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ABSTRACT

Model merging has emerged as an efficient method to combine multiple single-task
fine-tuned models. The merged model can enjoy multi-task capabilities without
expensive training. While promising, merging into a single model often suffers from
an accuracy gap with respect to individual fine-tuned models. On the other hand,
deploying all individual fine-tuned models incurs high storage costs. We propose
FLExMERGE, a novel data-free model merging framework that: (a) flexibly generates
merged models of varying sizes, spanning the full spectrum from a single merged
model to retaining all individual fine-tuned models; and (b) supports multiple
merging algorithms in a unified framework. Using FLEXMERGE, we systematically
characterize the accuracy—size trade-off of different algorithms. Our study reveals
two key findings: first, even modestly larger merged models can yield steep
accuracy gains (up to 13.5% when just doubling the size); second, algorithm
rankings are not consistent as size increases, with some methods overtaking others
beyond the one-model regime. These results uncover a new design dimension for
model merging: developing and comparing algorithms across the full spectrum of
sizes rather than only at the single-model limit. Extensive experiments on vision
and NLP benchmarks, with up to 30 tasks, confirm the generality and practicality
of FLEXMERGE.

1 INTRODUCTION

In recent years, the pre-training followed by fine-tuning paradigm has become the leading approach
in both natural language processing (NLP) and computer vision, showcasing remarkable success on a
wide range of tasks (Devlin et al.| 2018;|Dodge et al.} 20205 Dosovitskiy et al.| 2021;|Bommasani et al.}
2021). Pre-trained models (PTMs), which learn generalized features from large-scale datasets, serve
as powerful starting points, enabling fine-tuning to achieve superior performance on downstream
tasks with less labeled data. This has led to an exponential growth in the number of fine-tuned models
driven further by the availability of open-source repositories (maintainers & contributors} 2016; Wolf]
et al.| 2019). However, deploying individual fine-tuned models for specific tasks incurs high storage
and deployment costs. The alternative is Multi-task learning (MTL), which aims to jointly train a
single model across multiple tasks (Vandenhende et al.l 2021} |Sanh et al., [2022). But MTL comes
with its own drawbacks, such as significant computational overhead and the need to simultaneously
access the data from all tasks, which might be infeasible due to privacy constraints (Jin et al., [2023)).

To mitigate these limitations, model merging has emerged as a promising solution, allowing the
combination of multiple fine-tuned models into a single model without access to training data. To this
end, several model merging methods have been proposed (Gargiulo et al., 2025 |Huang et al., [ 2024;
Yang et al.| [2024a;|Yadav et al.|[2023} [Tharco et al.| 2023 Matena & Raftel, 2022)). However, a single
model is often unable to perfectly resolve parameter conflicts between tasks, leaving an accuracy gap
with respect to the individual fine-tuned models (Zhang et al., [2025; Huang et al.,|2024). This gap
becomes more significant as a higher number of models are merged (Yadav et al., 2023} [Ilharco et al.|
2023). To mitigate this issue, some methods leverage additional data to facilitate merging (Lu et al.|
2024;|Yang et al.,[2024a; Tang et al.| 2024} |Yang et al.,2024b)). Yet, the data-dependency might be
difficult to meet in practice due to privacy constraints or proprietary restrictions, leading to a growing
focus on data-free model merging techniques (Gargiulo et al., 2025; [Huang et al., 2024} Du et al.|
2024; |Yu et al.l 2024; [Yadav et al., [2023)). Nevertheless, in the absence of data, the accuracy gap
remains significant, highlighting the need for novel solutions.
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Figure 1: (a) Fine-tuned models are sequences of blocks. FLEXMERGE iteratively merges block pairs
until reaching the desired size (e.g., size 1.75x%). (b) Algorithm rankings change as size is increased.

We argue that an effective solution to this challenge is to go beyond the conventional one model
approach, and merge into model(s) of bigger sizes. Merging multiple fine-tuned models naturally
presents a trade-off between maintaining accuracy and achieving model compactness, dictated by the
size of the merged model. This trade-off spans a spectrum: at one extreme, retaining all individual
fine-tuned models for each task achieves maximal accuracy but at the cost of larger overall size; at
the other, fully merging all tasks into a single model minimizes storage size but sacrifices accuracy.
Despite this clear trade-off, a systematic investigation of the accuracy-size relationship in model
merging has been lacking. In this light, we pose two key research questions: (RQ1) How can we
derive merged models across the full range of model sizes in a data-free manner? and (RQ2) What is
the nature of the accuracy-size trade-off exhibited by different data-free merging algorithms?

In response to (RQ1), we propose FLEXMERGE, a flexible framework
that enables data-free fusion into model(s) of any desired size. At FlexMerge + TA

its core, FLEXMERGE treats each fine-tuned model as composed of . g
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fine-tuned models with their respective blocks and greedily merging 2 70 - '
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In response to (RQ2), we demonstrate with FLEXMERGE that a range [in model units]

of data-free merging algorithms exhibit highly favorable accuracy-

size trade-offs. Remarkably, the accuracy-size trade-off is charac-  Figure 2: FLExMERGE enables
terized by steep gains in accuracy for even modestly bigger merged Jarge accuracy gains when just
models beyond one model, followed by steady improvements, reach-  doubling the deployed model
ing near fine-tuning accuracy well before the maximum size. To size and attains full accuracy
illustrate this in practice, Figure [] charts the merged model accuracy  well before the maximum size.
versus deployed size for § tasks (top) and 30 tasks (bottom) using the

ViT-B/32 model, with TA (Ilharco et al., 2023) and Consensus (Wang et al., 2024) as the respective
merging methods. O and O annotate the accuracy at both ends of the spectrum i.e., lowest fused
size and retaining all fine-tuned models respectively. FLEXMERGE + TA gains 13.5% in average
accuracy when going from 1X to 2x while FLEXMERGE + CoNsENnsus gains 8.5% when doubling the
size from approximately 3 to 6x. We note that CoNseNnsus requires storing masks and the pre-trained
parameters alongside the unified parameters (Wang et al.| [2024)), resulting in the lowest possible
size of ~ 3x for 30 tasks. We observe that the steep rise is followed by relatively slower accuracy
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growth in the middle. Yet, a near fine-tuning accuracy is attained well before the maximum size. For
8 tasks, this is obtained around size 6x and for 30 tasks, around size 23.5%x. Secondly, we observe
that algorithm rankings are not consistent even at modestly bigger sizes. Figure[T[b) shows that
vanilla averaging exceeds TIES-MErGING while TA attains the performance of PCB-MERGING at size
3x despite starting from a large gap at 1X. Our findings open a new design dimension: encouraging
algorithm development and comparison for sizes > 1X instead of restricting only to 1X.

Contributions. To the best of our knowledge, we present the first study of model merging that:

o Generates merged models across full spectrum of sizes, including non-integer sizes;
o Supports a wide range of data-free merging algorithms, within a unified framework;

e Provides a systematic characterization of the accuracy-size trade-off in data-free model merging,
revealing general trends, highly favorable regions and inconsistency of algorithm rankings;

e Demonstrates that larger merged sizes incur negligible inference-time overhead, enabled by our
efficient implementation.

We confirm our findings through extensive experiments spanning language and vision modalities,
multiple model families, multi-modal datasets, using both full-parameter fine-tuning (FFT) and
parameter efficient fine-tuning (PEFT), scaling up to 30 tasks.

2 RELATED WORK

Initial studies on model merging focused on vanilla averaging as a way of combining models obtained
from same or different training runs of a task into one higher performing model (Izmailov et al.|
2018 |Gupta et al., |2020; 'Wortsman et al.| 2022} |Cha et al.,[2021)). Vanilla averaging is also used in
federated learning to merge different client models (McMahan et al.,[2017} |Konecny et al., 2016).
Ilharco et al.[(2023) introduced task vectors, representing the difference between fine-tuned and
pre-trained models, enabling model combination through vector arithmetic.

