
Efficient LLM Inference using Dynamic Input Pruning and Cache-Aware Masking

Figure 12. Optimal allocation of weight density between fW d and (fW u, fW g).

Figure 13. Allocation of weight density between fW u and fW g matrices for fW d with fixed density of 50% for phi-3-medium model on
the Wikitext dataset.

A HW SIMULATOR DESCRIPTION

The main parameters needed for simulation are therefore the
DRAM capacity, and Flash and DRAM read/write speeds.
We notice similar specifications in the processors for latest
popular smartphone devices: Apple A18 (Wikipedia, 2024a)
and Snapdragon® 8s Gen 3 SM8635 platform (Wikipedia,
2024b). While latest UFS versions can reach up to 5.8
GB/s in bandwitdh (Wikipedia, 2024), the effective read-
ing speeds might vary significantly depending on hardware
interfaces and whether sequential or random reads are preva-
lent (Xue et al., 2024). The same applies for NVMe storage
systems adopted by Apple devices (Labaran, 2023). Unless
otherwise stated, results throughout the paper are based on
simulations for Apple A18 with DRAM I/O speed of 60
GB/s, and Flash read speed of 1 GB/s.

A significant part of the available DRAM in smartphones is
usually reserved by the OS or other applications (Danielson,
2023). We consider multiple values for available DRAM
capacity to investigate how differently sized LLMs perform
in memory-constrained scenarios. We include ablations
with varying DRAM capacity (Table 6) and Flash read speed

(Table 7) to assess whether the performance is consistent
over several device specifications.

Consistently with Xue et al. (2024), for cache simulation,
we statically allocate to DRAM all the layers which do not
undergo dynamic pruning, such as attention layers, embed-
dings, but also KV-cache and for certain methods, auxiliary
modules like predictors. Since these layers are needed to
process each token, pre-loading them in DRAM is an op-
timal choice (Xue et al., 2024). We then allocate the re-
maining DRAM capacity uniformly to all the MLP layers
to enable the dynamic loading and caching of MLP weights.
We did not find significant improvements when exploring
non-uniform cache allocation.

B HYPERPARAMETER TUNING

B.1 Density of up, down and gate matrices

We determined the optimal memory allocation for DIP in a
three steps procedure illustrated in Figure 13:

1. Run a 2D optimization on Memory vs Perplexity and



Efficient LLM Inference using Dynamic Input Pruning and Cache-Aware Masking

Table 3. Experimental results for dynamic sparsity methods at 60% MLP density.

WikiText-2 (Perplexity #) MMLU (5-shot accuracy ")

Phi3Med Phi3Mini Llama8B Mistral7B Phi3Med Phi3Mini Llama8B Mistral7B

Dense 4.29 6.01 6.14 5.25 78.14 70.62 65.30 62.68
GLU Pruning (oracle) 4.35 6.04 6.20 5.26 78.28 70.42 65.00 62.35

SparseGPT (unstructured) 5.08 6.63 6.87 5.46 76.26 66.81 60.91 61.23

Gate Pruning 6.36 7.97 10.22 8.67 74.85 62.14 51.62 55.53
Up Pruning 5.68 7.51 8.50 5.74 75.54 64.67 60.29 59.91
DejaVu 5.69 7.74 8.35 5.87 72.15 59.34 55.30 57.58
CATS 5.91 7.43 9.47 8.89 75.91 64.63 55.11 55.65
CATS+LoRA 4.95 6.65 8.61 6.63 75.79 65.64 53.94 56.44
DIP 4.85 6.4 6.66 5.39 77.29 68.88 63.17 61.19
DIP+LoRA 4.62 6.35 6.63 5.38 77.39 68.77 62.95 61.50

Table 4. Experimental results for dynamic sparsity methods at 40% MLP density.

WikiText-2 (Perplexity #) MMLU (5-shot accuracy ")

Phi3Med Phi3Mini Llama8B Mistral7B Phi3Med Phi3Mini Llama8B Mistral7B

Dense 4.29 6.01 6.14 5.25 78.14 70.62 65.30 62.68
GLU Pruning (oracle) 4.64 6.24 6.52 5.35 77.74 69.23 64.28 61.67

SparseGPT (unstructured) 6.53 9.51 9.68 6.92 67.79 53.01 48.51 50.15

Gate Pruning 550.27 496.34 >1000 >1000 29.45 26.17 24.51 24.75
Up Pruning 18.57 63.59 68.15 20.44 52.09 29.94 25.32 30.37
DejaVu 6.82 10.55 11.25 6.83 64.77 49.41 41.5 49.38
CATS 196.11 122.93 >1000 >1000 34.8 27.89 25.25 25.12
CATS+LoRA 6.90 9.56 787.70 20.33 60.05 44.67 23.63 26.31
DIP 6.5 8.66 9.01 6.16 72.95 60.33 53.72 55.92
DIP+LoRA 5.64 7.68 8.71 6.03 72.43 61.14 54.35 56.20

determining the pareto optimal configurations

2. Modelling the pareto optimal solutions in the parameter
space. Here we considered linear models from the
target MLP density and the density of the up and gate
matrices in logit space.

