) in the supine position. Finally, each participant 
completed the active stand test by transitioning from supine to 
standing position and remaining upright for 5 minutes. In this 
work, we only analyzed the final 5 minutes of the supine rest 
and standing periods. 

B. Physiological Sensing 
During the orthostatic challenge protocol, we recorded 

cardiovascular activity using the CardioTag, which was affixed 

to the sternum with two standard gel electrodes and measured 
single-lead ECG and sternal photoplethysmogram (PPG) 
signals sampled at 500 Hz and 67 Hz, respectively. 
Additionally, we recorded non-invasive continuous blood 
pressure (CBP) as a reference measurement using one of two 
setups: 1) the ccNexfin (Edward Lifesciences, Irvine, CA, 
USA) or 2) the CNAP (CNSystems, Graz, Austria) along with 
the VS 9 (Mindray, Shenzhen, China). Beat-to-beat CBP was 
calibrated to minute-by-minute oscillometric brachial cuff 
blood pressure and heart rate recordings. 

C. Cardiovascular Signal Processing and Feature Extraction 
From the raw ECG and PPG signals during the supine period, 

we applied the signal processing pipeline described in detail in 
[9], which included bandpass filtering and fiducial point 
detection to extract interbeat interval (IBI) and PPG amplitude 
(PPGamp) as time series indices of cardiac rhythm and blood 
volume pulsation, respectively. Additionally, we resampled and 
aligned each feature to 1 Hz using cubic spline interpolation. 
Finally, we smoothed each feature using a 5-second moving 
average filter to prevent the estimation of spurious interactions 
due to noise in the subsequent CVC quantification step. 

D. Cardiovascular Coupling Estimation 
To estimate the degree of coupling between IBI and PPGamp 

during the 5-minute supine period, we applied a modified 
version of the time delay stability (TDS) analysis framework 
that was first presented in [11] (Fig. 2). First, we segmented 
each signal into sliding windows of length 𝐿 shifted by 𝑠  to 
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the window index and 𝑁+ denotes the total number of length-𝐿 
windows across the full length each 5-minute signal. Next, we 
computed the time-varying distance correlation [12] function 
for each window as follows: 
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where 𝐼𝐵𝐼-
(")  is 𝐼𝐵𝐼(")  shifted by some delay 𝜏 , 𝑑𝑉𝑎𝑟  is the 

distance variance, and 𝑑𝐶𝑜𝑣 is the distance covariance, which 
is empirically computed (for some pair of vectors 𝑥 and 𝑦) as 
follows: 

 
 
Fig. 2. Block diagram of methdology for estimating the coupling between IBI and PPGamp time series using TDS. IBI: interbeat interval; PPGamp: PPG 
amplitude;  dCor: distance correlation; TDS: time delay stability. 
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where 𝐴 and 𝐵 represent the Euclidean distance matrices of 𝑥 
and 𝑦 , respectively. Furthermore, the distance variance of a 
vector 𝑥 is computed as follows: 

𝑑𝑉𝑎𝑟,(𝑥) = 𝑑𝐶𝑜𝑣,(𝑥, 𝑥) (3) 
The computation in (1) presents a modification of the original 
TDS approach, which quantified the similarity between 
corresponding windows of two signals using the linear cross-
correlation metric. To capture both linear interactions and any 
potential nonlinear interactions between the cardiovascular 
signals, we replaced the cross-correlation with the distance 
correlation function, which does not require substantial 
hyperparameter tuning like information-theoretic measures of 
dependence such as mutual information. From the distance 
correlation functions, we found the set of optimal time delays, 
i.e., the time delay that maximized (1) for each window 𝑖, as 
follows: 
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 represents the set of optimal time delays for all 

𝑁+ windows. Then, we followed the procedure outlined in [11] 
to count the number of “stable” windows, i.e., the number of 
windows that fall on an interval such that the optimal time delay 
of at least 0.8*𝑇 out of 𝑇 consecutive windows are within ± 1 
second of each other. Denoting the number of stable windows 
as 𝑁5, we finally computed TDSCV as 

𝑇𝐷𝑆67(%) =
𝑁5
𝑁+

× 100 (4) 

where CV denotes cardiovascular. Thus, TDSCV quantifies the 
percentage of consecutive, overlapping length-𝐿 windows of 
cardiovascular signals whose optimal time delays agree. For 
our analysis, we chose 𝐿  = 120 seconds to ensure that we 
sufficiently captured meaningful variation in autonomic 
activity [13]. In accordance with Cai et al. [14], we chose 𝑀 = 
1 to maximize the amount of data leveraged to evaluate TDSCV, 
and we chose 𝑇  = 0.25𝐿  = 30 for the stability requirement. 
Finally, as the focus of this work was to elucidate differences 
in CVC during rest and prior to OH occurrence, we only 
analyzed TDSCV during supine rest. Example IBI and PPGamp 
time series with optimal time delays derived via distance 
correlation are shown in Fig. 3. 

