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Abstract

We study the problem of experiment planning with function approximation in
contextual bandit problems. In settings where there is a significant overhead
to deploying adaptive algorithms—for example, when the execution of the data
collection policies is required to be distributed, or a human in the loop is needed
to implement these policies—producing in advance a set of policies for data
collection is paramount. We study the setting where a large dataset of contexts
but not rewards is available and may be used by the learner to design an effective
data collection strategy. Although when rewards are linear this problem has been
well studied [53], results are still missing for more complex reward models. In
this work we propose two experiment planning strategies compatible with function
approximation. The first is an eluder planning and sampling procedure that can
recover optimality guarantees depending on the eluder dimension [42] of the
reward function class. For the second, we show that a uniform sampler achieves
competitive optimality rates in the setting where the number of actions is small.
We finalize our results introducing a statistical gap fleshing out the fundamental
differences between planning and adaptive learning and provide results for planning
with model selection.

1 Introduction

Data-driven decision-making algorithms have achieved impressive empirical success in various
domains such as online personalization [4, 48], games [36, 43], dialogue systems [32] and robotics [25,
35]. In many of these decision-making scenarios, it is often advantageous to consider contextual
information when making decisions. This recognition has sparked a growing interest in studying
adaptive learning algorithms in the setting of contextual bandits [26, 33, 6] and reinforcement learning
(RL) [46]. Adaptive learning scenarios involve the deployment of data collection policies, where
learners observe rewards or environment information and utilize this knowledge to shape subsequent
data collection strategies. Nonetheless, the practical implementation of adaptive policies in real-
world experiments currently presents significant challenges. First, there is significant infrastructure
requirements and associated overheads which require skills and resources many organizations lack.
For example, while there are end-user services that enable organizations to automatically send
different text messages to different individuals, such services typically do not offer adaptive bandit
algorithms. Second, the resulting reward signal may be significantly delayed. As an example, the
effect of personalized health screening reminders on a patient making a doctors appointments may
take weeks. Therefore, while it is increasingly recognized that there exist other settings where context-
specific policies are likely to be beneficial, including behavioural science[8], many organizations
working in these settings may find it infeasible to run experiments with adaptive policies. To bridge
this gap, there is a need to explore the deployment of non-adaptive or static strategies that can
effectively collect data with minimal or no updates. Surprisingly, limited research has been conducted
to investigate this particular setting, highlighting the importance of further exploration in this area.
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In this work, we consider how to design a static experimental sampling strategy for contextual
multi-armed bandit settings which, when executed, will yield a dataset from which we can compute
a near-optimal contextual policy (one with small simple regret). Our framework closely adheres to
the experiment planning problem formulation originally introduced by [53]. The problem involves
a learner interacting with a contextual bandit problem where the reward function is unknown. Our
assumption is that the learner possesses a substantial offline dataset comprising of m sample contexts,
none of which include reward information. The learner’s objective is to utilize this data to design
a static policy sequence of length T (where m ě T ) that enables the collection of valuable reward
information when deployed in the real world. The ultimate goal is to produce an almost optimal policy
using the data gathered during deployment. To address this scenario, the authors of [53] propose a
two-phase approach involving Planner and Sampler algorithms. In the planner phase, the learner
employs the context data to generate a set of sampling policies, which are then utilized in the sampler
phase. The primary focus of [53] lies in the analysis of the linear case, assuming the reward function
to be a linear function of the context vectors. Their key algorithmic contribution is the linear Planner
Algorithm, which encompasses a reward-free instance of LinUCB. The analysis presented in [53]
demonstrates that the required number of samples under the static sampler to achieve an ε-optimal
policy (also referred to as simple regret) scales as O

`

d2{ε2
˘

, where d represents the dimension of the
underlying space. This result matches the online minimax sample complexity for the simple regret
problem [11, 1].

The algorithm proposed by [53] effectively constructs a static policy sequence of adequate span, uti-
lizing the linear structure of the problem. However, in many problem settings, linearity alone may not
be sufficient to capture the true nature of the underlying reward model. This limitation is particularly
evident in scenarios such as genetic perturbation experimentation [40] or other similar contexts. In
such cases, the availability of algorithms that do not rely on linearity becomes crucial. Unfortunately,
extending the results and techniques presented in [53] to the generic function approximation regime
is not straightforward.

Here we consider when the reward function is realized by an unknown function f‹ belonging to a
known function class F (which can be more complex than linear).

Adaptive Learning with Function Approximation. In adaptive learning settings where a learner
can change the data collection policies as it observes rewards and has much more flexibility than
in experiment planning scenarios, various adaptive learning procedures compatible with generic
function approximation have been proposed for contextual bandit problems. Among these, two
significant methods relevant to our discussion are the Optimistic Least Squares algorithm (OptLS
) introduced by [42] and the SquareCB algorithm introduced by [17]. Both of these methods
offer guarantees for cumulative regret. Specifically, the cumulative regret of OptLS scales as
Op

a

deluder logp|F |qT q, while the cumulative regret of SquareCB scales as O
´

a

|A| logp|F |qT
¯

,

where A corresponds to the set of actions. The eluder dimension1 (deluder) is a statistical complexity
measure introduced by [42], which enables deriving guarantees for adaptive learning algorithms
based on the principle of optimism in the face of uncertainty in contextual bandits and reinforcement
learning [31, 22, 37, 9]. By employing an online-to-batch conversion strategy, these two methods
imply that the number of samples required to achieve ε-simple regret using an adaptive algorithm is
at most O

`

deluder logp|F |q{ε2
˘

and O
`

|A| logp|F |q{ε2
˘

respectively.

Contributions. In this paper, we address the function approximation setting within the contextual
bandit (static) experiment planning problem. Although in experiment planning the data collection
policies have to be produced before interacting with the environment, we establish that surprisingly
the adaptive ε-simple regret rates achieved by OptLS and SquareCB are also attainable by a
static experiment sampling strategy. To achieve this, we introduce and analyze two experimental
planning algorithms. The PlannerEluder algorithm (see Section 4) utilizes confidence intervals
derived from least squares optimization to construct a static set of policies to be executed during the
sampling phase. When the algorithm has access to a sufficient number of offline samples to generate
T “ Ω

`

deluder logp|F |q{ε2
˘

static policies, the learner can produce an ε-optimal policy denoted as
pπT thus matching the online-to-batch ε-simple regret rates of OptLS . Since the eluder dimension
of linear function classes of dimension d is -up to logarithmic factors- of order Opdq, our results

1We formally introduce this quantity in Section 4. Here we use a simpler notation to avoid confusion.
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recover the linear experiment planning rates of [53]. Additionally, in Section 5, we demonstrate
that collecting T “ Ω

`

|A| logp|F |q{ε2
˘

uniform samples is sufficient to obtain an ε-optimal policy
pπT . This matches the online-to-batch ε-simple regret rates of SquareCB . These two results yield
conclusions similar to those known in the linear setting [53], but for general function classes.

These results prompt two important questions: (1) are existing adaptive cumulative regret algorithms
already optimal for simple regret minimization, and (2) is static experiment planning sufficient to
match the simple regret guarantees of adaptive learning for realizable contextual bandits?

In Section 6, we provide a negative answer to both questions. We present a certain structured
class of bandit problems where a different adaptive algorithm can require significantly less samples
than that implied by the bounds from OptLS and SquareCB . Our result is for the realizable
setting [2, 18, 17, 44, 9], where the true reward function f‹ belongs to a known function class F ,
where the true complexity of simple regret problems in adaptive learning scenarios has not be known
known in this setting. This result complements recent results [34] that online-to-batch strategies are
suboptimal for minimizing simple regret in the agnostic contextual bandits setting.2

For the second question, our statistical lower bound shows that for this class of problems, a sig-
nificantly smaller number of samples are needed to find an ε-optimal policy when using adaptive
learning, than when using a static policy. This result complements related work in reinforcement
learning with realizable linear state-action value function approximation[52].

Finally, we address the problem of model selection when the learner is presented with a family of
reward function classes tFiu

M
i“1 and is guaranteed that the true reward function f‹ belongs to Fi‹

,
where the index i‹ is unknown. We demonstrate that as long as T “ Ω

`

|A| logpmaxpM, |Fi‹|qq{ε2
˘

uniform samples are available, it is possible to construct an ε-optimal policy denoted as pπT . Further
details regarding these results can be found in Section 7.

2 Further Related Work

Best Arm Identification and Design of Experiments. Previous work to efficiently produce an
almost optimal policy for non-contextual linear and multi-armed bandits settings is based on best-arm
identification procedures [16, 20, 13, 45, 47, 51]. These are strategies that react adaptively to the
collected rewards and achieve instance dependent sample complexity. Other papers in the design of
experiments literature [24, 15, 29, 41] introduce methods for designing a non-adaptive policy that
can be used to find an optimal arm with high probability in non-contextual scenarios.

Safe Optimal Design. When safety concerns are imposed in the exploration policy, works such
as [54] and [49] have studied the problem of producing a safe and efficient static policy used to
collect data that can then be used for policy evaluation in the MAB and linear settings. This is in
contrast with the unconstrained contextual function approximation scenario we study.

Reward Free Reinforcement Learning. In Reinforcement Learning settings a related line of
research [21, 50, 10] considers the problem of producing enough exploratory data to allow for policy
optimization for all functions in a reward class. These works allow for the learner to interact with the
world for a number of steps, enough to collect data that will allow for zero-shot estimation of the
optimal policy within a reward family. This stands in contrast with the experiment planning setup,
where the objective is to produce a sequence of policies for static deployment at test time with the
objective of learning the unknown reward function.

3 Problem Definition

We study a two-phase interaction between a learner and its environment consisting of a Planning
and a Sampling phase. During the planning phase the learner has access to m ě T i.i.d. offline

2In the agnostic case the learner is instead presented with an arbitrary policy class Π that may or may not
be related to the mean reward function f‹. In this setting a recent study by [34] introduces an algorithm that
achieves sharp rates characterized in terms of a quantity ρΠ.
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context samples3 from a context distribution P supported on a context space X as well as knowledge
of a reward function class F where each element f P F has domain X ˆ A where A is the action
set. During the sampling phase the learner interacts with a contextual bandit problem for T steps
where at each time-step t a context xt „ P is revealed to the learner, the learner takes an action at
and receives a reward rt. We adopt the commonly used realizability assumption, which is widely
employed in the contextual bandit literature [2, 18, 17, 44, 9].
Assumption 3.1 (Realizability). There exists a function f‹ P F such that rt “ f‹pxt, atq ` ξt where
f‹ P F and ξt is a conditionally zero mean 1´subgaussian random variable for all t P rT s during
the sampling phase.