Data-based merging methods leverage validation data to facilitate merging. Techniques like FisHER
MEeraGING (Matena & Raffel, [2022) and RecMEean (Jin et al., |2023) compute the Fisher Information
and Gram matrices, respectively, for weighted averaging of model parameters. SURGERY (Yang et al.,
20244a)) trains task-specific adapters to debias the representations produced by the merged model.
ApAMERGING (Yang et al., [2024b)) introduces per-task, per-layer merging co-efficients, and proposes
to learn these co-efficients by solving an entropy minimization objective. WEMOE (Tang et al.|
2024) merges all modules except for task-specific MLPs, which are retained as weight-ensembled
mixture-of-experts (MoE) with learned routers. TwiN-MErGING (Lu et al., [2024) leverages MoE on
difference vectors i.e., the difference between the fine-tuned models and the merged model. While the
availability of validation data enhances accuracy, such data might be difficult to obtain in practice.

Data-free merging directly merges model parameters without any data. TIES-MEeraGING (Yadav
et al.}2023) resolves parameter interference by trimming redundant parameters and resolving sign
conflicts. PCB-MEeraINnG (Du et al., 2024) considers both intra- and inter-parameter competition
balancing. DARE (Yu et al.| 2024) reduces parameter interference by randomly dropping parameters
and proportionally rescaling remaining ones. EMR-MEgraGiNG (Huang et al., |2024) introduces the
paradigm of maintaining light-weight task specific masks in addition to the merged model to enhance
performance. Consensus (Wang et al.| [2024) also relies on task specific masks, but creates them
differently compared to EMR-MEeRrGING. Both approaches significantly improve accuracy over
previous methods, albeit at the cost of test-time reconstruction overhead (Gargiulo et al., 2025).
TSV-M (Gargiulo et al., [2025)) merges SVD-decomposed task singular vectors, reducing interference
by retaining only prominent singular directions and orthogonalizing them across tasks.

Recent work by Zhang et al.| (2025) explores merging into sizes > 1X. Their method, CHANNEL
MERGING, relies on layer-wise K-Means clustering followed by merging within each cluster using
only TA. However, this approach is restrictive as it cannot generate fractional-sized models. Despite
the emergence of advanced methods and attempts at merging into bigger sizes, to the best of our
knowledge, no prior work has systematically investigated the accuracy—size trade-off in model
merging under a single unified framework. For completeness, we provide additional related work and
a taxonomy of existing algorithms based on their data-free/data-based nature in Appendix [A]
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3  FLEXMERGE

3.1 PRELIMINARIES

We consider a set of M tasks: {T,..., Ty}, where the fine-tuned model parameters for task 7; are
denoted by ;. These fine-tuned parameters are typically obtained by adapting a pre-trained model,
such as ViT (Dosovitskiy et al., 2021) or TS (Raffel et al., 2020) using either full parameter fine-
tuning (FT) or parameter-efficient fine-tuning (PEFT) methods (Liu et al.} 2022). Thus, it is assumed
that all the fine-tuned models have the same size and the model architecture as the pre-trained model,
as also considered in prior work (Ilharco et al., 2023} |Yadav et al., 2023)). To analyze the changes
introduced by fine-tuning, we use the concept of task vectors 7; introduced by [Ilharco et al.[(2023)),
where 7; = 6; — 6, with 8, being the pre-trained weights. These task vectors capture the specific
modifications needed for each task and provide a compact representation for merging.

Standard model merging approaches involve combining the task-vectors {1, ..., Ty} into a unified
task vector Ty, = F ({11, ..., Ty}) and then adding the unified task vector to the pre-trained weights
to get the final merged model, 6y, = Ope + Tuni. Here  denotes the merging algorithm used to
obtain the unified task vector’s weights. For example, the unified task vector 7,,; can be computed via
simple averaging Ty, = i Zf‘il 7; or via TA (Ilharco et al.,|2023)) that uses a coefficient A to weigh

the contribution’|of the unified task vector Ty, = 1 - % Zf‘;’] 7; in the final merged model. It is shown
that just by tuning A, one can outperform weight averaging (Ilharco et al., 2023)).

Motivation. Merging into one model 6, may cause accuracy deterioration due to parameter
interference between different fine-tuned models (Zhang et al. 2025} [Yadav et al) 2023). This
behavior becomes prominent as more and more fine-tuned models are merged, as discussed in
Section[I] On the other hand, retaining all fine-tuned models preserves full fine-tuning accuracy
but results in a net size M X that of one fine-tuned model, which is impractical due to the high
memory requirements. In this work, we investigate the problem of generating models of any
desired size in the range [1, M], including models with fractional size such as 2.25x model units.

Algorithm 1: FLExMERGE framework

Input: Task vectors {Tf } forall k € [M],b € [B];
merging algorithm F; target size S arget
Output: Merged task vectors with reduced size
15«0 > Initialize deployed size
2 forb=1to Bdo

3.2 PROPOSED APPROACH

To enable a more granular fusion,
we consider the model to be com-
posed of B sequential blocks, for
instance transformer blocks in a
ViT model or even layers within 3 G’ —0

each transformer block such as at- 4 fork=1to Mdo
tention or MLP layers could be s L G’ — Gty ({k}, -,-2)
considered as unique blocks. As- . b
suming B total blocks, we consider ¢ S S+ sme(rk )
the task vectors for each block as ,
{2}, corresponding to the origi-
nal task vector 1 for a task k. Our
proposed framework, FLEXMERGE,

while S > S 4,4 0F not all blocks merge»d do
Find block b* and pair (g;-, g;-) € G" with the
highest similarity:

takes a greedy approach to effi-
ciently merge task vectors from
multiple tasks at the granularity of
blocks, aiming to reduce the de-
ployed model size while maintain-
ing utility. The pseudo-code for
FLExMERGE is presented in Algo-
rithm [l

"We add a scaling factor of 1/M to the standard definition Ty, = 4 - Zf‘;’ , T given in (Ilharco et al.l[2023)) to

b, g, 8 j#) = argmax SIMILARITY(g;, g;)
be(B), gi.g;€G”
T T? « g:(0), g(0)
b* b* b*
7Muni — 7~l* U 7~]

™ 7’({1'2* | ke

uni

Toni)

S « S —size(r? )

> Get task subsets
> Merge task subsets
> Merge task vectors
G g u (ngi""ﬁ;i) \{gi. g} » Update the block

> Update current size

better suit its usage in FLEXMERGE where M can vary across blocks.
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Initialization (Lines 1-6). The merging proceeds bottom-up. Initially, no merging has occurred,
and we retain T]}: for all tasks k € [M] and all blocks b € [B] (see Figure a)). For each block

b, we initialize a set of tuples: G* = {({k},rz) | k € [M]}. Each tuple in G” consists of: (i) a task
set {k} (tracking which tasks are represented) and (ii) the corresponding block task vector TZ. For
example, in Figure a) for the first block, we would have G! = {({a} ‘rl) e, ({e}, ‘r;)} When the

> ta

merging terminates, the resulting G' for Figure a) would be G' = {({a, .oel, ‘?'ini)}, where ‘f'llmi is
the merged task vector for the first block for all tasks. The initial size S is calculated as the cumulative

size of all block parameters across M tasks.

Iteration (lines 7-14). In each iteration, the algorithm identifies a block b* and pair of tuples
(g gj) € G”", which have the highest similarity (as defined below). Then they are merged as
follows. Let ‘7'513* and ‘7'}1* be the subset of tasks associated with g;- and g;- respectively, i.e., the

first elements of g and g;- respectively. First, ‘le and 7~ ]" are merged via a union operation:

uni i

follows: Tﬁ;i = 7_({7{ | k Tfl;}). Here 7 can be any data-free merging algorithm. The tuple set

G"" is then updated by removing the tuples g;-, g and adding the new merged tuple (7., 77 ). Each

uni’ " uni
merge reduces the model size by the size of the task vector corresponding to block b*, and the process

continues until the current size S meets the desired size S iarger OF N0 further merges are possible.

gh =gty ‘7’;1*. Next, the merged task vector corresponding to block b* and set 7. is created as

Similarity function. We measure the similarity between two groups g;, g; in any block b using the
lowest cosine similarity between any pair of original task vectors corresponding to the tasks in the
sets 7" and 77

SIMILARITY(g;, &;) =  min cosine_sim(‘rzl ,Tzz). D

kieT?, ko S b

Our choice of the min similarity derives from our ablations comparing different strategies—max, min,
and average—as well as computing similarity between merged group task vectors directly. Among
these, min yields the best performance. Thus at each iteration, we merge the pair of groups with the
highest of these minimum similarities (line 9, Algorithm [I)). While the cosine similarity between full
task vectors can be relatively low (Ilharco et al., [2023)), the block-level similarities tend to be higher
and effective for merging. CHANNEL MERGING (Zhang et al.,|2025) also employs cosine similarity.