E. OH vs. no-OH Comparisons 
Using the reference beat-to-beat CBP measurements, we 

found that the orthostatic challenge protocol induced OH in 12 
out of the 26 participants. After grouping participants by OH 
incidence and verifying normality and equal variances, we 
compared mean supine TDSCV in the OH group vs. no-OH 
group using an independent t-test, and we computed Cohen’s 
effect size, 𝑑, associated with the test. Then, to determine if 
TDSCV during supine rest was correlated with the change in 
average systolic blood pressure (ΔSBP) induced by the 
orthostatic challenge, we ran both the Pearson and Spearman 
rank correlation tests. We set 𝛼 = 0.05 for all tests. 

 
 
Fig. 3. Example IBI, PPGamp, and 𝜏opt signals during 5-minute supine rest from representative (a) OH participant and (b) no-OH participant. 𝜏opt was 
computed as the time delay resulting in the maximal distance correlation between corresponding windows of IBI and PPGamp signals of length 𝐿 = 120 seconds 
shifted by 𝑠 = 1 second. Stable windows were determined using 𝑇 = 30 seconds. IBI: interbeat interval; PPGamp: PPG amplitude;  𝜏opt: optimal time delay. 

 
 

TABLE I: RESTING CARDIOVASCULAR COUPLING AND CHANGE IN 
SYSTOLIC BLOOD PRESSURE FOLLOWING ORTHOSTATIC TRANSITION 

Group Mean TDSCV ± SD Mean ΔSBP ± SD 

OH 30.1 ± 16.3 % -27.7 ± 21.3 mmHg 

No-OH 53.0 ± 22.6 % 10.1 ± 15.8 mmHg 

 



III. RESULTS 
TDSCV and ΔSBP aggregated across each group is 

summarized in Table I. Mean supine TDSCV was statistically 
signifcantly lower (𝑡(24)	= -2.92, 𝑝 = 0.0076, 𝑑  = -1.15) by 
22.9% in the OH group compared to the no-OH group. Boxplots 
of TDSCV for each group are shown in Fig. 4a. The Pearson 
correlation test revealed that ΔSBP and TDSCV were not 
linearly correlated; however, according to the Spearman 
correlation test, TDSCV and ΔSBP exhibited a moderate 
increasing monotonic relationship (Spearma’s 𝜌  = 0.43, 𝑝= 
0.029). The Spearman rank correlation plot is shown in Fig. 4b. 

IV. DISCUSSION AND CONCLUSION 
The results from statistical testing demonstrate that in this 

study, those with OH following the orthostatic challenge were 
characterized by impaired coupling between IBI and PPGamp at 
rest. These findings suggest that quantifying CVC using PPG 
signals recorded at the sternum may serve as a surrogate marker 
of BRS without the need for blood pressure measurement. Prior 
work from our lab found significant correlations between 
sternal PPGamp and changes in pulse pressure induced by a 
postural change from supine to standing [10] and that PPG-
derived pulse arrival time during supine rest significantly 
differed between no-OH and OH participants [9]. Thus, more 
broadly, findings from our prior work and from this study 
emphasize the utility of sternal PPG in conjunction with ECG 
for remotely estimating baroreflex function in the context of 
CVAD. To further validate our claims, future studies should 
apply the CVC analysis framework presented in this work to 
CardioTag data recorded in ambulatory settings. 

In this work, we highlighted the effectiveness of a compact, 
multimodal chest-worn patch in capturing an index of resting-
state CVC, and we demonstrated that this index was 
discriminative of the presence or absence of OH. Crucially, 
unlike prior studies in the literature, we identified impaired 
CVC more than 5 minutes before the occurrence of OH, and we 

did not rely on a wired, bulky blood pressure sensing setup to 
estimate the coupling index. Our findings in this work, along 
with prior work from our lab, encourage the use of wearables 
for estimating continuous indices of baroreflex and autonomic 
function to enable remote detection of OH (or risk of OH onset) 
in individuals with neurodegenerative diseases associated with 
autonomic failure. These indices may assist clinicians in early 
detection and more optimal treatment of CVAD in the future. 
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Fig. 4. Summary of cardiovascular coupling during supine rest in OH vs. 
no-OH across 𝑁 = 26 study participants. (a) Boxplots showing TDS between 
IBI and PPGamp time series during supine rest in OH vs. no-OH participants. (b) 
Rank correlation plot between change in SBP from supine to standing and 
supine rest TDSCV. (*) indicates statistically significant result (𝑝 < 0.05). OH: 
orthostatic hypotension; ND: neurodegenerative disease; CTRL: healthy 
control; TDSCV: time delay stability between cardiovascular signals; IBI: 
interbeat interval; PPGamp: PPG amplitude; SBP: systolic blood pressure; 𝜌: 
Spearman correlation coefficient. 

 