During the planning phase the learner is required to build a static policy sequence tπiu
T
i“1 (a policy

is a mapping from X to ∆A, the set of distributions over actions) that, without knowledge of the
reward, can be deployed to collect data during the sampling phase. In contrast with adaptive learning
procedures, in the experiment planning problem the policies in tπiu

T
i“1 have to be fully specified

during the planning phase and cannot depend on the learner’s observed reward values during the
sampling phase. The learner’s objective is to use the reward data collected during the sampling phase
to produce an ε´optimal policy pπT such that,

Ex„P,a„pπT pxq rf‹px, aqs ` ε ě max
π

Ex„P,a„πpxq rf‹px, aqs .

for a suboptimality parameter ε ą 0. Because we have assumed realizability of the reward function,
the optimal policy among all possible policies π‹ “ argmaxπ Ex„P,a„πpxq rf‹px, aqs can be written
as π‹pxq “ argmaxaPA f‹px, aq for all x P X .

Throughout this work we make the following boundedness assumptions,
Assumption 3.2 (Bounded Function Range). The range of F is bounded, i.e. for all x, a P X ˆ A,
|fpx, aq| ď B for some constant B ą 0.

Assumption 3.3 (Bounded Noise). The noise variables are bounded |ξt| ď B̄ for all t P rT s for
some constant B̄ ą 0.

Assumptions 3.2 and 3.3 imply |rt| ď B ` B̄ for all t P rT s.

4 Planning Under the Eluder Dimension

The eluder dimension is a sequential notion of complexity for function classes that was originally
introduced by [42]. The eluder dimension can be used to bound the regret of optimistic least squares
algorithms in contextual bandits [42, 9] and reinforcement learning [37]. Informally speaking the
eluder dimension is the length of the longest sequence of points one must observe to accurately
estimate the function value at any other point. We use the eluder dimension definition from [42].
Definition 4.1. (ε´dependence) Let G be a scalar function class with domain Z and ε ą 0. An
element z P Z is ε´dependent on tz1, ¨ ¨ ¨ , znu Ď Z w.r.t. G if any pair of functions g, g1 P G
satisfying

a

řn
i“1pgpziq ´ g1pziqq2 ď ε also satisfies gpzq ´ g1pzq ď ε. Furthermore, z P Z is

ε´independent of tz1, ¨ ¨ ¨ , znu w.r.t. G if it is not ε´dependent on tz1, ¨ ¨ ¨ , znu.

Definition 4.2. (ε-eluder) The ε´non monotone eluder dimension ĞdeluderpG, εq of G is the length of
the longest sequence of elements in Z such that every element is ε´independent of its predecessors.
Moreover, we define the ε´eluder dimension deluderpG, εq as deluderpG, εq “ maxε1ěε

ĞdeluderpG, εq.

By definition the ε´eluder dimension increases as ε is driven down to zero. Let D be a dataset of X ,
A pairs. For any f, f 1 with support X ˆ A we use the notation }f ´ f 1}D to denote the data norm of
the difference between functions f and f 1:

}f ´ f 1}D “

d

ÿ

px,aqPD

pfpx, aq ´ f 1px, aqq
2
.

3This assumption is based on the fact that gathering offline context samples can be significantly less costly
compared to conducting multiple rounds of experimental deployment.
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Algorithm 1 EluderPlanner

1: Input: m ě T samples txℓ „ Pumℓ“1, function class F , confidence radius function βF : t, δ Ñ R.
2: Initialize data buffer D1 “ H

3: for t “ 1 . . .T do
4: For any x P X define the uncertainty radius of action a P A as,

ωpx, a,Dtq “ max
f,f 1PF s.t. }f´f 1}Dtď4βF pt,δq

fpx, aq ´ f 1px, aq.

5: Define the policy πt as πtpxq “ argmaxaPA ωpx, a,Dtq for all x P X .
6: Update Dt`1 Ð Dt Y tpxt, πtpxtqqu

7: end for

Algorithm 2 Sampler

1: Input: number of time-steps T .
2: Initialize data buffer rD1 “ H

3: for t “ 1 . . .T do
4: Define deployment policy π̃t as πt.
5: Observe context x̃t „ P .
6: Play action ãt “ π̃tpx̃tq and receive re-

ward r̃t.
7: Update rDt`1 Ð rDt Y tpx̃t, ãt, r̃tqu.
8: end for

The EluderPlanner algorithm takes as input
m ě T i.i.d. samples from the context distri-
bution txℓ „ Pumℓ“1 and a realizable function
class F satisfying Assumption 3.1. The learner
iterates over T out of these m samples in a se-
quential manner. We use the name xt to denote
the t´th input sample and call πt to the (de-
terministic) exploration policies produced upon
processing samples 1, ¨ ¨ ¨ , t ´ 1. We use the
notation Dt “ tpxℓ, πℓpxℓqqu

t´1
ℓ“1 to denote the

dataset composed of the first t ´ 1 (ordered)
samples from txℓu

m
ℓ“1 and actions from policies

tπℓu
t´1
ℓ“1. We adopt the convention that D1 “ H. The output of the EluderPlanner algorithm is

the sequence of policies tπtu
T
t“1. Policy πt is defined as πtpxq “ argmaxaPA ωpx, a,Dtq such that

ωpx, a,Dtq is an uncertainty measure defined as,

ωpx, a,Dtq “ max
f,f 1PF s.t. }f´f 1}Dtď4βF pt,δq

fpx, aq ´ f 1px, aq. (1)

Where the confidence radius function βF pδ, tq equals

βF pδ, tq “ C̄pB ` B̄q

d

log

ˆ

|F |t

δ

˙

(2)

for some universal constant C̄ ą 0 defined in Proposition A.7. This is a complexity radius im-
plied by the guarantees of least squares regression (Lemma A.8) and constraints imposed by
Lemma 4.6. See Appendix A.1 and Proposition A.7 for a detailed discussion about this defini-
tion. We call the combination of the EluderPlanner and Sampler as the eluder planning algorithm.
Its performance guarantees are obtained by relating the regret of a constructed sequence of opti-
mistic policies trπopt

t uTt“1 based on the data collected by tπtu
T
t“1 to the sum of uncertainty radii

řT
t“1 ωpxt, πtpxtq,Dtq of the context-actions collected during the planning phase. Using optimism

when constructing this policy sequence is important. In contrast with the sequence of greedy policies
πgreedy
t p¨|xq “ argmaxaPA

pftpx, aq, where pft “ argminfPF
ř

px,a,rqP rDt
pfpx, aq ´ rq2 resulting

from a least squares over rDt, the sequence of optimistic policies satisfies a regret bound. Thus,
playing a uniform policy from the sequence trπopt

t uTt“1 satisfies a simple regret guarantee. The sum
of uncertainty radii

řT
t“1 ωpxt, πtpxtq,Dtq is bounded using a Lemma we borrow from [9].

Lemma 4.3. [Lemma 3 from [9]] Let F be a function class satisfying Assumption 3.2 with ε-eluder
dimension deluderpF , εq. For all T P N and any dataset sequence tD̄tu

8
t“1 with D̄1 “ H and

D̄t “ ttx̄ℓ, āℓuu
t´1
ℓ“1 of context-action pairs, the following inequality on the sum of the uncertainty

radii holds,

T
ÿ

t“1

ωpx̄t, āt, D̄tq ď O
´

min
´

BT,BdeluderpF , B{T q ` βF pT, δq
a

deluderpF , B{T qT
¯¯

.
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Extracting Policy pπT from Data. At the end of the execution of the Sampler algorithm, the learner
will have access to a sequence of datasets t rDtu

T
t“1 of contexts, actions and reward triplets. The

learner will use this sequence of datasets to compute the sequence of regression functions,

pft “ argmin
fPF

t´1
ÿ

ℓ“1

pfpx̃ℓ, ãℓq ´ r̃ℓq
2. (3)

Standard Least Squares (LS) results (see Lemma A.8) imply that } pft ´ f‹}D̃t
ď βpt, δq with

high probability for all t P N. These confidence sets are used to define a sequence of optimistic
(deterministic) policies trπopt

t uTt“1:

rπopt
t pxq “ argmax

aPA
max

f̃ s.t. } pft´f}D̃t
ďβF pt,δq

f̃px, aq (4)

The candidate optimal policy pπT is then defined as pπT “ Uniformprπopt
1 , ¨ ¨ ¨ , rπopt

T q. The main result
in this section is the following Theorem.

Theorem 4.4. Let ε ą 0. There exists a universal constant c ą 0 such that if

T ě c
max2pB, B̄, 1qdeluderpF , B{T q log p|F |T {δq

ε2
(5)

then with probability at least 1 ´ δ the eluder planning algorithm’s policy pπT is ε´optimal .

Remark 4.5. The results of this section hold for the structured bandits setting [23, 27]; that is,
scenarios where X “ tHu.

Both sides of the inequality defining T in Theorem 4.4 depend on T . Provided deluderpF , B{T q is sub-
linear as a function of T , there exists a finite value of T satisfying Equation 5. When deluderpF , ε̄q “

d̄eluder log p1{ε̄q for some d̄eluder and for all ε̄ ą 0 setting T ě cmax2
pB,B̄,1qdeluderpF,Bεq logp|F |{εδq

ε2

is enough to guarantee the conditions of Theorem 4.4 are satisfied. Examples 4 and 5 from [42] show
the eluder dimension of linear or generalized linear function classes can be written in such way. In
these cases d̄eluder is a constant multiple of the underlying dimension of the space.

Using standard techniques, the results of Theorem 4.4 can be adapted to the case when the function
class F is infinite but admits a metrization and has a covering number. In this case the sample
complexity will scale not with logp|F |q but instead with the logarithm of the covering number of F .
For example, in the case of linear functions, the logarithm of the covering number of F under the
ℓ2 norm will scale as d, the ambient dimension of the space up to logarithmic factors of T (see for
example Lemma D.1 of [14]). Plugging this into the sample guarantees of Theorem 4.4 recovers the
rO

`

d2{ε2
˘

sample complexity for linear experiment planning from [53].