Enhancing efficiency. The pairwise similarities can be precomputed once for all pairs and accessed
in constant time during the merging process. Furthermore, we leverage the Disjoint Set Union
(DSU) (Cormen et al., 2009) data structure to efficiently track and unify task sets for each block. Our
design enables FLEXMERGE to perform very efficient merging even under many tasks (see Table [2).

3.3 EXISTING MERGING METHODS IN COMBINATION WITH FLEXMERGE

FLexMERGE provides the flexibility to choose any data-free merging algorithm ¥ from a diverse
set of existing approaches. Unlike traditional methods that operate at the level of full task vectors,
FLExMERGE applies merging algorithms at the block level, fusing block task vectors. We detail the
exact block-level merging procedure for different algorithms next. In standard approaches like TA,
TSV-M, and PCB-MERGING, task vectors are merged into a single unified task vector. When applied

at the block-level, the merging outcome for any block b can be denoted as: Tﬁm — F ({‘ri | ke T lf’m})

Table 1: Summary of existing data-free merging methods. Column ?'({TZ |keT?

uni}) denotes the
result of merging. Figure E] (Section @ provides an illustrative diagram.

Algorithm ’f({‘rf | ke ‘7';7 i) Final Model What is stored?
TA (Ilharco et al.;[2023), TIES (Yadav et al.|[2023),
Avg. (Ilharco et al.[[2023), PCB (Du et al.|[2024), Tﬁni aﬁm = (!)gre + Tﬁni azni
TSV-M (Gargiulo et al.[|2025)
~b
1 b 9.=9b.+‘rb.om’f h
Consensus (Wang et al.|[2024) b Amd | k € T} (rec};)nstrﬁlceted puglr-taSli k) azm, b Aml | k € T}
b
3 - yy O =6 YT omd -
EMR-MeraiNG (Huang et al.|[2024) o Am Y ke TD.) (réconsrireuctzé pelr“—]{ask ]i‘) Hl’m,rﬁm, {(ml. ) | k € Tni}
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Figure 3: Merging 8 (top) and 30 (bottom) tasks. The accuracy-size trade-off shows rapid initial gains,
followed by gradual improvement, reaching near fine-tuning accuracy well before the maximum size.

where ¥ is the specific merging algorithm and 7~ fm is the subset of tasks for which the merging

occurs. The final block parameters are then computed as Hﬁm = nge + ‘r’;ni. Approaches such as

Consensus generate task-specific masks in addition to the unified vector: 70 {mi | k € Tuni} <

uni’
T({TZ | k € ’i'ubni}). Then during inference, the task-specific weights for task k are reconstructed as

9k = nge + ‘rﬁ i © mz. Consensus thus stores Ogre, Tﬁm, and the binary masks {mi | k € Tuni} and
defers per-task reconstruction to the inference time. This leads to a storage cost exceeding 2x that
of standard methods, which only store Gﬁni. EMR-MERGING further generates task-specific scalars
{yi | k € Tuni} in addition to the masks, however the storage cost of these scalars is negligible. Table
summarizes the merging outcomes for different algorithms, applied at block-level within FLEXMERGE.

Figure[7| (Section[B) provides an illustrative diagram.

4  EXPERIMENTS

We split our evaluation as follows: (i) Merging on vision, PEFT and FFT benchmarks in Section 4.1}
(i1) FLEXMERGE vs CHANNEL MERGING in Section 4.2} and (iii) ablation and efficiency analysis in
Section[4.3] Lastly, multi-modal and OOD results are in Appendices|C.4]and [C.6]]

Merging algorithms. We investigate the accuracy-size trade-off for several data-free merging
algorithms including Vanilla Averaging, TA (Ilharco et al.}[2023), TIES-MEerainG (Yadav et al.| 2023),
PCB-MEtRraING (Du et al.[2024), TSV-M (Gargiulo et al.| 2025)), Consensus (Wang et al., [2024) and
EMR-MEeracinG (Huang et al) 2024) on extensive vision and NLP benchmarks. As noted earlier,
the focus of our work is data-free model merging. Hence, existing data-based algorithms such as
SURGERY (Yang et al., 2024a)), AbDAMERGING ([Yang et al., [2024b)), TwiN-MERrGING (Lu et al., [2024)), etc.
are not directly comparable in our setting.

Hyperparameters. For TA, we set 4 = 1.5. For TIES-MERGING, we use a sparsity ratio of 0.1 and
employ the recommended value of 4 = 1. For Consensus, we set the hyperparameter responsible for
controlling the amount of information extracted by masks to 0.6 for all tasks and use TIES-MERGING
as the algorithm to generate unified task vectors. For FLEXMERGE, we set the block granularity at
the level of individual components within the transformer layer, i.e., the attention, MLP, and layer
normalization modules are treated as separate blocks during the merging process.

20ur anonymized code is available at: https://anonymous .4open.science/r/model-merging-84F2
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Figure 4: FLEXMERGE + TA gains 7.2% for (IA)? going from 1x to 3x and more than 9% for FFT
when just doubling the size from 1x to 2x. EMR begins with higher accuracy, yet, substantially
benefits from increased size.

4.1 MERGING RESULTS

Merging 8 and 30 vision models. For the image classification tasks, we follow the setup from
existing work (Huang et al., 2024;|Yadav et al.,[2023). Specifically, we use two versions of the CLIP
model (Radford et al.,[2021)), incorporating ViT-B/32 and ViT-L/14 as visual encoders (Dosovitskiy:
et al.| 2021). We evaluate on the standard 8 task benchmark (Ilharco et al.l 2023)) as well as an
extended 30 task benchmark (detailed in Appendix[B.2)). Figure[3|plots average accuracy vs. deployed
model size (in multiples of a single fine-tuned model). For FLEXMERGE + TA, the accuracy increases
fairly rapidly as the model size grows beyond 1x. The gains are significant (top row), where the
accuracy reaches > 80% at size 2x from only 67.5% at size 1x for the ViT-B/32 model in the 8 task
setup. Similar gains are also observed for 30 tasks (bottom row).

Masking-based approaches, Consensus and EMR-MERGING, begin with substantially higher accuracy
than TA and TIES-MERGING, but their smallest size exceeds 1x due to the need to store pre-trained
weights and binary masks (Section [3.3). On 8 tasks, CoNsensus was shown to match fine-tuned
accuracy at small sizes, but only when its extraction parameter is separately tuned per task (Wang
et al., 2024). FLExXMERGE + CoNSENsUs also shows strong gains, improving from 76% at ~ 3X to
84.5% at ~ 6x for ViT-B/32 in 30 tasks. EMR-MERGING maintains high accuracy even at the smallest
size. Yet, it exhibits an accuracy gap w.r.t the fine-tuned models, which can be effectively reduced
by increasing the deployed model size. Larger ViT-L/14 models achieve higher accuracy across all
methods, but the accuracy-size trade-off remains similar: rapid initial gains followed by gradual
improvements. Most algorithms approach the fine-tuning accuracy (denoted by O0) well before
maximum size, around 6X for 8 tasks and 23.5x for 30 tasks. Thus, in cases requiring storage of all
fine-tuned models, FLEXMERGE can reduce size by about 25% with little accuracy loss.