3. Use the fitted model to determine the optimal allocation
for a target MLP density.

Using the same procedure, we determined there is no sig-
nificant gain in using different sparsity levels for the Up
W u and Gate W g matrices (Figure 13). We found that the
optimal allocation is consistent across the tested LLMs.

C ADDITIONAL RESULTS

We show in Figure 14 additional results in terms of per-
plexity and MLP sparsity for Phi-3-Mini, Llama-v3-8B and
Mistral-7B, complementing the study on Phi-3-Medium
presented in Section 6.2. Table 4 and Table 3 report the per-
plexity and accuracy values evaluated at 60% and 40% MLP
density respectively. Consistently to the results in Table 1,
we don’t consider memory overhead introduced by different

methods. The MLP density for CATS and CATS+LoRA
may vary up to 2% from the operating point since the fixed
estimated threshold may result in slightly different sparsity
levels when evaluated on different datasets.

Table 5 compare the performance of the same models at 50%
MLP sparsity on a wide range of tasks including common
reasonong (ARC, BoolQ, HellaSwag, PIQA, Wingogrande),
multi-lingual reasonong (MGSM) and language understand-
ing (MMLU-Pro). The evaluation procedures follows the
protocol described in the Language Model Evaluation Har-
ness (Gao et al., 2024). MGSM and MMLU-Pro require gen-
eration of multiple tokens and the corresponding accuracy
is evaluated by considering exact matches. The reported
values of MGSM refer to the average performance in 11
languages.

These additional results reinforce the trend we observed for
perplexity and MMLU in Table 1, with DIP outperforming
unstructured SparseGPT, DejaVU and CATS on most tasks
and architectures.



Efficient LLM Inference using Dynamic Input Pruning and Cache-Aware Masking

Table 5. Accuracy at 50% MLP sparsity on various language reasoning and understanding tasks.

Accuracy "
ARC (easy) ARC (challenge) BoolQ HellaSwag PIQA Winogrande MGSM MMLU-Pro

Phi3Med

Dense 85.40 61.43 88.53 65.07 80.85 76.56 32.95 52.69
GLU pruning (oracle) 85.31 60.58 88.75 65.09 81.39 75.37 33.24 52.19

SparseGPT (unstructured) 84.05 55.38 88.93 60.83 78.78 75.22 26.80 44.13

DejaVu 83.33 54.52 87.74 59.90 77.86 74.82 20.11 37.02
CATS 80.22 54.78 86.18 60.73 74.48 66.22 13.60 38.50
DIP 81.06 56.14 88.69 62.33 76.77 72.22 33.24 48.01

Phi3Mini

Dense 81.99 53.75 85.17 59.01 80.41 73.48 32.87 44.46
GLU pruning (oracle) 82.24 55.12 84.68 59.15 79.71 73.64 31.85 43.42

SparseGPT (unstructured) 78.28 47.44 80.61 53.92 77.26 70.64 20.22 30.30

DejaVu 75.29 45.14 74.59 43.74 76.50 62.98 6.33 24.17
CATS 75.55 45.65 65.99 52.50 72.91 62.12 6.40 21.76
DIP 79.42 53.33 83.15 57.22 77.31 68.43 26.36 36.66

Llama8B

Dense 80.09 50.06 81.35 60.19 79.71 72.38 9.75 34.47
GLU prining (oracle) 79.38 49.83 80.52 60.21 79.82 73.24 10.07 33.69

SparseGPT (unstructured) 75.42 41.30 78.99 54.58 77.09 71.11 5.13 24.00

DejaVu 67.59 39.76 74.89 53.89 76.44 68.59 3.27 20.10
CATS 54.38 32.25 56.70 45.43 70.24 57.54 0.47 7.65
DIP 77.57 46.50 79.51 57.90 77.53 71.11 7.35 29.48

Mistral7B

Dense 80.89 50.43 83.61 61.21 80.58 73.88 4.40 30.39
GLU pruning (oracle) 80.51 50.26 83.33 61.59 80.63 73.09 4.47 30.18

SparseGPT (unstructured) 76.68 44.88 76.24 57.05 78.18 71.82 4.11 24.19

DejaVu 77.40 45.90 79.24 60.47 79.33 72.22 2.87 23.55
CATS 51.56 32.00 73.85 49.67 70.02 61.64 0.47 5.66
DIP 79.12 48.98 83.15 60.70 79.54 72.53 4.29 28.02



Efficient LLM Inference using Dynamic Input Pruning and Cache-Aware Masking

Figure 14. Downstream WikiText Perplexity and MMLU accuracy as a function of MLP Density for Phi-3-Mini, LLama-v3-8B, and
Mistral-7B models.