4.1 Proof Sketch of Theorem 4.4

Let x̃1, ¨ ¨ ¨ , x̃T be the sampler’s context sequence. The proof works by showing that with probability
at least 1 ´ δ the regret of the trπopt

t p¨quTt“1 sequence satisfies the regret bound

T
ÿ

t“1

max
aPA

f‹prxt, aq ´ f‹prxt, rπopt
t prxtqq ď O

´

pB ` B̄q
a

deluderpF , B{T qT logp|F |T {δq

¯

A key part of the proof involves relating the balls defined by the data norms of the planner datasets
tDtu

T
t“1 and those induced by the data norms of the sampler datasets t rDtu

T
t“1. The precise statement

of this relationship is provided in Lemma 4.6, and its proof can be found in Appendix C.

Lemma 4.6. With probability at least 1 ´ δ
12 ,

tpf, f 1q s.t. }f ´ f 1}
rDt

ď 2βF pt, δqu Ď tpf, f 1q s.t. }f ´ f 1}Dt
ď 4βF pt, δqu (6)

Simultaneously for all t P rT s. Where tDtu
T
t“1 is the dataset sequence resulting of the execution of

EluderPlanner while t rDtu
T
t“1 is the dataset sequence resulting of the execution of the Sampler and

βF pδ, tq is the confidence radius function defined in Equation 2.

6



Let pft as in Equation 3 and define E as the event where the Standard Least Squares results (see
Lemma A.8) hold i.e. } pft ´ f‹}

rDt
ď βF pt, δq for all t P rT s and also Equation 6 from Lemma 4.6

holds for all t P rT s. The results of Lemmas A.8 and 4.6 imply PpEq ě 1 ´ δ
6 .

For context x and action a let’s denote by f̃x,a
t as a function achieving the inner maximum in the

definition of π̃opt
t (see Equation 4). When E holds the policies tπ̃opt

t uTt“1 are optimistic in the sense

that f̃x,π̃opt
t pxq

t px, π̃opt
t pxqq ě maxaPA f‹px, aq and therefore,

T
ÿ

t“1

max
aPA

f‹px̃t, aq ´ f‹px̃t, π̃
opt
t px̃tqq

piq
ď

T
ÿ

t“1

f̃
x,π̃opt

t pxq

t px̃t, π̃
opt
t px̃tqq ´ f‹px̃t, π̃

opt
t px̃tqq

piiq
ď

T
ÿ

t“1

max
f,f 1PBtp2, rDtq

fpx̃t, π̃
opt
t px̃tqq ´ f 1px̃t, π̃

opt
t px̃tqq

piiiq
ď

T
ÿ

t“1

max
f,f 1PBtp4,Dtq

fpx̃t, π̃
opt
t px̃tqq ´ f 1px̃t, π̃

opt
t px̃tqq “ p‹q.

Where Btpγ,Dq “ tf, f 1 P F s.t. }f ´ f 1}D ď γβF pδ, tqu. Inequality piq follows by optimism, piiq

is a consequence of f̃x,π̃opt
t pxq

t , f‹ P Btp2, rDtq when E holds since in this case } pft´f‹}
rDt

ď βF pt, δq

and }f̃
x,π̃opt

t pxq

t ´ pft} rDt
ď βF pt, δq, and piiiq follows because when E holds, Equation 6 of Lemma 4.6

is satisfied and therefore Btp2, rDtq Ď Btp4,Dtq. The RHS p‹q of the equation above satisfies,
p‹q “

T
ÿ

t“1

ωpx̃t, π̃
opt
t px̃tq,Dtq ď

T
ÿ

t“1

max
aPA

ωpx̃t, a,Dtq “

T
ÿ

t“1

ωpx̃t, πtpx̃tq,Dtq.

We relate the sum of uncertainty radii tωpx̃t, πtpx̃tq,DtquTt“1 with those of the planner
tωpxt, πtpxtq,DtquTt“1 via Hoeffding Inequality (see Lemma A.1) and conclude that w.h.p,

T
ÿ

t“1

max
aPA

f‹px̃t, aq ´ f‹px̃t, π̃
opt
t px̃tqq ď

T
ÿ

t“1

ωpxt, πtpxtq,Dtq ` O
´

B
a

T log p1{δq

¯

.

Lemma 4.3 allows us to bound the sum of these uncertainty radii as
T

ÿ

t“1

ωpxt, πtpxtq,Dtq ď O
´

min
´

BT,BdeluderpF , B{T q ` βF pT, δq
a

deluderpF , B{T qT
¯¯

,

and therefore w.h.p,
T

ÿ

ℓ“1

max
aPA

f‹px̃ℓ, aq´f‹px̃ℓ, π̃
opt
j px̃ℓqq ď O

´

min
´

BT,BdeluderpF , B{T q ` βF pT, δq
a

deluderpF , B{T qT
¯¯

.

Converting this cumulative regret bound into a simple regret one (Lemma B.1) finalizes the result. A
detailed version of the proof can be found in Appendix C.1.

5 Uniform Sampling Strategies

In this section we show that a uniform sampling strategy can produce an ε optimal policy with
probability at least 1 ´ δ after collecting O

´

max2
pB,B̄q|A| logp|F |{εδq

ε2

¯

samples. This procedure

achieves the same simple regret rate as converting SquareCB ’s cumulative regret into simple regret4.

In contrast with the eluder planning algorithm the uniform sampling strategy does not require a
planning phase. Instead it consists of running of the Sampler (Algorithm 2) setting rπj “ UniformpAq

for all j P rT s. Given a dataset rDT of contexts, actions and rewards collected during the sampling
phase, we solve the least squares problem:

pfT “ argmin
fPF

ÿ

pxi,ai,riqP rDT

pfpxi, aiq ´ riq
2

and define the policy pπT as pπT pxq “ argmaxaPA
pfT px, aq. The main result of this section is,

4The regret bound of the SquareCB algorithm scales as O
´

a

|A| logpFqT logpT {δq

¯

.
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Theorem 5.1. There exists a universal constant c̃ ą 0 such that if T ě c̃max2
pB,B̄q|A| logp|F |{εδq

ε2 then
with probability at least 1 ´ δ the uniform planning algorithm’s policy pπT is ε´optimal.

The proof of Theorem 5.1 can be found in Appendix D.

Comparison Between OptLS and SquareCB . The regret rate after T steps of the OptLS algo-
rithm applied to a contextual bandit problem with discrete function class F scales5 (up to logarithmic
factors) as O

´

a

deluderpF , B{T q logp|F |{δqT
¯

. In contrast, the regret of the SquareCB algorithm

satisfies a regret guarantee (up to logarithmic factors) of order O
´

a

|A| logp|F |{δqT
¯

where the
eluder dimension dependence is substituted by a polynomial dependence on the number of actions
|A|. When the number of actions is small, or even constant, the regret rate of SquareCB can be
much smaller than that of OptLS . The opposite is true when the number of actions is large or
even infinite. Converting these cumulative regret bounds to simple regret implies the number of
samples required to produce an ε´optimal policy from the adaptive OptLS policy sequence scales as
deluderpF,B{T q logp|F |{δq

ε2 whereas for the adaptive SquareCB policy sequence it scales as |A| logp|F |{δq

ε2 .
The results of Theorems 4.4 and 5.1 recover these rates in the experiment planning setting.

6 Gap Between Experiment Planning and Adaptive Learning

The results of Sections 4 and 5 imply planning bounds that are comparable to the corresponding
online-to-batch guarantees for OptLS [42] and SquareCB [17]. The main result of this section
Theorem 6.1 shows there are problems where the number of samples required for experiment planning
can be substantially larger than the number of samples required of an adaptive learning algorithm.
This result implies the suboptimality of algorithms such as SquareCB and OptLS for adaptive
learning.

In order to state our results we consider an action set Atree indexed by the nodes
of a height L binary tree defined here as having L levels and 2L ´ 1 nodes.

a1,1

a2,1

a3,1 a3,2

a2,2

a3,3 a3,4

Figure 1: Binary Tree

We call al,i the i-th action of the l-th level of
the tree. For an example see Figure 1. Let ε ą

0. We define a function class Ftree indexed by
paths from the root node to a leaf. For any such
path p “ ta1,1, a2,i2 , ¨ ¨ ¨ , aL,iLu the function
f ppq equals,

f ppqpaq “

$

&

%

1 if a “ aL,iL

1 ´ 2ε if a P pztaL,iLu

1 ´ 12ε o.w.

The following result fleshes out a separation
between planning and adaptive learning with

action set Atree and function class Ftree in the setting where at time T the learner will produce a
guess for the optimal policy pπT .
Theorem 6.1. Let ε ą 0, T P N. Consider the action set Atree and function class Ftree and a reward
noise process such that ξt „ N p0, 1q conditionally for all t P rT s. For any planning algorithm Alg

there is a function f‹ P Ftree such that when T ď 2L´5

9ε2 and Alg interacts with f‹ then,

EAlg,f‹
rEa„pπT

rf‹paqss ă max
aPAtree

f‹paq ´ ε.

Moreover, there is an adaptive algorithm Algadaptive such that if T ě
2L logp2L{εq

ε2 ,

EAlgadaptive
rEa„pπT

rfpaqss ě max
aPAtree

fpaq ´ ε.

for all f P Ftree. Where E
ĄAlg, rf

r¨s is the expectation over the randomness of ĄAlg and the environment

for target function rf , and pπT is the algorithm’s final policy guess after the sampling phase.
5We obviate the T dependence on deluder for readability.
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The main insight behind Theorem 6.1 is that adaptive strategies to find an optimal action in the Ftree

function class can make use of the conditional structure of the action space by trying to determine
a path of actions from the root to the leaf containing the optimal action. An adaptive strategy can
determine this path by querying only nodes that are adjacent to it. In contrast, a static experiment
planning strategy cannot leverage this structure and has to query all leaf nodes. Theorem 6.1 implies a
gap between the adaptive and experiment planning problems. Moreover, since the eluder dimension of
Ftree scales with 2L (see Lemma D.1), OptLS and SquareCB are suboptimal adaptive algorithms for
this model class. In contrast with the O

´

2L logp2L{εq

ε2

¯

upper bound in Theorem 6.1, converting the

cummulative regret bounds of OptLS and SquareCB yield guarantees scaling as O
´

2L logp|Ftree|q

ε2

¯

.