Merging 11 PEFT models. We adopt the experimental setup from prior work (Huang et al., [2024;
Yadav et al., 2023). Specifically, we employ the (IA)* (Liu et al., [2022) PEFT method on the
TO0-3B (Sanh et al.l |2022) base model using 11 diverse datasets sourced from (Yadav et al.l|2023)
(detailed in Section [B.3)). Figure [@(a) demonstrates the benefits of deploying larger model sizes,
where in this case the model size is measured with respect to the (IA)? modules. FLEXMERGE + TA
achieves notable gains, increasing accuracy from 59% at size 1x to 66.2% at 3%, a 7.2% improvement.
Similarly, FLEXMERGE + EMR-MERGING surpasses 70% accuracy at 5x, starting from 67.6% at the
lowest size of 2.34x. We observe similar trends for other algorithms, included in Appendix [C.2}

Merging 7 FFT models. For this experiment, we closely follow the setup from prior work (Du et al.|
2024;|Yadav et al.}|2023)). We use T5-Base and T5-Large as base models, applying full-parameter
fine-tuning on 7 datasets sourced from (Yadav et al.| [2023) (detailed in Appendix [B.4). Figure {b)
illustrates the trade-off between model size and accuracy for the T5-Large model. Here, one unit
of model size corresponds to the full size of a single model. FLEXMERGE + TA gains more than 9%
to reach an accuracy of 75% when just doubling the size from 1x to 2x. Similarly, FLEXMERGE +
EMR-MERGING surpasses 86% at size 4X, starting from 85.2% at its lowest size of 2.2x. Consistent
with our observations on vision tasks, FLEXMERGE + TA reaches very close to the fine-tuning accuracy
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Figure 5: (Left) FLEXMERGE + TA outperforms CHANNEL MERGING + TA across all sizes. (Center,
Right) Algorithm rankings shift even at modestly larger sizes, with simpler methods rivaling advanced
ones. We show sizes just over Consensus and EMR-MERGING’s lowest size for a wholistic comparison.

around size 5%, much in advance of full size 7Xx. Thus, scaling the model size benefits both ends of
the spectrum. Results for other combinations are included in Appendix [C.3]

Cross-algorithm analysis. Thus far, we evaluated the accuracy-size trade-off per algorithm. We now
compare algorithms at same size, yielding two interesting findings: (i) the performance gap between
different algorithms significantly narrows at slightly larger sizes; and (ii) the algorithms rankings also
alter in many cases, with simpler algorithms rivaling or surpassing advanced ones. In Figure[5|on
vision tasks, vanilla averaging exceeds TIES-MERGING at size 3.25% while TA overlaps with PCB.
While EMR-MERGING and CONSENSUS stay atop on vision, they are surpassed by PCB on PEFT at size
4.5%. Crucially, all algorithms remain within 3 — 4% on both benchmarks at increased sizes despite
originating with a much larger gap at size 1x (see Figure[I(b)). Our findings provide encouraging
evidence to develop and compare algorithms at sizes > 1X rather than only at 1X.

4.2  FLEXMERGE vs CHANNEL MERGING

CHANNEL MERGING (Zhang et al., 2025) uses K-Means clustering per layer, following a fixed same
value of K for every layer. Each choice of K € {2,3,..., M — 1} results in a merged model of the
corresponding size. Figure [5|charts the average accuracy with TA and ViT-B/32 for a set of integer
model sizes, excluding the extremes 1x and 8x where both approaches have the identical accuracy.
Recall that CHANNEL MERGING does not support fractional sizes. FLEXMERGE achieves higher accuracy
than CHANNEL MERGING in all cases, thanks to its greedy pairwise merging approach which allows
flexible number of groups per layer instead of restrictive clustering. Results with TIES-MEerGING and
visualization of clusters is included in Appendix[C.3]

4.3 ANALYSIS

Ablations on the merging procedure. We ablate on the similarity functions (min, max, average,
comparing unified vectors) for Equation (I)) and merging orders (left-to-right, right-to-left, greedy) in
FLexMERGE using the ViT-B/32 model on 8 tasks. We also investigate random block selection over
cosine similarity. Figure[6]shows that the min strategy performs the best, though other strategies are
also competitive. For merging order, right to left performs the worst as expected since the final layers
in neural networks tend to be more specialized and merging them first hurts accuracy. While left to
right seems ideal, it can be too strict and therefore greedy emerges as the best. We further analyze
the merging order of greedy in Appendix [C.I0} Random selection is competitive, but generally
underperforms when compared across algorithm. Based on these findings, we set FLEXMERGE to use
greedy with cosine similarity (min strategy) by default. For more ablations, see Appendix [C.8§]

Merging and inference efficiency. Table 2] shows that FLExMERGE achieves highly efficient data-
free merging, generating all deployed sizes in about 20 sec for up to 30 tasks. For inference with
FLEXMERGE, each request follows a unique forward path through the merged model using task-specific
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Figure 6: Ablation results for FLEXMERGE reveal that the min similarity strategy and greedy merging
perform the best, while cosine similarity generally outperforms random selection.

blocks (Figure[T[(a)). For a model of size 1x, all tasks share a single path, but the classification heads
are always applied separately. We load the tensors of merged model (size > 1X) into the GPU memory
once and create M task-specific model views that reference these shared tensors to process task
batches in parallel. Standard merging, by contrast, processes all tasks in a single batch before splitting
for task-specific heads. We simulate the worst case arrival, where inference batches corresponding to
all tasks arrive at once. We consider 50 consecutive batches of size 256 (totaling 12800 samples).
Each batch contains 32 samples per task across 8 tasks. Table [3|shows that FLEXMERGE maintains
inference speed comparable to standard merging for both ViT-B/32 and ViT-L/14, demonstrating that
larger models can enhance accuracy without slowing inference.

Table 2: Merging time for FLEXMERGE Table 3: Comparing inference time of FLEXMERGE against

with the ViT-B/32 model. standard model merging. The overheads are negligible.
# Tasks Method Merging time Model Algorithm Size  Inference Cost (/12800 items)
et 8 weew S b e

5 DiscussioN AND CONCLUSION

Benefits. Different merging algorithms have different advantages: EMR and Consensus achieve high
accuracy but require task-specific reconstruction during inference, incurring overheads. FLEXMERGE
can also mitigate this overhead as larger deployed models need fewer blocks to be reconstructed (see
Appendix [C.9). In contrast, TIES and TA avoid reconstruction but have lower accuracy. FLEXMERGE
provides flexibility, letting practitioners choose algorithms and balance accuracy, reconstruction
overhead, and model size for various deployment scenarios.

Limitations. Most works, including FLEXMERGE, are limited to merging models with the same
architecture as merging heterogeneous models remains challenging (Singh & Jaggil 2020; Imfeld
et al.| [2024). Secondly, the theoretical insights for effective model merging are limited (Ortiz-Jimenez
et al.;,|2023). For FLEXMERGE, how to obtain the optimal merged model for any given size remains
unclear. Although extensive ablations help guide (Section [d.3)), further investigation is needed to
understand the bounds of the accuracy-size trade-off.

We introduced FLEXMERGE, a flexible, data-free model merging framework that extends beyond tradi-
tional single-model fusion and offers precise control over fused model size. Extensive experiments
show that the accuracy-size trade-off exhibits favorable properties for several algorithms, benefit-
ing from rapid accuracy gains with modest size increments. Future work may explore specialized
algorithms for block-level merging.
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A EXTENDED RELATED WORK

Table [4] characterizes different merging algorithms on their data-based/data-free nature and merged
model size. Below we discuss additional related work.

Multi-Task Learning (MTL). The traditional approach to obtaining a model with multi-task capabili-
ties is MTL which trains a single model using training data from multiple tasks together (Vandenhende
et al., [2021} [Sanh et al.| 2022). However, MTL suffers from not only (i) the expensive computational
cost for training, but also (ii) the limited data availability due to data privacy (Jin et al.| 2023} Yang
et al.} 2024b). In comparison, model merging bypasses these challenges by combining the fine-tuned
model weights directly, without training data, thus offering a more cost-effective approach to building
a multi-task model. Existing research in MTL also focuses on grouping tasks i.e., identifying subsets
of task that derive positive benefit from training together (Standley et al.| [2020; [Fifty et al.l|2021]).
Since training one model for all tasks can lead to suboptimal performance due to task conflicts and
competition for model capacity, these methods train separate multi-task models for specific task
groups. This can be seen as conceptually similar to our approach of having different task subsets
per merged block to improve performance (see Figure[I[a)). While our approach performs grouping
during merging, these approaches perform grouping during training.