Table 6. Comparison of throughput for dynamic sparsity methods
at different DRAM sizes with Phi-3-Medium quantized to 4 bits.
We report the highest throughput achieved at a 0.5 increase in
perplexity on WikiText-2 over the dense model.

DRAM size 2 GB 4 GB 6 GB

Throughput [tok/s] "
Dense 0.19 0.29 0.71
GLU Pruning 0.24 0.45 1.83
Up Pruning 0.27 0.52 1.35
CATS 0.25 0.47 1.21
DIP-CA 0.31 0.56 1.94

D ABLATION ON HARDWARE
SPECIFICATIONS

For main experiments we considered a fixed hardware set-
ting in line with the specifications of Apple A18 processors.
We now consider different target devices and scenarios by
simulating changes in DRAM size and Flash read speed.

DRAM size In Table 6 we consider use-cases with lower
DRAM availability at 2GB, simulating the use-case of bud-
get smartphones, and higher DRAM availability at 6GB,
which represents high-end devices, or scenarios where the
OS and background applications require less memory. In
all scenarios, DIP yields better throughput at a fixed per-

plexity increase of 0.5 over the baseline. Remarkably, DIP
improves throughput by 170% against the dense model with
6GB of DRAM. This stems from the increased availability
in caching space for the linear layer, which increases the
cache hit rate to 89%, compared to the 53% at 4GB and only
8% at 2GB. At even higher DRAM sizes, where the dense
model fully fits in cache, we expect GLU Pruning to out-
perform DIP-CA, as the overhead in loading more weights
from DRAM (for GLU Pruning) has a minor impact with
respect to the loss in accuracy resulting from sparsifying all
MLP layers (in DIP-CA).

Table 7. Comparison of throughput for dynamic sparsity methods
at different Flash reading speeds with Phi-3-Medium quantized to
4 bits. We report the highest throughput achieved at a 0.5 increase
in perplexity on WikiText-2 over the dense model.

Flash read speed 0.5 GB/s 1 GB/s 2 GB/s

Throughput [tok/s] "
Dense 0.15 0.29 0.59
GLU Pruning 0.23 0.45 0.91
Up Pruning 0.26 0.52 1.01
CATS 0.24 0.47 0.91
DIP-CA 0.28 0.56 1.09

Flash reading speed We evaluate DIP against previous
methods at different operating points in terms of Flash read-



Efficient LLM Inference using Dynamic Input Pruning and Cache-Aware Masking

ing speed. The actual transfer speed can change significantly
depending on storage type, hardware interfaces, and data
representation for the saved models. While takeaways and
relative improvements at different reading speeds do not
change, the results in Table 7 highlight how the absolute
throughput values change almost at the same rate as the
increases in Flash reading speed, confirming that this is
the main bottleneck to achieve high-latency in memory-
constrained scenarios.

E ARTIFACT APPENDIX

E.1 Abstract

This Artifact Appendix describes the experimental work-
flow, artifacts and results from this paper submitted for the
Artifact Evaluation at MLSys 2025. The experiments de-
scribed in this paper can be reproduced through the open
source code released as a code artifact (Federici et al., 2025).
The code should be executed in a Python 3 environment as
described in this appendix. The setup relies on GPU hard-
ware to accelerate the experiments, with the smallest model
requiring 40GB of VRAM. Datasets and models used in this
paper can be obtained from Huggingface4.

E.2 Artifact check-list (meta-information)
• Algorithm: Efficient LLM inference.

• Models: Phi-3-Medium, Phi-3-Mini, Llama-v3-8B, Mistral-
v01-7B.

• Data sets: Wikitext, MMLU, SlimPajama (optional).

• Run-time environment: Python 3.8 and above interpreter
and latest pip version to install the required packages.

• Hardware: A torch-enabled GPU with 80GB of VRAM is
required for most models. For Phi-3-Mini, 40GB of VRAM
are enough.