7 Model Selection

In this section we consider a setting where the learner has access to F1, ¨ ¨ ¨ ,FM function (model)
classes all with domain X ˆ A. The learner is promised there exists an index i‹ such that f‹ P Fi‹

.
The value of index i‹ is not known by the learner. We will show the uniform sampling strategy has a
sample complexity that scales logarithmically with the number of models and with the complexity
of the optimal model class |Fi‹

|. In this setting the Sampler will collect two uniform actions
datasets p rDpTrainq

T , rDpTestq

T q of size T {2 each. Using the “train" dataset rDpTrainq

T the learner computes
candidate reward models pf

piq
T for all i P rM s by solving the least squares problems:

pf
piq
T “ argmin

fPFi

ÿ

pxi,ai,riqP rDpTrainq

T

pfpxi, aiq ´ riq
2
.

Using the “test" dataset the learner extracts a guess for the optimal model class index i by solving,

i “ argmin
iPrMs

ÿ

pxℓ,aℓ,rℓqP rDpTestq

T

´

pf
piq
T pxℓ, aℓq ´ rℓ

¯2

. (7)

The candidate policy pπT is defined as pπT pxq “ argmaxaPA
pf

piq
T px, aq. Let’s start by relating the

expected least squares loss of the candidate model pf
piq
T to the size of the optimal model class |Fi‹

|,
Proposition 7.1. There exists a universal constant c ą 0 such that,

Ex„P,a„UniformpAq

„

´

f‹px, aq ´ pf
piq
T px, aq

¯2
ȷ

ď
cmax2pB, B̄q logpT maxpM, |Fi‹

|q{δq

T
.

With probability at lest 1 ´ δ.

The proof of Proposition 7.1 can be found in Appendix E.1. The uniform sampling model-selection
algorithm has the following performance guarantees,

Theorem 7.2. There exists a universal constant rc1 ą 0 s.t. if T ě c̃1 max2
pB,B̄q|A| logp

maxpM,|F‹|q

εδ q
ε2

then with probability at least 1 ´ δ, the candidate policy pπT of the uniform sampling model-selection
algorithm is ε´optimal.

Proof. Due to the realizability assumption prt “ f‹pxt, atq ` ξtq the instantaneous regret of pπT on
context x P X equals maxa f‹px, aq ´ f‹px, pπT pxqq. Let π‹pxq “ argmaxaPA f‹px, aq. Just like in
the proof of Theorem 5.1 (see Equation 25), we can relate the suboptimality of pπT with the expected

least squares loss of pf
piq
T under the uniform policy,

Ex„P

„

max
aPA

f‹px, aq ´ f‹px, pπT pxqq

ȷ

ď 2

d

|A|Ex„P,a„UniformpAq

„

´

f‹px, aq ´ pf
piq
T px, aq

¯2
ȷ

.

(8)

Finally Proposition 7.1 implies thre is a universal constant c ą 0 such that,

Ex„P,a„UniformpAq

„

´

f‹px, aq ´ pf
piq
T px, aq

¯2
ȷ

ď
cpB̄2 ` B2q logpT maxpM, |Fi‹

|q{δq

T

9



with probability at least 1 ´ δ. Plugging this result back into Equation 8 we see the suboptimality of
pπT can be upper bounded as,

Ex„P

„

max
aPA

f‹px, aq ´ f‹px, pπT pxqq

ȷ

ď 2

c

c|A|pB̄2 ` B2q logpT maxpM, |Fi‹
|q{δq

T

Setting gpT q “ 4
c|A|pB̄2

`B2
q logpT maxpM,|Fi‹ |q{δq

T in Lemma A.6 implies there exists a universal

constant c̃1 ą 0 such that gpT q ď ε2 for all T ě c̃1
max2

pB,B̄q|A| log
´

maxpM,|Fi‹
|q

εδ

¯

ε2 .

The results of Theorem 7.2 can be best understood by contrasting them to the uniform sampling algo-
rithm with input model class equal to the union of the function classes Fall “ YiPrMsFi. Applying
the results of Theorem 5.1 to Fall yields a sample complexity scaling with maxiPrMs logp|F |iq, a
quantity that could be much larger than logp|Fi‹

|q. In contrast, the uniform sampling model-selection
algorithm achieves a sample complexity scaling with logp|Fi‹

|q at a price logarithmic in the number of
models classes M . This logarithmic dependence on M stands apart from model selection algorithms
for cumulative regret scenarios such as Corral [5, 39], ECE [30] and RegretBalancing [38, 12] that
instead have a polynomial dependence on M . The uniform sampling model-selection algorithm is ag-
nostic to the value of ε. The results of Theorem 7.2 hold for any ε. If ε is known in advance the learner
can compute the model class index pi “ argmin

!

i P rM s s.t. T ě c̃max2
pB,B̄q|A| logp|Fi|{εδq

ε2

)

and
use the uniform sampling strategy for F

pi. For this choice of ε, Theorem 5.1 guarantees similar
bounds to those of Theorem 7.2. Unfortunately in contrast with the uniform sampling model-selection
algorithm this method would be valid for a single choice of ε.

8 Conclusion

In this work we have introduced the first set of algorithms for the experiment planning problem for
contextual bandits with general function approximation. We have developed the EluderPlanning
algorithm that produces a static policy sequence that after deployment can be used to recover an
ε´optimal policy. We showed it is enough for the number of static policies and therefore samples
during the sampling phase to be as large as the number of samples required from an adaptive procedure
based on an online-to-batch conversion of the OptLS algorithm. Similarly we also demonstrated
the uniform sampling strategy enjoys the same online-to-batch conversion sample complexity as
the SquareCB algorithm. These results seemingly suggest that simple regret rates for adaptive
learning may also be achieved in experiment planning scenarios. We show this is not the case. There
exist structured bandit problems for which adaptive learning may require a number of samples that
is substantially smaller than the number of samples required by a static policy sequence. This is
significant because it implies the suboptimality of the rates achieved by existing adaptive learning
algorithms such as OptLS and SquareCB and also because it draws a clear distinction between
adaptive learning and experiment planning. This implies these algorithms are either suboptimal
or their upper bound analysis is not tight. We believe the first to be correct. This is an important
open question we hope to see addressed in future research. We have also introduced the first model
selection results for the experiment planning problem.

Many important questions remain regarding this setting. Chief among them is to characterize
the true statistical complexity of experimental design for contextual bandits with general function
approximations. Our results indicate the eluder dimension is not the sharpest statistical complexity
measure to characterize learning here. Developing a more new form of complexity, as well as
an accompanying algorithm that can achieve the true statistical lower bound for the problem of
experiment planning remains an exciting and important open question to tackle in future research.
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A Supporting Lemmas

Lemma A.1 (Hoeffding Inequality). Let tYℓu
8
ℓ“1 be a martingale difference sequence such that Yℓ is

Yℓ P raℓ, bℓs almost surely for some constants aℓ, bℓ almost surely for all ℓ “ 1, ¨ ¨ ¨ , t. then

t
ÿ

ℓ“1

Yℓ ď 4

g

f

f

e

t
ÿ

ℓ“1

pbℓ ´ aℓq2 log

ˆ

1

rδ

˙

with probability at least 1 ´ rδ.
Lemma A.2 (Anytime Hoeffding Inequality [38]). Let tYℓu

8
ℓ“1 be a martingale difference sequence

such that Yℓ is Yℓ P raℓ, bℓs almost surely for some constants aℓ, bℓ almost surely for all ℓ “ 1, ¨ ¨ ¨ , t.
then

t
ÿ

ℓ“1

Yℓ ď 2

g

f

f

e

t
ÿ

ℓ“1

pbℓ ´ aℓq2 log

ˆ

12t2

rδ

˙

with probability at least 1 ´ rδ for all t P N simultaneously.

Our results relies on the following variant of Bernstein inequality for martingales, or Freedman’s
inequality [19], as stated in e.g., [3, 7].
Lemma A.3 (Simplified Freedman’s inequality). Let X1, ..., XT be a bounded martingale difference
sequence with |Xℓ| ď R. For any δ1 P p0, 1q, and η P p0, 1{Rq, with probability at least 1 ´ δ1,

T
ÿ

ℓ“1

Xℓ ď η
T

ÿ

ℓ“1

EℓrX
2
ℓ s `

logp1{δ1q

η
. (9)

where Eℓr¨s is the conditional expectation6 induced by conditioning on X1, ¨ ¨ ¨ , Xℓ´1.
Lemma A.4 (Anytime Freedman). Let tXtu

8
t“1 be a bounded martingale difference sequence with

|Xt| ď R for all t P N. For any δ1 P p0, 1q, and η P p0, 1{Rq, there exists a universal constant C ą 0
such that for all t P N simultaneously with probability at least 1 ´ δ1,

t
ÿ

ℓ“1

Xℓ ď η
t

ÿ

ℓ“1

EℓrX
2
ℓ s `

C logpt{δ1q

η
. (10)

where Eℓr¨s is the conditional expectation induced by conditioning on X1, ¨ ¨ ¨ , Xℓ´1.

Proof. This result follows from Lemma A.3. Fix a time-index t and define δt “ δ1

12t2 . Lemma A.3
implies that with probability at least 1 ´ δt,

t
ÿ

ℓ“1

Xℓ ď η
t

ÿ

ℓ“1

Eℓ

“

X2
ℓ

‰

`
logp1{δtq

η
.

A union bound implies that with probability at least 1 ´
řt

ℓ“1 δt ě 1 ´ δ1,

t
ÿ

ℓ“1

Xℓ ď η
t

ÿ

ℓ“1

Eℓ

“

X2
ℓ

‰

`
logp12t2{δ1q

η

piq
ď η

t
ÿ

ℓ“1

Eℓ

“

X2
ℓ

‰

`
C logpt{δ1q

η
.

holds for all t P N. Inequality piq holds because logp12t2{δ1q “ O plogptδ1qq.

6We will use this notation to denote conditional expectations throughout this work.