Model Merging. Besides the works discussed in Section [2] recent works also focus on merging
models fine-tuned specifically with Low-Rank Adaptation (LoRA) [Stoica et al.|(2025)); Zhao et al.
(2025)); Tang et al.| (2024). Other efforts focus on developing approaches for fine-tuning that result
in lower interference during downstream merging [Lee et al.| (2025); Jin et al.| (2025)); |Ortiz-Jimenez
et al.| (2023). LiNeS Wang et al.| (2025) proposes a post-training editing technique to reduces negative
interference between parameters by scaling parameter updates based on their layer depth. FLEXMERGE
can seamlessly incorporate these recent advances.
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Table 4: Comparison of merging algorithms by data dependency and merged model size.

Algorithm Data Free Size Storage beyond the unified model
Weight Average v 1x (Fixed) -

TA (Ilharco et al.|[2023) v 1x (Fixed) -

TIES-MEkraGING (Yadav et al.|[2023) v 1x (Fixed) -

PCB-MERGING (Du et al.||2024) v 1x(Fixed) -

Consensus (Wang et al.|[2024) v > 2% (Fixed) Stores masks and 6.
EMR-MErGING (Huang et al.[[2024) v > 2x (Fixed) Stores masks and 6.
TSV-M (Gargiulo et al.|[2025) v 1x (Fixed) -

ReGMEAN (Jin et al.][2023) X 1x (Fixed) -

FisHeEr MERGING (Matena & Raffel|[2022) X 1x (Fixed) -

ADAMERGING (Yang et al.[|2024b) X 1x (Fixed) -

SurGEery (Yang et al.|[2024a) X > 1x (Fixed) Stores task-specific adapters
WEMOE (Tang et al.|[2024) X > 1x (Fixed) Stores MLP modules for all tasks
TwiNn-MERGING (Lu et al.][2024) X > 2x (Fixed)  Stores compressed diff. vectors and .

/ (| Pre-trained block (/] Masks Merged block \

(a) FlexMerge + (a) FlexMerge +
{TA, TIES, PCB} {Consensus, EMR}

Figure 7: FLEXMERGE in combination with different merging algorithms. Standard methods such
as TA, TIES-MERGING, efc. generate the merged parameters per block. Recent methods such as
Consensus and EMR-MERGING generate binary masks in addition to the unified parameters. They also
store the pre-trained parameters for task-specific reconstruction.

B  AbppITioNAL DETAILS

B.1 How TO APPLY EXISTING MERGING ALGORITHMS AT THE BLOCK-LEVEL?

While most merging algorithms can be directly applied at the block-level, we list them below and
explain any specific adaptations that help improve performance. Figure [7]provides an illustrative
diagram for FLEXMERGE in combination with different merging algorithms.

e Averaging. Applied directly to obtain Tﬁni.

F(rt ke Tl )=

uni

|77 | Z i

uni kerrubm

e TA (Ilharco et al.||2023). Applied directly to obtain Ty;.

1
FTy ke ThD =1 —— >
7 il keT s
For all experiments with TA, we use 4 = 1.5. Note that our definition of A for TA excludes
the 1/ |7'Lf’ni| factor (see Section , in contrast to prior work. This modification is essential
for ensuring reasonable merging performance with TA, as the number of tasks being fused

per block varies throughout the bottom-up fusion process, ranging between 2 and M.

o TIES-MERrcinG (Yadav et al.,[2023)). We apply trimming to the full task vectors 14, k € [M]
to retain the top 10% of the parameters before beginning the greedy merging process. This
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is because selecting the top parameters globally performs better than selecting them within
each block. During the bottom-up merging process, only the elect sign and disjoint merge
steps of TIES-MERGING are performed. Lastly, we employ the recommended value of 4 = 1.

o PCB-MkrainG (Du et al.,2024)). Applied directly at the block-level by executing the steps of
intra-balancing, inter-balancing and drop and rescale at the block-level. In PCB-MERGING, the
drop operation for any task vector depends on other task vectors that it is being merged with.
This contrasts with TIES-MEerGING where the drop (or trim) operation is solely dependent
on the magnitude of values in the task vector. Therefore, global trimming is not possible
in PCB-MERrGING and we execute it block-wise. We set the sparsity ratio to 10% for vision
tasks and 20% for PEFT and FFT experiments. Additionally, we employ the recommended
value of A = 1 across all experiments.

o Consensus (Wang et al.l [2024). Applied directly wherein the merging results in not only the
unified task vector but also the task specific masks.

T Am | ke T

b b

uni? uni} — 7:({7-1( | k e 7~uni})
The task-specific weights for task k € Tfni corresponding to this merged block b are then
reconstructed during the reconstruction process as:

9h =@ b o mP

k — Ypre T Tuni © MY

We use TIES-MERGING as the algorithm to generate Tﬁni within Consensus. Note that the
above version of CoNseNsus corresponds to the compression application in (Wang et al.,

2024). The alternative version of Consensus that corresponds to merging using masks can
be also directly leveraged within FLEXMERGE.

o EMR-MERrGING (Huang et al., [2024). Applied directly wherein the merging results in the
unified task vector, the task specific masks and task-specific rescalers.
o (. Y Lk € TUh e FlTy |k € Ty
The task-specific weights for task k € Tfm corresponding to this merged block b are then
reconstructed during the reconstruction process as:

N

b _ b b
Okzopre+7k'T

b

uni © m:

e TSV-M Gargiulo et al.| (2025). Applied directly per-block as the method originally also
operates layerwise. 2D parameters are merged using their task singular vectors while 1D
parameters are just use averaging for merging as done in their original work.

B.2  VISION BENCHMARK

The 8 task vision benchmark (Ilharco et al.,2023) comprises the following datasets: 1. SUN397 (Xiao
et al.,|2010), 2. Cars (Krause et al.| 2013), 3. RESISC45 (Cheng et al.,|2017), 4. EuroSAT (Helber
et al.;|2019), 5. SVHN (Yuval, 2011}, 6. GTSRB (Stallkamp et al., 2011}, 7. MNIST (LeCun}|1998),
and 8. DTD (Cimpoi et al., [2014). We extend the 8 task vision benchmark with 12 additional
datasets sourced from (Wang et al.| [2024)), including: 9. CIFAR100 (Krizhevsky et al., [2009)),
10. STL10 (Coates et al., 2011)), 11. Flowers102 (Nilsback & Zisserman, [2008)), 12. OxfordIIITPet
(Parkhi et al., 2012), 13. PCAM (Veeling et al., 2018)), 14. FER2013 (Goodfellow et al., [2013)),
15. EMNIST (Cohen et al.,[2017), 16. CIFAR10 (Krizhevsky et al.,|2009), 17. Food101 (Bossard
et al.,[2014), 18. FashionMNIST (Xiao et al., 2017, 19. RenderedSST2 (Socher et al.| 2013} |Radford
et al., 2019) and 20. KMNIST (Clanuwat et al., 2018). The remaining 10 datasets for our 30
task benchmark are sourced from (Huang et al., 2024), which include: 21. Weather (Xiao et al.,
2021), 22. Vegetables (Ahmed et al., 2021)), 23. MangoLeafBD (Ahmed et al.| 2023)), 24. Landscape
Recognition (DeepNets)), 25. Beans (Labl [2020), 26. Intel Images (Bansal, 2019), 27. Garbage
Classification (CCHANG]! 2018) 28. Kvasir (Pogorelov et al.,[2017), 29. KenyanFood13 (Jalal et al.|
2019) and 30. Dogs (Khosla et al., 2011)
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B.3 PARAMETER EFFICIENT FINE-TUNING (PEFT)

We fine-tune (IA)®> modules on 11 diverse datasets, including RTE (Giampiccolo et al., 2007),
CB (De Marnefte et al., [2019), Winogrande (Sakaguchi et al |2021)), WiC (Pilehvar & Camacho-
Collados| [2018), WSC (Levesque et al.,[2012), COPA (Roemmele et al.,|[2011)), H-SWAG (Zellers
et al., [2019), Story Cloze (Sharma et al., | 2018)), and ANLI (Nie et al.| 2019) (R1 to R3). In addition,
we leverage prompt templates from the Public Pool of Prompts (P3) (Bach et al., [2022)) which
convert each dataset example into a text-to-text format, where each label is mapped to a unique string
representation. We report the median performance across all templates for each dataset. Evaluating
multiple prompt templates increases the evaluation runtime significantly. To ensure the runtime
remains manageable, we cap the maximum number of test samples at 1000 per dataset.