• Execution: python scripts/run experiment.py –help

• Metrics: Perplexity, 5-shot accuracy, throughput, memory
footprint, MLP density.

• Output: Metrics for a given method, model, dataset and
hardware simulator setup.

• Experiments: Experiments to reproduce Table 1 (perplexity
and 5-shot accuracy at 50% sparsity) and Table 2 (throughput
at given perplexity increase) in the paper.

• How much disk space required (approximately)?: Less
than 1 MB for the code, Up to 1GB for the pyhon environ-
ment setup. Up to 100GB for the LLM models.

• How much time is needed to prepare workflow (approx-
imately)?: A few minutes for the environment setup and
download each model and dataset.

4https://huggingface.co/models

• How much time is needed to complete experiments (ap-
proximately)?: Less than 10 minutes for a single run with
Phi-3-Mini on Wikitext. More than 200 GPU hours to repro-
duce all experiments.

• Publicly available?: Yes.

• Code licenses (if publicly available)?: BSD 3-Clause Clear
License.

• Data licenses (if publicly available)?: As specified for
each Huggingface dataset.

• Workflow framework used?: No.

• Archived (provide DOI)?: 10.5281/zenodo.15088634

E.3 Description

E.3.1 How delivered

Our source code and instructions for installation, setup
and experiment reproduction are publicly available
at: https://github.com/Qualcomm-AI-research/dynamic-
sparsity.

E.3.2 Hardware dependencies

We recommend testing on a Linux machine with torch-
enabled GPU. We used a x86 64 architecture with an AMD
64-core processor, Nvidia H100 with 80GB of VRAM and
CUDA 12.2.

E.3.3 Software dependencies

Python 3.8 and above interpreter and latest pip version to
install the required packages. Tested with Python 3.8 and
pip 24.3.1. Packages are listed in requirements.txt.

E.3.4 Data sets

The Wikitext and MMLU data sets are required to reproduce
the main experiments, and SlimPajama is needed when
running the method variation employing LoRA finetuning.

E.4 Installation

Python 3 environment with installed packages as listed in
requirements.txt. Dataset and models must be downloaded
from Huggingface. All details on installation and setup are
provided in the “Getting Started” section of the README
documentation.

E.5 Experiment workflow

In the “Usage” subsection of the README file we explain
how to run experiments with the released code, including a
description of all the main parameters regulating an experi-
ment.

https://huggingface.co/models
https://doi.org/10.5281/zenodo.15088634
https://github.com/Qualcomm-AI-research/dynamic-sparsity
https://github.com/Qualcomm-AI-research/dynamic-sparsity
https://github.com/Qualcomm-AI-research/dynamic-sparsity/blob/main/requirements.txt
https://github.com/Qualcomm-AI-research/dynamic-sparsity/blob/main/requirements.txt
https://github.com/Qualcomm-AI-research/dynamic-sparsity/blob/main/README.md#getting-started
https://github.com/Qualcomm-AI-research/dynamic-sparsity/blob/main/README.md#usage


Efficient LLM Inference using Dynamic Input Pruning and Cache-Aware Masking

E.6 Evaluation and expected result

In the “Reproducing Results” section, we explain how to
prepare and launch the experiments to reproduce the results
in Table 1 (perplexity and 5-shot accuracy at 50% sparsity)
and Table 2 (throughput at given perplexity increase) in the
paper.

E.7 Experiment customization

The provided source code implements a set of dynamic spar-
sity methods for efficient LLM inference. We showcase in
our paper experimental results on a selected set of data sets
and models, but experimenting with different models and
data sets is also possible with minimal code changes. Sim-
ilarly, we release in our source code a hardware simulator
to assess the system throughput under different configura-
tions. These configurations are flexible and can be easily
extended to simulate new scenarios. As an example, we
included in /scripts/config/hw simulator/processor the con-
figurations for a variety of Apple processors based on the
specifications provided in Wikipedia. An overview of the
main components in our codebase is included in the “Repos-
itory Structure” section.

https://github.com/Qualcomm-AI-research/dynamic-sparsity/tree/main?tab=readme-ov-file#reproducing-results
https://github.com/Qualcomm-AI-research/dynamic-sparsity/tree/main/scripts/config/hw_simulator/processor
https://en.wikipedia.org/wiki/Apple_silicon#Comparison_of_A_series_processors
https://github.com/Qualcomm-AI-research/dynamic-sparsity/tree/main?tab=readme-ov-file#repository-structure
https://github.com/Qualcomm-AI-research/dynamic-sparsity/tree/main?tab=readme-ov-file#repository-structure