14



Lemma A.5. Let tAℓu
8
ℓ“1 be an adapted process. We use the notation Eℓr¨s to denote the conditional

expectation Er¨|A1, ¨ ¨ ¨ , Aℓ´1s. If |Aℓ| ď B̃ for all ℓ P N a.s. then

t
ÿ

ℓ“1

A2
ℓ ď

3

2

t
ÿ

ℓ“1

EℓrA
2
ℓ s ` 2CB̃2 log

ˆ

t

δ

˙

.

and

řt
ℓ“1 EℓrA

2
ℓ s

2
ď

t
ÿ

ℓ“1

A2
ℓ ` 2CB̃2 log

ˆ

t

δ

˙

With probability at least 1 ´ δ, for all t P N simultaneously where C ą 0 is a universal constant.

Proof. Consider a martingale difference sequence tWℓu
8
ℓ“1 defined as Wℓ “ A2

ℓ ´ EℓrA
2
ℓ s. By

definition,

|Wℓ| ď B̃2, and EℓrW
2
ℓ s ď EℓrA

4
ℓ s ď B̃2EℓrA

2
ℓ s.

for all ℓ P N.

The anytime freedman inequality (Lemma A.4) and a union bound on the martingale sequences
tWℓu

8
ℓ“1 and t´Wℓu

8
ℓ“1 implies

ˇ

ˇ

ˇ

ˇ

ˇ

t
ÿ

ℓ“1

Wℓ

ˇ

ˇ

ˇ

ˇ

ˇ

ď η
t

ÿ

ℓ“1

EℓrW
2
ℓ s `

C logp2t{δq

η

piq
ď ηB̃2

t
ÿ

ℓ“1

EℓrA
2
ℓ s `

C logp2t{δq

η

for all t P N with probability at least 1 ´ δ. Inequality piq follows because EℓrW
2
ℓ s ď EℓrA

4
ℓ s ď

B̃2EℓrA
2
ℓ s. Setting η “ 1

2B̃2
ă 1

B̃2
.

ˇ

ˇ

ˇ

ˇ

ˇ

t
ÿ

ℓ“1

Wℓ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

řt
ℓ“1 EℓrA

2
ℓ s

2
` 2CB̃2 logp2t{δq

piq
ď

řt
ℓ“1 EℓrA

2
ℓ s

2
` C 1B̃2 logpt{δq

where inequality piq follows from logp2t{δq “ Oplogpt{δqq. Substituting
ˇ

ˇ

ˇ

řt
ℓ“1 Wℓ

ˇ

ˇ

ˇ
with

´
řt

ℓ“1 Wℓ and
řt

ℓ“1 Wℓ and simplifying the resulting expressions yields the result.

Lemma A.6. Let c ą 0, α ě 1, ξ P p0, 1s and g : R Ñ R be defined as gpT q “ c log
α

pT q

T . Let

ξ1 “
ξ

cpα`4qα
. For all T ě

logα
p1{ξ1

q

ξ1

gpT q ď ξ.

Proof. Let’s see that gpT q is an increasing function for all T ě. The derivative of gpT q satisfies
BgpT q

BT “
logα´1

pα´logpT qq

T 2 . Hence for all T such that logpT q ě α (i.e. T ě eα), the derivative is
negative and therefore f is decreasing.

Let T0 “
logα

p1{ξ1
q

ξ1 . Substituting gpT0q we get,

gpT0q “

c logα
´

logα
p1{ξ1

q

ξ1

¯

logαp1{ξ1q
ξ1

15



The numerator satisfies,

logα
ˆ

logαp1{ξ1q

ξ1

˙

“
`

log
`

logαp1{ξ1q
˘

` logp1{ξ1q
˘α

“
`

α logplogp1{ξ1qq ` logp1{ξ1q
˘α

piq
ď

`

pα ` 1q logp1{ξ1q
˘α

“ pα ` 1qα logαp1{ξ1q

Inequality piq holds because logp1{ξ1q ď 1{ξ1 since ξ1 P p0, 1s. Substituting these inequalities in the
expression above yields,

gpT0q ď cpα ` 1qαξ1.

Setting ξ1 “
ξ

cpα`4qα
and noting this definition of T0 satisfies T0 ě eα yields the desired result.

A.1 Conditions for βF pt, δq

Proposition A.7. There exists a universal constant C̄ such that βF pδ, tq “ C̄pB ` B̄q

c

log
´

|F |t
δ

¯

satisfies

β2
F pδ, tq ě 4p2C2

1 ` C2qB2 log

ˆ

2t|F |

δ

˙

and β2
F pδ, tq ě Ω

ˆ

pB2 ` B̄2q log

ˆ

|F |t

δ

˙˙

for all t P N and δ P p0, 1q. Where C1, C2 are the universal constants from equation 23 in Lemma 4.6
(left) and β2

F pδ, tq ě Ct,δ in Lemma A.8 (right).

Proof. This result follows immediately from the definition.

Satisfies both conditions.

A.2 Least Squares Guarantees

In this section we provide bounds for the least squares algorithm. We assume a setting where at
each step t the learner observes an element zt P Z with a label yt “ f‹pzq ` ξt where f‹ P F ,
maxfPF,zPZ |fpzq| ď B and ξit is a conditionally zero mean 1´subgaussian random variable
satisfying |ξt| ď B̄. The function f‹ is assumed to satisfy f‹ P F for a known function class F . We
analyze the least squares procedure,

pft “ min
fPF

t´1
ÿ

ℓ“1

pfpzℓq ´ yℓq
2
.

Lemma A.8 (LS guarantee). Let z1, ¨ ¨ ¨ , zT be a sequence of queries and values y1, ¨ ¨ ¨ , yT . Define
pft “ argminfPF

řt´1
ℓ“1 pfpzℓq ´ yℓq

2 for a function class F satisfying maxfPF,zPZ |fpzq| ď B and
where yℓpzℓq “ f‹pzℓq ` ξℓ for ξℓ a conditionally zero mean random variable with |ξi| ď B̄ then,

t´1
ÿ

ℓ“1

´

pftpzℓq ´ f‹pzℓq
¯2

ď Ct,δ ď CT,δ.

Moreover, if zt “ pxt, atq with xt „ Pt and at „ πtp¨|xtq an adapted probability-policy sequence,

t´1
ÿ

ℓ“1

Ex„Pℓ,a„πℓp¨|xq

„

´

pftpzℓq ´ f‹pziq
¯2

ȷ

ď Ct,δ ď CT,δ.

with probability at least 1 ´ δ for all t P N where Ct,δ “ O
´

pB2 ` B̄2q log
´

|F |t
δ

¯¯

.
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Proof. By definition Eℓrξℓs “ 0 and Eℓrξ
2
ℓ s ď B̄2 where we define these conditional expectations to

include all events occuring before ξℓ (including zℓ). Since pft is the empirical minimizer of the least
squares loss,

t´1
ÿ

ℓ“1

´

pftpzℓq ´ f‹pzℓq ´ ξℓ

¯2

ď

t
ÿ

ℓ“1

ξ2ℓ .

And therefore,
t´1
ÿ

ℓ“1

´

pftpzℓq ´ f‹pzℓq
¯2

ď 2
t´1
ÿ

ℓ“1

ξℓ ¨

´

pftpzℓq ´ f‹pzℓq
¯

. (11)

For any fixed f let’s consider the martingale difference sequence Zf
ℓ “ ξℓ pfpzℓq ´ f‹pzℓqq. Observe

that |Zf
ℓ | ď 2B̄B and that,

Eℓ

„

´

Zf
ℓ

¯2
ȷ

ď B̄2 pfpzℓq ´ f‹pzℓqq
2
. (12)

Recall that Eℓr¨s conditions on all events right before ξℓ including zℓ so that Eℓrpfpzℓq ´ f‹pzℓq
2s “

pfpzℓq ´ f‹pzℓq
2. By the Anytime Friedman’s inequality (see Lemma A.4) with η “ 1

4B̄maxpB̄,Bq
ă

min
`

1
2B̄B

, 1
2B̄2

˘

and δ1 “ δ
2|F |

, and a union bound over all f P F

t´1
ÿ

ℓ“1

ξℓ ¨ pfpzℓq ´ f‹pzℓqq ď η
t´1
ÿ

ℓ“1

Eℓ

„

´

Zf
ℓ

¯2
ȷ

`
C logp2|F |t{δq

η

piq
ď ηB̄2

t´1
ÿ

ℓ“1

pfpzℓq ´ f‹pzℓqq
2

`
C logp2|F |t{δq

η

piiq
ď

řt´1
ℓ“1 pfpzℓq ´ f‹pzℓqq

2

4
` O

ˆ

pB̄2 ` B̄Bq log

ˆ

|F |t

δ

˙˙

for all f P F and all t P N simultaneously with probability at least 1 ´ δ{2. Where inequality piq
holds because of Equation 12 and inequality piiq holds because ηB̄2 ď 1

4 . In particular,

t´1
ÿ

ℓ“1

ξℓ ¨

´

pftpzℓq ´ f‹pzℓq
¯

ď

řt´1
ℓ“1

´

pftpzℓq ´ f‹pzℓq
¯2

4
` O

ˆ

pB̄2 ` B̄Bq log

ˆ

|F |t

δ

˙˙

(13)

Combining inequalities 11 and 13 we conclude,

t´1
ÿ

ℓ“1

´

pftpzℓq ´ f‹pzℓq
¯2

ď O
ˆ

B̄maxpB, B̄q log

ˆ

|F |t

δ

˙˙

. (14)

for all f P F and all t P N simultaneously with probability at least 1 ´ δ{2. This finalizes the first
part of the result.

When zt “ pxt, atq with xt „ Pt and at „ πtp¨|xtq Lemma A.5 applied to the adapted sequence
tAℓu

8
ℓ“1 where Aℓ “ fpzℓq ´ f‹pzℓq implies,

1

2

t´1
ÿ

ℓ“1

Ex„Pℓ,a„πℓp¨|xqrpfpzℓq ´ f‹pzℓqq
2
s ď

t´1
ÿ

ℓ“1

pfpzℓq ´ f‹pzℓqq
2

` O
ˆ

B2 log

ˆ

|F |t

δ

˙˙

for all f P F and all t P N simultaneously with probability at least 1 ´ δ{2. In particular setting
f “ pft in the equation above,

1

2

t´1
ÿ

ℓ“1

Ex„Pℓ,a„πℓp¨|xqr

´

pftpzℓq ´ f‹pzℓq
¯2

s ď

t´1
ÿ

ℓ“1

´

pftpzℓq ´ f‹pzℓq
¯2

` O
ˆ

B2 log

ˆ

|F |t

δ

˙˙

(15)
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Combining inequalities 14 and 15 we conclude,
t´1
ÿ

ℓ“1

Ex„Pt,a„πtp¨|xqrpfpzℓq ´ f‹pzℓqq
2
s ď O

ˆ

pB2 ` B̄2q log

ˆ

|F |t

δ

˙˙

.

for all t P N simultaneously. This finalizes the second part of the result. A union bound finalizes the
Lemma’s proof.