B.4 FULL PARAMETER FINE-TUNING

The 7 datasets that we consider for fine-tuning include: PAWS (Zhang et al.,|2019), QASC (Khot
et al., [2020), QuaRTz (Tafjord et al.,|2019)), Story Cloze (Sharma et al.| 2018)), WikiQA (Yang et al.,
20135)), Winogrande (Sakaguchi et al., [2021)), and WSC (Levesque et al., 2012). During training and
evaluation, we apply a specific prompt template from P3 (Bach et al.| 2022) to each dataset. Each
model is trained for up to 75 000 optimization steps, with early stopping if validation accuracy does
not improve over five consecutive evaluation rounds. Performance is evaluated every 5 steps for
WSC and every 100 steps for other datasets, using the full validation set. Training is conducted
using the Adam optimizer with a constant learning rate of 0.0001 and an effective batch size of 1024.
The maximum sequence length is set to 128, and bfloat16 precision is used for both training and
evaluation.

B.5 MULTI-MODAL BENCHMARK

We evaluate the performance of merging fine-tuned checkpoints of BEiT-3-base model Wang et al.
(2022) under FLExMERGE. We consider four datasets: COCO Captioning |Lin et al.[(2014) (Image
Captioning), ImageNet-1k |Deng et al.[(2009) (Image Classification), NLVR2 |Suhr et al.| (2019)
(Visual Reasoning) and COCO Retrieval [Lin et al.| (2014) (Image-Text Retrieval). The individual
checkpoints, each fine-tuned on one of these datasets, are available in UniLM repositoryﬂ We merge
layers that are common to all checkpoints i.e., excluding the task-specific classification heads. We
report accuracy for ImageNet-1k, NLVR2 and COCO Retrieval, meanwhile for COCO Captioning,
we report BLEU-4 [Papinent et al.| (2002)), CIDEr |Vedantam et al.|(2015), ROUGE-L |Lin| (2004) and
METEOR [Banerjee & Lavie|(2005)).

C ADDITIONAL RESULTS

In this section, we provide the remaining results for each benchmark.

C.1  VISION BENCHMARK

Figures 8| and O show the results on 8 and 30 tasks respectively, for Vanilla Averaging, PCB-MERGING
and TSV-M extending our results in Figure[3] FLEXMERGE + Avg. gains over 15% in accuracy by just
doubling the size from 1X to 2X in the 8-task benchmark under the ViT-B/32 model. PCB-MERGING
starts with higher accuracy at size 1x than vanilla averaging, thanks to its competition balancing
procedure. Yet, it significantly benefits from increasing the deployed model size. Under the same
setup as above, FLEXMERGE + PCB-MERGING gains 7.5%, by just doubling the size from 1x to 2x.
TSV-M significantly leads both algorithms at size 1X, still showing steep improvements of 4.2%
from size 1X to 2X. We observe similar steep initial gains for both the algorithms even with 30 tasks.
Notably, in all cases, we observe that a near fine-tuning accuracy is reached well in advance of the
maximum size, around 6x for 8 tasks and around 23.5x for 30 tasks.

19



Under review as a conference paper at ICLR 2026

—— ViT-B/32 ViT-L/14
FlexMerge + Avg. FlexMerge + PCB FlexMerge + TSV-M
> 0.95 + @] 0.95 =1 0.95 ol
<
5 085 1 0.85 & 0.90 47
> @
< 0.75 -
gb 0.75 1 0.85
< 0.65
LI T T T 065 T T T T T 080 T T T T
12 4 6 8 12 4 6 8 12 4 6 8
Deployed model size [in model units]
Figure 8: Accuracy-size trade-off for 8 tasks.
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Figure 9: Accuracy-size trade-off for 30 tasks.
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Figure 10: Remaining combinations on the (IA)? PEFT benchmark with T0-3B.

C.2 (IA)’ PEFT BENCHMARK

We extend the results of Figure 4] with four additional algorithms in Figure [0}

can be benefit from a reduction of 4 model units without losing too much accuracy.

Shttps://github.com/microsoft/unilm

20

All algorithms
demonstrate a steep initial rise in accuracy, except TIES-MerGING for which the gains appear sharply
after a steady initial rise. Notably, at size 7x, all algorithms are within 1% of the fine-tuning accuracy
(denoted by O0). Therefore, practitioners aiming to deploy all 11 fine-tuned models for high accuracy


https://github.com/microsoft/unilm

Under review as a conference paper at ICLR 2026

FlexMerge + TIES FlexMerge + Cons. FlexMerge + Avg. FlexMerge + PCB
N 0.9
5 0.85 = 087 &l ®o.85 - -
5 0.85 - 0.8 7
g 0.80 A 0.80
< 0.83 0.7
gb 0.75 0.75 1®
< ® 08l 4 @& 0.6 4o
070 T T T T T T T T T T T T T T T T T T T T T 070 T T T T T T T
1234567 1234567 12345617 1234567
Deployed model size [in model units]
Figure 11: Remaining combinations on the FFT benchmark with TS-Large.
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Figure 12: Remaining combinations on the FFT benchmark with TS-Base.
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Figure 13: Results on T5-Large. Algorithms rankings are not consistent across sizes. In particular,
PCB-MEraING and TIES-MERGING surpass the accuracy of masking-based approach Consensus while

~-=- Avg

PCB EMR

Size 3.5x

averaging almost attains the accuracy of TA at size 3.5X.

C.3 FuLL-PaRaMETER FINE-TUNING (FFT) BENCHMARK

We extend the results of Figure @] with four additional merging algorithms on two models. Figure[TT]
and Figure 2] chart the results for T5-Large and T5-Base respectively. Just doubling the deployed
model size from 1X to 2X significantly improves the accuracy across all combinations. We note gains
of more than 7%, 12% and 4.3% for TIES-MERGING, Averaging and PCB-MERGING respectively under
the T5-Large model. Similarly, we note gains of nearly 9% for both Averaging and PCB-MERGING
under the T5-Base model. TIES-MercGING under the T5-Base model demonstrates a sharp rise around
size 2x, reaching 80.6% accuracy at just 2.7x from an accuracy of 68.7% at size 1%, a gain of nearly
12%. Except for FLEXMERGE + Consensus under T5-Large which demonstrates a linear trade-off, all
other combinations exhibit a highly favorable trade-off, validating the benefits of our approach across
diverse scenarios. Lastly, we also observe that algorithm rankings remain inconsistent on the FFT

Consensus

Avg. Accuracy

benchmark as well when sizes are increased, as illustrated in Figure [I3]
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C.4 MULTI-MODAL BENCHMARK
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Figure 14: Accuracy-size trade-off for FLEXMERGE + TA on the multi-modal benchmark with
BEiT-3-base. The performance metrics for each dataset are shown in parentheses.
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Figure 15: Accuracy-size trade-off for FLEXMERGE + EMR-MERGING on the multi-modal benchmark
with BEiT-3-base. The performance metrics for each dataset are shown in parentheses.

In this section, we present the accuracy-size trade-off for the multi-modal benchmark detailed in
Section [B.3] Figures [I4] and [I3] chart the results for FLEXMERGE + TA and FLEXMERGE + EMR-
MERGING respectively. The performance metrics differ across datasets, therefore we show each dataset
separately. The first row in each figure corresponds to the COCO-Captioning dataset with 4 metrics
while the second row corresponds to ImageNet, NLVR2 and COCO-Retrieval datasets, each evaluated
with accuracy. For all metrics, higher values indicate better performance.