Lemma A.9. Assume a learner interacts with a function class F while satisfying realizability
(Assumption 3.1), Bounded Function Range (Assumption 3.2) and Bounded Noise (Assumption 3.3).
Let f P F be an arbitrary (fixed) function and rDpTestq

T be a size T dataset produced by sampling
T i.i.d. contexts from P and acting according to the uniform policy Uniform. There is a universal
constant C̄ ą 0 such that,

Ex„P,a„UniformpAq

”

pf‹px, aq ´ fpx, aqq
2
ı

ď
4

T

¨

˝

ÿ

pxℓ,aℓ,rℓqP rDpTestq

T

pfpxℓ, aℓq ´ rℓq
2

´ ξ2ℓ

˛

‚`
C̄pB̄2 ` B2q logpT {δq

T

ď 16Ex„P,a„UniformpAq

”

pf‹px, aq ´ fpx, aqq
2
ı

` 4
C̄pB̄2 ` B2q logpT {δq

T
.

with probability at least 1 ´ δ.

Proof. Throughout this proof we refer to the elements of rDpTestq

T as the ordered list
x1, a1, ¨ ¨ ¨ , xT , aT . Let’s write rℓ “ f‹pxℓ, aℓq ` ξℓ. Substituting this into the empirical loss
we obtain,

T
ÿ

ℓ“1

pfpxℓ, aℓq ´ rℓq
2

“

T
ÿ

ℓ“1

pfpxℓ, aℓq ´ f‹pxℓ, aℓqq2 ` 2ξℓpfpxℓ, aℓq ´ f‹pxℓ, aℓqq ` ξ2ℓ .

Therefore,

1

T

˜

T
ÿ

ℓ“1

pfpxℓ, aℓq ´ f‹pxℓ, aℓqq2 ` 2ξℓpfpxℓ, aℓq ´ f‹pxℓ, aℓqq

¸

“
1

T

ÿ

pxℓ,aℓ,rℓqP rDpTestq

T

pfpxℓ, aℓq ´ rℓq
2

´ ξ2ℓ . (16)

Consider the martingale difference sequence tZℓu
T
ℓ“1 defined as Zℓ “ ξℓpf‹pxℓ, aℓq ´ fpxℓ, aℓqq.

Notice that |Zℓ| ď 2B̄B and that Eℓrpξℓpfpxℓ, aℓq ´ f‹pxℓ, aℓqqq
2
s ď B̄2pfpxℓ, aℓq ´ f‹pxℓ, aℓqq2.

The Anytime Freedman inequality (Lemma A.4) with η “ 1
4B̄maxpB̄,Bq

ă min
`

1
2B̄B

, 1
2B̄2

˘

and
δ1 “ δ{2 plus a union bound implies that with probability at least 1 ´ δ{2

max

˜

ÿ

ℓ“1

Zℓ,´
ÿ

ℓ“1

Zℓ

¸

ď η
T

ÿ

ℓ“1

Eℓrpξℓpfpxℓ, aℓq ´ f‹pxℓ, aℓqq2s `
C logp2T {δq

η

ď ηB̄2
T

ÿ

ℓ“1

pfpxℓ, aℓq ´ f‹pxℓ, aℓqq2 `
C logp2T {δq

η
(17)

piq
ď

1

4

T
ÿ

ℓ“1

pfpxℓ, aℓq ´ f‹pxℓ, aℓqq2 ` C3pB̄2 ` B2q logpT {δq. (18)

where inequality piq follows because ηB̄22 ď 1
4 and because C logp2T {δq “ O plogpT {δqq. Substi-

tuting Zℓ “ ξℓpf‹pxℓ, aℓq ´ fpxℓ, aℓqq, considering the inequality with ´
ř

ℓ“1 Zℓ on the LHS of
the above display and dividing by T the expression above yields,

´
1

2T

T
ÿ

ℓ“1

pfpxℓ, aℓq ´f‹pxℓ, aℓqq2 ´
2C3

T
pB̄2 `B2q logpT {δq ď

1

T

T
ÿ

ℓ“1

2ξℓpfpxℓ, aℓq ´f‹pxℓ, aℓqq

18



and therefore, combining this expression above with Equation 16 yields,

1

2T

T
ÿ

ℓ“1

pfpxℓ, aℓq ´ f‹pxℓ, aℓqq2 ´
2C3

T
pB̄2 ` B2q logpT {δq

ď
1

T

ÿ

pxℓ,aℓ,rℓqP rDpTestq

T

pfpxℓ, aℓq ´ rℓq
2

´ ξ2ℓ . (19)

Finally, the second item of Lemma A.5 applied to the tAℓu
T
ℓ“1 sequence with Aℓ “ f‹pxℓ, aℓq ´

f‹pxℓ, aℓq implies (after dividing by T ) and noting that at all time-steps the context and sampling
distribution are the same,

Ex„P,a„UniformpAq

”

pf‹px, aq ´ fpx, aqq
2
ı

ď
2

T

T
ÿ

ℓ“1

pfpxℓ, aℓq ´ f‹pxℓ, aℓqq2 `
C4

T
pB̄2 ` B2q logpT {δq (20)

and

1

T

T
ÿ

ℓ“1

pfpxℓ, aℓq ´ f‹pxℓ, aℓqq2

ď
3

2
Ex„P,a„UniformpAq

”

pf‹px, aq ´ fpx, aqq
2
ı

`
C4

T
pB̄2 ` B2q logpT {δq (21)

with probability at least 1 ´ δ{2. Combining Equations 19 and 20,

Ex„P,a„UniformpAq

”

pf‹px, aq ´ fpx, aqq
2
ı

ď
4

T

ÿ

pxℓ,aℓ,rℓqP rDpTestq

T

pfpxℓ, aℓq ´ rℓq
2

´ ξ2ℓ `
C̄1

pB̄2 ` B2q logpT {δq

T

with probability at least 1 ´ δ for some universal constant C̄1
ą 0.

To prove the second part of the argument we notice the following sequence of equalities and
inequalities hold,
1

T

ÿ

pxℓ,aℓ,rℓqP rDpTestq

T

pfpxℓ, aℓq ´ rℓq
2

´ ξ2ℓ

“
1

T

˜

T
ÿ

ℓ“1

pfpxℓ, aℓq ´ f‹pxℓ, aℓqq2 ` 2ξℓpfpxℓ, aℓq ´ f‹pxℓ, aℓqq

¸

piq
ď

1

T

˜

3

2

T
ÿ

ℓ“1

pfpxℓ, aℓq ´ f‹pxℓ, aℓqq2 ` 2C3pB̄2 ` B2q logp2T {δq

¸

piiq
ď

9

4
Ex„P,a„UniformpAq

”

pf‹px, aq ´ fpx, aqq
2
ı

`
C̄2

pB̄2 ` B2q logpT {δq

T

for some universal constant C̄2
ą 0 and where inequality piq follows from equation 18 and considering

the inequality with ´
řT

ℓ“1 Zℓ on the RHS. Inequality piiq is a result of Equation 21.

Picking a universal constant C̄ larger than all the universal constants in this discussion plus a union
bound finalizes the result.

B Online to Batch Conversion

Lemma B.1. Let T P N and δ1 P r0, 1s. Assume there is an algorithm Alg that interacts sequentially
with i.i.d. contexts x1, ¨ ¨ ¨ , xT

i.i.d.
„ P producing policies tπℓu

T
ℓ“1, playing actions aℓ „ πℓpxℓq
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and observing rewards rℓ “ f‹pxℓaℓq ` ξℓ for all ℓ ď T and with ξℓ a conditionally zero mean
1´subgaussian random variable such that with probability at least 1 ´ δ1,

T
ÿ

ℓ“1

max
aPA

f‹pxℓ, aq ´ f‹pxℓ, aℓq ď BT,δ1 . (22)

For some BT,δ1 P R. Then policy pπT “ Uniformpπ1, ¨, πT q satisfies,

Ex„P,a„pπT pxqrf‹px, aqs `
BT,δ1

T
` 8B

c

logp1{δ1q

T
ě Ex„P

„

max
aPA

f‹px, aq

ȷ

.

with probability at least 1 ´ 3δ1.

Proof. Consider the martingale sequences tZ
p1q

ℓ uTℓ“1 and tZ
p2q

ℓ uTℓ“1 defined as Z
p1q

ℓ “

maxaPA f‹pxℓ, aq ´ Ex„P rmaxaPA f‹px, aqs and Z
p2q

ℓ “ f‹pxℓ, aℓq ´ Ex„P,a„πℓpxqrf‹px, aqs for
ℓ P rT s.

The bounded function range assumption 3.2 implies maxp|Z
p1q

ℓ |, |Z
p2q

ℓ |q ď 2B for all ℓ ď T .
Therefore, Hoeffding Inequality applied to these two martingale sequences (see A.1) and a union
bound imply

T
ÿ

ℓ“1

max
aPA

f‹pxℓ, aq ` 4B
a

T logp1{δ1q ě

T
ÿ

ℓ“1

Ex„P rmax
aPA

f‹px, aqs “ TEx„P rmax
aPA

f‹px, aqs

T
ÿ

ℓ“1

Ex„P,a„πℓpxqrf‹px, aqs ` 4B
a

T logp1{δ1q ě

T
ÿ

ℓ“1

f‹pxℓ, aℓq.

simultaneously with probability at least 1 ´ 2δ1. Combining this with inequality 22 and a union
bound implies,

T
ÿ

ℓ“1

Ex„P,a„πℓpxqrf‹px, aqs ` BT,δ1 ` 8B
a

T logp1{δ1q ě TEx„P rmax
aPA

f‹px, aqs.

with probability at least 1 ´ 3δ1. Therefore,

Ex„P,a„pπT pxqrf‹px, aqs `
BT,δ1

T
` 8B

c

logp1{δ1q

T
ě Ex„P

„

max
aPA

f‹px, aq

ȷ

C Proofs of Section 4

Lemma 4.6. With probability at least 1 ´ δ
12 ,

tpf, f 1q s.t. }f ´ f 1}
rDt

ď 2βF pt, δqu Ď tpf, f 1q s.t. }f ´ f 1}Dt ď 4βF pt, δqu (6)

Simultaneously for all t P rT s. Where tDtu
T
t“1 is the dataset sequence resulting of the execution of

EluderPlanner while t rDtu
T
t“1 is the dataset sequence resulting of the execution of the Sampler and

βF pδ, tq is the confidence radius function defined in Equation 2.