Across all datasets, we observe a significant gap between the performance at lowest merged size and
the fine-tuned model performance. FLEXMERGE + TA shows significant benefit of increased size on the
COCO-Captioning dataset where the performance steeply grows across all four metrics between size
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1x and 2x. For ImageNet, NLVR2 and COCO-Retrieval the performance improves sharply between
size 2x and 3x. Interestingly, NLVR2 shows a drop in performance before rising sharply, indicating
that merging with related tasks can provide complementary benefits. EMR-MERGING has a lowest size
of over 2x due to the cost of storing the pre-trained model and the masks. However, this provides a
significantly higher starting performance than TA. The performance improvements for FLEXMERGE +
EMR-MERGING are similar to FLEXMERGE + TA, where COCO-Captioning demonstrates a sharp rise
between 2x and 3x while the remaining datasets demonstrate a sharp rise between 3x and 4. Thus,
larger sizes can confer beneficial improvements across both algorithms, obviating the need to deploy
all fine-tuned models for high performance.

C.5 FLEXMERGE vs CHANNEL MERGING

In this section, we compare FLEXMERGE with CHANNEL MERGING B FlexMerge + TIES
under the TIES-MERGING algorithm, following the same setup E=3 Channel Merge + TIES
as our experiments with TA in Figure[5] As shown in Figure[T6]

FLExMERGE consistently achieves significantly higher accuracy 2 1004

than CHANNEL MERGING across all sizes. This is because CHAN- 3

NEL MERGING enforces a fixed number of clusters per block, & 0.95 7

whereas FLEXMERGE allows vastly different number of clusters g 0.90 4

per layer by design. This flexibility, enabled by iterative pair- 2 0.85

wise merging, leads to substantial accuracy improvements. To ob

better understand this effect in FLEXMERGE, we visualize the Z 080 —r—r—r—r—r—

number of clusters per block in Figure [I7] corresponding to 2345067
merged model sizes of 2.16x. For clarity, we focus on Atten- Deployed model size
tion and MLP blocks, which constitute the bulk of the model [in model units]

size, omitting smaller blocks such as layer norms. In Figure [I7}

we observe that the number of clusters per block varies signif- Figure 16: FLEXMERGE achieves
icantly—from I to 4—whereas CHANNEL MERGING, at a similar  pigher accuracy than CHANNEL
model size, would enforce exactly 2 clusters per block, limiting  Mgraing across all sizes.

its effectiveness.
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Figure 17: Visualizing the number of clusters per block in FLEXMERGE model of size 2.16X. The
number of clusters vary significantly across blocks, ranging from 1 to 4. In contrast, for a model of
size 2x, CHANNEL MERGING Will have exactly 2 clusters in each block. This flexibility enables greater
accuracy for FLEXMERGE over CHANNEL MERGING.

C.6  Our-or-DistriBuTION (OOD) PERFORMANCE OF FLEXMERGE

To assess the OOD performance of FLEXMERGE, we conducted additional experiments on 6 OOD
tasks using models merged from 8 in-domain tasks. For each OOD task, the prediction is obtained by
ensembling the outputs of the 8 in-domain branches of the merged model (see Figure Eka)).

Setup: In-domain tasks are SVHN, Cars, RESISC45, EuroSAT, SUN397, GTSRB, MNIST and
DTD. Out-of-domain tasks are Weather, PCAM, Flowers102, Landscapes, Beans and Food101. We
consider TIES as the merging algorithm as it known for its good performance OOD.

23



Under review as a conference paper at ICLR 2026

Results. Table[5|presents the average accuracy of each in-domain expert on the 6 OOD tasks. Table[6]
presents the average accuracy of FLEXMERGE’s merged model for varying sizes on the 6 OOD tasks.
We observe that across all model sizes > 1Xx, FLEXMERGE consistently outperforms the best single
in-domain expert on these OOD tasks, suggesting that our method not only preserves but can also
improve OOD generalization.

Table 5: Average OOD Accuracy of Individual In-domain Experts. Bold-faced values indicate the
best in-domain expert.

Model | | Dataset = SVHN  Cars  RESISC45 EuroSAT SUN397 GTSRB MNIST DTD

ViT-B-32 0.5538 0.6230 0.6268 0.5768 0.6366  0.5083  0.5060 0.5910
ViT-L-14 0.7259 0.7152 0.6908 0.6797 0.7096  0.7328 0.7298 0.7193

Table 6: Average OOD Accuracy of FlexMerge at Varying Sizes. Bold-faced values indicate higher
accuracy than the best in-domain expert in Table E}

Model | | Merged Size — 1x 1.5x 2x 2.5x 3x 4x 6x 8x
ViT-B-32 0.6289 0.6410 0.6475 0.6539 0.6567 0.6586 0.6548 0.6595
ViT-L-14 0.7390 0.7394 0.7398 0.7403 0.7416 0.7453 0.7464 0.7488

C.7 SCALING LAWS FOR FLEXIBLE MODEL MERGING
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Figure 18: Deploying model sizes in proportion to the number of tasks (M) scales better than fixed
size models (1x or 3x) as shown.

As the number of tasks increases, maintaining high accuracy in the merged model becomes challeng-
ing. While newer methods enhance accuracy scaling, they encounter limitations when the model size
is fixed. Thanks to flexible model merging, this scaling can be significantly improved if the deployed
model size is chosen in proportion to the number of tasks. To illustrate this, we chart in Figure[T8]
the drop in average normalized accuracy from 8 tasks to 30 tasks, when deploying a model of fixed
size 1x vs sizes chosen proportionally to M. Noticeably, the drop becomes smaller as the proportions
increase, becoming < 5% at size 4M/10 from > 16.5% at size of 1x for TIES-MERGING.

We observe similar results across other algorithms. For TA at size 1X, the average normalized
accuracy drops by 9.2% when scaling from 8 to 30 tasks. With FLEXMERGE, this degradation can be
significantly mitigated by adjusting the deployed model size in proportion to the number of tasks
(M). For instance, setting the deployed model size to 3M/10 reduces the drop to 3.7%, and increasing
it to 4M/10 brings the drop down further to 2.5%. Even for advanced algorithms such as CoNseNsus,
fixed-size models can suffer substantial degradation. At a fixed size of 3, the accuracy drop from
8 to 30 tasks for Consensus is 14.5% (beyond the y-axis limits of the figure). However, increasing
the deployed model size to 45M/10 reduces the drop to 2.5%, and to less than 1% at 6M/10. While
fixed-size models struggle to scale effectively with the number of tasks, our results highlight the need
to rethink accuracy scaling—advocating for model sizes that grow proportionally with task count.
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Figure 19: Greedy emerges as the best over left-to-right and right-to-left for both FLEXMERGE +
Consensus and FLEXMERGE + EMR-MERGING whereas cosine performs better than random.
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Figure 20: For TIES-MERGING, its trimming component makes similarity comparisons noisy. Hence,
random selection performs slightly better than cosine. In contrast, cosine similarity performs better
on EMR-MERGING and most other cases (see also Figures [6]and[T9).