Proof. We will define a process tZℓu
T
ℓ“1 such that Zℓ “ pxℓ, x̃ℓ, πℓq. Here x̃ℓ is independent and

identically distributed to any xℓ (and in particular to xℓ).

Let f, f 1 P F be two fixed functions. Define two adapted processes tfpxℓ, πℓpxℓqq´f 1pxℓ, πℓpxℓqquℓ
and tfpx̃ℓ, πℓpx̃ℓqq ´ f 1px̃ℓ, πℓpx̃ℓqquℓ (in this definition we have used the fact that πℓ is a sequence
of deterministic policies).
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Lemma A.5 implies,

t
ÿ

ℓ“1

pfpxℓ, πℓpxℓqq ´ f 1pxℓ, πℓpxℓqqq2

ď
3

2

t
ÿ

ℓ“1

Ex„P rpfpx, πℓpxqq ´ f 1px, πℓpxqqq2s ` p2C2
1 ` C2qB2 log

ˆ

2t

δ̄

˙

and

1

2

t
ÿ

ℓ“1

Ex„P rpfpx, πℓpxqq ´ f 1px, πℓpxqqq2s

ď

t
ÿ

ℓ“1

pfpx̃ℓ, πℓpx̃ℓqq ´ f 1px̃ℓ, πℓpx̃ℓqqq2 ` p2C2
1 ` C2qB2 log

ˆ

2t

δ̄

˙

with probability at least 1 ´ δ̄ for all t P N. Combining these two inequalities we conclude,

t
ÿ

ℓ“1

pfpxℓ, q ´ f 1pxℓqq2 ď 3
t

ÿ

ℓ“1

pfpx̃ℓq ´ f 1px̃ℓqq2 ` 4p2C2
1 ` C2qB2 log

ˆ

2t

δ̄

˙

Setting δ̄ “ δ{|F |2 and a union bound implies that,

}f ´ f 1}2Dt
ď 3}f ´ f 1}2

rDt
` 4p2C2

1 ` C2qB2 log

ˆ

2|F |t

δ

˙

for all f, f 1 P F simultaneously. Since (see Proposition A.7) we define βF pδ, tq such that

β2
F pδ, tq ě 4p2C2

1 ` C2qB2 log

ˆ

2|F |t

δ

˙

(23)

we conclude that whenever f, f 1 P F satisfy }f ´ f 1}
rDt

ď 2βF pt, δq,

}f ´ f 1}2Dt
ď 16β2

F pt, δq

and therefore }f ´ f 1}Dt ď 4βF pt, δq. This concludes the result.

C.1 Proof of Theorem 4.4

Theorem 4.4. Let ε ą 0. There exists a universal constant c ą 0 such that if

T ě c
max2pB, B̄, 1qdeluderpF , B{T q log p|F |T {δq

ε2
(5)

then with probability at least 1 ´ δ the eluder planning algorithm’s policy pπT is ε´optimal .

In this section we present a more complete version of the proof from Section 4.1. We will actually
prove a ‘stronger’ version of Theorem 4.4.

Theorem C.1. Let ε ą 0. There exists a universal constant c0 ą 0 such that if

T ě c0 max

ˆ

max2pB, B̄qdeluderpF , B{T q log p|F |T {δq

ε2
,
BdeluderpF , B{T q

ε

˙

(24)

then with probability at least 1 ´ δ the eluder planning algorithm’s policy pπT is ε´optimal .

Proof. For readability we have repeated some of the text of the proof in here.

Let pft as in Equation 3 and define E as the event where the Standard Least Squares results (see
Lemma A.8) hold i.e. } pft ´ f‹}

rDt
ď βpt, δq for all t P rT s and also Equation 6 from Lemma 4.6

holds for all t P rT s. The results of Lemmas A.8 and 4.6 imply PpEq ě 1 ´ δ
6 .
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For context x and action a let’s denote by f̃x,a
t as a function achieving the inner maximum in the

definition of π̃opt
t (see Equation 4). When E holds the policies tπ̃opt

t uTt“1 are optimistic in the sense

that f̃x,π̃opt
t pxq

t px, π̃opt
t pxqq ě maxaPA f‹px, aq. To see why this is the case notice that E holds

f‹ P t}f ´ pfj}D̃t
ď βF pt, δqu and therefore

f̃
x,π̃opt

t pxq

t px, π̃opt
t pxqq ě max

fPt}f´ pft}D̃t
ďβF pt,δqu

fpx, π‹pxqq ě f‹px, π‹pxqq.

where π‹ corresponds to the optimal policy π‹pxq “ argmaxaPA f‹px, aq. This implies the following
sequence of inequalities,
T

ÿ

t“1

max
aPA

f‹px̃t, aq ´ f‹px̃t, π̃
opt
t px̃tqq ď

T
ÿ

t“1

f̃
x,π̃opt

t pxq

t px̃t, π̃
opt
t px̃tqq ´ f‹px̃t, π̃

opt
t px̃tqq

ď

T
ÿ

t“1

max
f,f 1 s.t. }f´f 1}

ĂDt
ď2βF pδ,tq

fpx̃t, π̃
opt
t px̃tqq ´ f 1px̃t, π̃

opt
t px̃tqq

piq
ď

T
ÿ

t“1

max
f,f 1 s.t. }f´f 1}Dtď4βF pδ,tq

fpx̃t, π̃
opt
t px̃tqq ´ f 1px̃t, π̃

opt
t px̃tqq

“

T
ÿ

t“1

ωpx̃t, π̃
opt
t px̃tq,Dtq

ď

T
ÿ

t“1

max
aPA

ωpx̃t, a,Dtq

“

T
ÿ

t“1

ωpx̃t, πtpx̃tq,Dtq.

Where inequality piq is satisfied when E holds as a result of Lemma 4.6. Using Hoeffding Inequality

(see Lemma A.1) yields
řT

t“1 ωpx̃t, πtpx̃tq,Dtq ď
řT

t“1 ωpxt, πtpxtq,Dtq ` 16B
b

T log
`

3
δ

˘

with
probability at least 1 ´ δ{3. Finally Lemma 4.3 implies there exists a universal constant C ą 0 such
that

řT
t“1 ωpxt, πtpxtq,Dtq ď C ¨ min

´

BT,BdeluderpF , B{T q ` βF pT, δq
a

deluderpF , B{T qT
¯

and therefore,
T

ÿ

t“1

max
aPA

f‹px̃t, aq´f‹px̃t, π̃
opt
t px̃tqq ď C¨min

´

BT,BdeluderpF , B{T q ` βF pT, δq
a

deluderpF , B{T qT
¯

.

With probability at least 1 ´ δ. The Online to Batch Conversion Lemma B.1 implies there exists a
universal constant C ą 0 such that,

Ex„P,a„pπT pxq rf‹px, aqs `

C ¨ min
´

BT,BdeluderpF , B{T q `
a

deluderpF , B{T qβF pT, δqT
¯

T
` 8B

c

logp1{δq

T
ě max

π
Ex„P rf‹px, πpxqqs .

with probability at least 1 ´ 3δ where pπT “ Uniformpπopt
1 , ¨ ¨ ¨ , πopt

T q. Finally setting T sufficiently
large such that,

T ě
4CB

ε

T ě
4BdeluderpF , B{T q

ε

T ě
16deluderpF , B{T qβ2

F pT, δq

ε2

T ě
256B logp1{δq

ε2
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we conclude there exists a universal constant c0 ą 0 such that if

T ě c0 max

ˆ

max2pB, B̄qdeluderpF , B{T q log p|F |T {δq

ε2
,
BdeluderpF , B{T q

ε

˙

then with probability at least 1 ´ δ,
Ex„P rf‹px, pπT pxqqs ` ε ě max

π
Ex„P rf‹px, πpxqqs .

We now return to the proof of Theorem 4.4. We can simplify inequality 24 by instead imposing the
condition,

T ě c
max2pB, B̄, 1qdeluderpF , B{T q log p|F |T {δq

ε2

for some universal constant c ą 0. This finalizes the proof.

Comparison with Linear Experiment Planning . Using standard techniques the results of
Theorem 4.4 can be adapted to the case when the function class F is infinite but admits a metrization
and has a covering number. In this case the sample complexity will scale not with logp|F |q but instead
with the logarithm of the covering number of F . For example, in the case of linear functions, the
logarithm of the covering number of F under the ℓ2 norm will scale as d, the ambient dimension of
the space up to logarithmic factors of T (see for example Lemma D.1 of [14]). Plugging this into the
sample guarantees of Theorem 4.4 recovers the rO

`

d2{ε2
˘

sample complexity for linear experiment
planning from [53].

D Proof of Theorem 5.1

Theorem 5.1. There exists a universal constant c̃ ą 0 such that if T ě c̃max2
pB,B̄q|A| logp|F |{εδq

ε2 then
with probability at least 1 ´ δ the uniform planning algorithm’s policy pπT is ε´optimal.

Proof. Due to the realizability assumption prt “ f‹pxt, atq ` ξtq the instantaneous regret of pπT

on context x P X equals maxa f‹px, aq ´ f‹px, pπT pxqq. Let π‹pxq “ argmaxaPA f‹px, aq. The
following inequalities hold,
max
aPA

f‹px, aq ´ f‹px, pπT pxqq “ f‹px, π‹pxqq ´ f‹px, pπT pxqq

piq
ď f‹px, π‹pxqq ´ pfT px, π‹pxqq ` pfT px, pπT pxqq ´ f‹px, pπT pxqq

ď 2max
aPA

|f‹px, aq ´ pfT px, aq|

Where piq holds because pfT px, π‹pxqq ď pfT px, pπT pxqq. Therefore,

Ex„P

„

max
aPA

f‹px, aq ´ f‹px, pπT pxqq

ȷ

ď 2Ex„P

„

max
aPA

|f‹px, aq ´ pfT px, aq|

ȷ

piq
ď 2

d

Ex„P

„

max
aPA

´

f‹px, aq ´ pfT px, aq

¯2
ȷ

piiq
ď 2

d

|A|Ex„P,a„UniformpAq

„

´

f‹px, aq ´ pfT px, aq

¯2
ȷ

.