C.8 ABLATIONS OF THE MERGING PROCEDURE

In this section, we include the remaining ablation results. In particular, we explore the impact of
merging order on Consensus and EMR-MERGING. We consider three merging orders: left-to-right,
right-to-left and greedy. In the left-to-right order, we execute pairwise iterative merging using cosine
similarity in block 1, followed by block 2, block 3 and so on (see Figure E]) Hence, all task-blocks in
block i are fully merged before carrying out any merging in block i + 1. The right-to-left merging does
exactly the same, but in reverse order, starting from the last block. In contrast to both, greedy merging
can select any pairs in any block depending upon their cosine similarity, without any restriction on
the order. Figure[I9]shows the results for FLEXMERGE + Consensus and FLEXMERGE + EMR-MERGING.
Similar to our results in Figure[6] right-to-left performs the worst. As final layers tend to be more
specialized, merging them first significantly hurts accuracy. Intuitively, left-to-right merging seems
ideal. However, strictly following this order proves too rigid, and a more flexible greedy merging
approach performs best. We further analyze the ordering in greedy in Section [C.10}

We also explore the impact of random selection over cosine similarity based selection on more
merging algorithms, namely TIES-MerGiNnG and EMR-MERGING, extending our results in Figure[6] In
Figure[19] cosine performs better than random on FLeExMERGE + Consensus. However in Figure 20}
random selection shows slightly better performance for FLEXMERGE + TIES-MERGING. This is likely
due to the trim component of TIES-MerGING which makes similarity comparisons noisy. As detailed
in Section[B.T] we retain only the top 10% parameters in the full task vectors before beginning the
bottom-up merging process when using TIES-MEercGiNG. While sparsification enables better merging
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due to reduced interference |Yadav et al.|(2023), it also renders similarity comparisons noisy, leading
to a slight drop in performance compared to random selection. With FLEXMERGE + EMR-MERGING,
random shows high variance, and once again cosine performs better on average than random. In
summary, cosine is generally superior across most cases in Figures [6] [T9]and 20]

C.9 RECONSTRUCTION LATENCY OF MASKING BASED APPROACHES

C.9.1 How DO WE MEASURE THE RECONSTRUCTION LATENCY?

Approaches such as Consexsus and EMR-MERGING merge into a unified task vector 7, and task-
specific masks (m;, . .., my). To reconstruct the task-specific model, they also store .. and recon-
struct as follows: R

0, = apre + Tuni © My )
Under FLEXMERGE, the size of the deployed model varies. Consider for a certain task ¢, two sets —
BF and B\BF', comprising the set of all blocks that were fused and retained as original respectively.
Notice the subscript  which indicates that these sets could be different for different tasks depending
on how the greedy fusion occurred. For each fused block b € B, let 7” denote the subset of tasks
which got fused. Then FLExMERGE will store the corresponding Tﬁm along with the task specific

masks {mZ}kerrh and Ogre. Under FLExMERGE, we then reconstruct as follows:

forb e B : 8] = @y + 700 o m! 3)

And, no reconstruction is required for unfused blocks:
forb € B\Bf : 957 = 0? 4)

The reconstruction latency therefore depends upon the size of Bf. Ideally, we would measure the
reconstruction latency as the time required to execute Equation (3)) averaged across all tasks ¢ € [M].
However, this would mean that the reconstructed parameters 0, occupy additional storage alongside
0. To restrict this extra storage, we assume that the reconstruction happens in-place on 6. as
follows:

forbe Bl : 6, =6+, 0om] (5)
Once the inference for task ¢ is completed, the pre-trained parameters are restored back to be ready
for the next reconstruction:

for b € BF : nge = Hﬁre - Tﬁni om! ©6)
Thus, we report the reconstruction latency to be the total time required to execute both Equation (3))
and Equation (6], averaged across all tasks.

C.9.2 How DOES INCREASING THE DEPLOYED MODEL SIZE LOWER THE RECONSTRUCTION LATENCY?

As noted earlier, the reconstruction latency depends on the size of Bf'. As the deployed model size
progressively increases, more and more blocks move from Bf to B\B’, and the time to reconstruct
consequently reduces. The lowest deployed size i.e., where all blocks are fused, B = B, incurs the
highest reconstruction overhead. Conversely, the maximum possible deployed size (of Mx), with
BF = 0, incurs zero reconstruction latency. Thus by employing larger deployed models generated
by FLExXMERGE, practitioners can effectively reduce the reconstruction overhead in time-critical
applications.

Results. Figure [21] shows the average reconstruction latency for Consensus, measured on both
CPU and GPU. The latency for EMR-MERGING closely matches that of ConNsexsus, as the additional
scalar multiplications in EMR-MERGING incur negligible overhead; the dominant cost arises from
the application of masks. As illustrated in Figure 21] merging into larger models using FLEXMERGE
can significantly reduce reconstruction latency. For ViT-L/14 on CPU, latency drops from 240 ms to
0 ms, and for ViT-B/32, from 60 ms to 0 ms, depending on the deployed model size. On GPU, the
latency similarly decreases—from 6 ms to O ms for ViT-L/14 and from 4 ms to O ms for ViT-B/32.
To put this in perspective, the forward pass takes 12 ms for ViT-L/14 and 7 ms for ViT-B/32. On
GPU, reconstruction latency can exceed 50% of the forward pass time, while on CPU, the overhead
is several times higher. These reconstruction costs can be significant in time-critical scenarios.
By enabling fine-grained control over the deployed model size, FLEXMERGE allows CoNseNsus and
EMR-MERGING to achieve not only higher accuracy but also lower reconstruction latency.
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Figure 21: FLEXMERGE enables lowering of the reconstruction latency overheads for approaches such
as Consensus Wang et al.|(2024) and EMR-MEraING |[Huang et al.| (2024) by offering flexible control
over the deployed model size. The default overhead at the lowest size can be significant, exceeding
50% for the forward pass time, which is 12 ms for ViT-L/14 and 7 ms for ViT-B/32 on GPU.

C.10 MERGING ORDER ANALYSIS
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Figure 22: Visualizing the order of greedy selection blocks for FLEXMERGE + TA on 8 task vision
benchmark with ViT-B/32. We focus only on Attention and MLP blocks as they share the biggest
portion of the size of the model. We observe that the initial and final blocks get selected ahead of the
intermediate blocks on average, indicated by the smaller values of their average selection time step.

Figure 22] visualizes the order of greedy block selection for the run corresponding to FLEXMERGE +
TA on 8 task vision benchmark with ViT-B/32 (shown in Figure[3). We focus only on Attention and
MLP layers as they share the biggest portion of the size of the model. There are 12 transformer layers
in the ViT-B/32 model, resulting in a total of 24 blocks that we consider in the sequential order. The
number of possible merges total to (M — 1) X 24 = 7x 24 = 168, with at most (M — 1) merges possible
for each of the 24 blocks. The time steps are assigned in order of selection starting from 0 to 167. We
report the average selection time step for every block in Figure[22] We observe that the initial and
final blocks are, on average, selected earlier than the intermediate blocks, as indicated by their smaller
average selection time step. While the overall trend aligns with the common understanding that
earlier layers in neural networks learn general features shared across tasks and later layers capture
more task-specific features with lower correlation, we find that the final few blocks may also exhibit
higher cosine similarity and be selected early for merging. This flexibility, enabled by FLEXMERGE’s
greedy selection process, facilitates the efficient trade-off between model size and accuracy.

C.11 MAIN RESULTS PRESENTED WITH NORMALIZED ACCURACY

We presented results using average accuracy in Figures [3]and f] For completeness, Figures 23]
and [24] show the corresponding results using average normalized accuracy, computed by dividing the
accuracy of the merged model by the fine-tuning accuracy on each task, and then averaged across
tasks.
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Figure 23: Vision benchmark results (Figure [3) shown with average normalized accuracy.
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Figure 24: PEFT and FFT benchmark results (Figure [4) shown with average normalized accuracy.

C.12 DATASET-WISE RESULTS

Figures[25]to [27) chart the dataset-wise results for FLExMERGE + TA, corresponding to the plots in
Figures 3| and |4

D CowmputeE RESOURCES

All experiments were conducted on an internal compute cluster comprising 2 x AMD EPYC 7543
32-Core 2.8GHz CPU Processor, equipped with 8 x NVIDIA A100 SXM4 80GB GPU. All of our
experiments individually use only 1 out of the 8 GPU units. While the merging itself is efficient,
the evaluation of test accuracy consumes bulk of the time and compute. The wall-clock time can
range anywhere between 3 h for 8 tasks to up to 12h for 30 tasks under the ViT-L/14 model for
evaluating up to 20 merged sizes in the size range [1, 30]. Similarly, the wall clock times range up to
2 h for full-parameter fine-tuning, up to 8 h for PEFT and up to 5 h for multi-modal test evaluations.
Across all experiments presented in this article, we estimate the total virtual CPU and GPU time to
be approximately 1200 h each.
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Figure 25: Dataset-wise results for FLEXMERGE + TA on the vision benchmark (Figure 3.
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Figure 26: Dataset-wise results for FLEXMERGE + TA on the PEFT benchmark (Figure a)).
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