(25)

Inequality piq holds because of Jensen’s inequality. Inequality piiq follows because

maxaPA

´

f‹px, aq ´ pfT px, aq

¯2

ď
ř

aPA

´

f‹px, aq ´ pfT px, aq

¯2

.

Finally the context generating distributions equal P at all timesteps and the policies equal
UniformpAq standard least squares analysis (Lemma A.8) yields that with probability at least
1 ´ δ

Ex„P,a„UniformpAq

„

´

f‹px, aq ´ pfT px, aq

¯2
ȷ

ď
CT,δ

T
.
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Therefore we conclude that,

Ex„P

„

max
aPA

f‹px, aq ´ f‹px, pπT pxqq

ȷ

ď 2

c

|A|CT,δ

T

Since CT,δ “ c1pB2 ` B̄2q log
´

|F |t
δ

¯

for some universal constant c1 ą 0 we conclude that,

Ex„P

„

max
aPA

f‹px, aq ´ f‹px, pπT pxqq

ȷ

ď 2

g

f

f

e

c1|A|max2pB, B̄q log
´

|F |t
δ

¯

T

Setting gpT q “ 4
c1

|A| max2
pB,B̄q logp

|F|t
δ q

T in Lemma A.6 implies there exists a universal constant

c̃ ą 0 such that gpT q ď ε2 for all T ě c̃
max2

pB,B̄q|A| logp
|F|

εδ q
ε2 . The result follows.

D.1 Proof of Theorem 6.1

In order to prove Theorem 6.1 we will assume a gaussian model for the noise variables ξt „ N p0, 1q.
This will allow us to use the appropriate information theoretic tools.
Theorem 6.1. Let ε ą 0, T P N. Consider the action set Atree and function class Ftree and a reward
noise process such that ξt „ N p0, 1q conditionally for all t P rT s. For any planning algorithm Alg

there is a function f‹ P Ftree such that when T ď 2L´5

9ε2 and Alg interacts with f‹ then,
EAlg,f‹

rEa„pπT
rf‹paqss ă max

aPAtree

f‹paq ´ ε.

Moreover, there is an adaptive algorithm Algadaptive such that if T ě
2L logp2L{εq

ε2 ,

EAlgadaptive
rEa„pπT

rfpaqss ě max
aPAtree

fpaq ´ ε.

for all f P Ftree. Where E
ĄAlg, rf

r¨s is the expectation over the randomness of ĄAlg and the environment

for target function rf , and pπT is the algorithm’s final policy guess after the sampling phase.

Proof. We use the notation a1, ¨ ¨ ¨ , aT to denote a (random) sample path of query tuples for algorithm
Alg with observed responses r1, ¨ ¨ ¨ , rT where rt “ fpatq ` ξt. We’ll assume that ξt „ N p0, 1q.

Algorithm Alg interacts for T timesteps during the planning phase with Atree and produces a
sequence of policies tπtu

T
t“1 to deploy during the sampling phase. The data collected from these

deployment policies is then used by the algorithm to define a candidate ε-optimal policy pπT .

Since we are studying the context-less setting, the underlying context distribution equals a delta mass
over the empty context and therefore the distribution over the sampling policy sequence tπtu

T
t“1 is

independent of f . Let nT paq be the random variable specifying how many times action a was pulled
during the sampling phase of algorithm Alg. This random variable is independent of f .

Let ra and rb be two consecutive leaf actions (i.e. inhabiting a size 2 sub-tree of Atree) such that,

EAlgrnT praq ` nT prbqs ď
T

2L´2
.

Let p
ra be the path leading to ra and p

rb be the path leading to rb. We’ll use the notation Pp
ra

a ,Pp
rb

a to
denote the distribution of arm a in the world specified by fp

ra and fp
rb respectively. The divergence

decomposition for markov processes (see for example Lemma 15.1 in [28] ) implies

KLpPAlg,fpp
raq ∥ P

Alg,f
pp

rb
q q “

ÿ

aPAtree

EAlg rnT paqsKLpPp
ra

a ∥ Pp
rb

a q

We have used the notation EAlg r¨s above because the nT paq random variables do not depend on f .
Notice that for all a R tra,rbu, KLpPp

ra
a ∥ Pp

rb
a q “ 0. In contrast KLpPp

ra
a ∥ Pp

rb
a q “ 72ε2 for a P tra,rbu.

Plugging this into the equation above,

KLpPAlg,fpp
raq ∥ P

Alg,f
pp

rb
q q “ 72EAlg

”

nT praq ` nT prbq
ı

ε2 ď
ε2T

2L´3
.
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Define the event E “ tpπT praq ă pπT prbqu. The Huber-Bretagnolle inequality implies,

PAlg,fpp
raq pEq ` P

Alg,f
pp

rb
q pEcq ě exp

´

´KLpPAlg,fpp
raq ∥ P

Alg,f
pp

rb
q q

¯

ě exp

ˆ

´
9ε2T

2L´5

˙

. (26)

Notice that when E holds, 2pπT praq ď pπT praq ` pπT prbq ď 1 and therefore pπT praq ď 1
2 . Thus if E holds,

EAlg,fpp
raq

”

Ea„pπT
rf‹paqs

ˇ

ˇ

ˇ
E

ı

ď
1

2
`

1

2
p1 ´ 12εq “ 1 ´ 6ε. (27)

In this case,

EAlg,fpp
raq rEa„pπT

rf‹paqss ď EAlg,fpp
raq

”

Ea„pπT
rf‹paqs

ˇ

ˇ

ˇ
E

ı

PAlg,fpp
raq pEq `

EAlg,fpp
raq

”

Ea„pπT
rf‹paqs

ˇ

ˇ

ˇ
Ec

ı

PAlg,fpp
raq pEcq

ď EAlg,fpp
raq

”

Ea„pπT
rf‹paqs

ˇ

ˇ

ˇ
E

ı

PAlg,fpp
raq pEq ` PAlg,fpp

raq pEcq

piq
ď 1 ´ 6εPAlg,fpp

raq pEq (28)

Where inequality piq holds because of Equation 27. Similarly we can infer that,

E
Alg,f

pp
rb

q rEa„pπT
rf‹paqss ď 1 ´ εP

Alg,f
pp

rb
q pEq . (29)

Finally, combining Equations 28 and 29 with the result of Huber-Bretagnolle (see Equation 26)
implies,

EAlg,fpp
raq rEa„pπT

rf‹paqss ` E
Alg,f

pp
rb

q rEa„pπT
rf‹paqss ď 2 ´ 6ε exp

ˆ

´
9ε2T

2L´5

˙

.

Hence, as long as T ď 2L´5

9ε2 , then exp
´

´ 9ε2T
2L´5

¯

ě expp´1q and therefore
EAlg,fpp

raq rEa„pπT
rf‹paqss ` E

Alg,f
pp

rb
q rEa„pπT

rf‹paqss ď 2 ´ 6ε exp p´1q. And therefore at least

one rc P tra,rbu satisfies

EAlg,fpp
rcq rEa„pπT

rf‹paqss ď 1 ´
3ε

e
ă 1 ´ ε.

This finalizes the first result.

For the second result we analyze the following algorithm,

Algorithm 3 Adaptive Tree Sampling

1: Input: Number of samples per node M .
2: Initialize current node as acurr “ a1,1
3: for j “ 1 . . .L ´ 1 do
4: Expand current node pb, cq “ Childrenpacurrq.
5: Collect M samples from each node b and c and compute mean rewards r̂b and r̂c.
6: Update acurr “ argmaxePpb,cq r̂e.
7: end for
8: Output aoutput “ acurr.

Let’s assume f ppq is the world’s descriptor for some path p. We will analyze the performance of
Algorithm 3 where M “

logp2L{δq

ε2 . The output of this algorithm will be a policy centered around the
output action a.

Let’s first observe that Hoeffding inequality (Lemma A.1) and the union bound imply that |r̂b ´

f ppqpbq| ď ε, with probability at least 1 ´ δ
L and |r̂e ´ f ppqpeq| ď ε for e P tb, cu simultaneously.

Let’s call this event Ea.

Lets assume acurr P p and is not a leaf node, and w.l.o.g. when b P p and c R p, such that
f ppqpbq ě 1 ´ 2ε and f ppqpcq “ 1 ´ 12ε. If Ea holds,

r̂b ě f ppqpbq ´ ε ě 1 ´ 3ε ą 1 ´ 11ε ě f ppqpcq ` ε ě r̂c.
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We conclude that in this case r̂b ą r̂c and therefore the updated node a (Line 6 of Algorithm 3) will
also be in p.

Combining these results with union bounds applied conditionally over all acurr in Algorithm 3’s
sample path, we conclude that with probability at least 1 ´ δ, the output action aoutput will equal the
last action in p’s path, and therefore the optimizer of f ppq. Denote this event as Eδ .

If we denote this algorithm by Algadaptive, define T ě 2pL ´ 1qM and pπT “ δaoutput
where aoutput

is the output action, we obtain

EAlgadaptive
rEa„pπT

rfpaqss ě EAlgadaptive

”

Ea„pπT
rfpaqs

ˇ

ˇ

ˇ
Eδ

ı

PAlgadaptive
pEδq ě 1 ´ δ

Thus, setting δ “ ε and therefore for all T ě
2L logp2L{εq

ε2 we obtain the desired result.

D.2 Eluder dimension of Ftree

Lemma D.1. The eluder dimension of the function class Ftree satisfies,

deluderpFtree, εq ě 2L´1 ´ 1.

Proof. To prove this statement it is sufficient to exhibit an ε´independent sequence of actions that
certifies the eluder dimension is large. To do this let’s we use the ordered list of leaf actions. For
simplicity we will call fi to the function defined by the path ending at leaf node aL,i. The sequence

Consider the sequence of actions aL,1, ¨ ¨ ¨ , aL,2L´1´2. Notice that for all n P r2L´1 ´ 2s the two
functions fn`1 and f2L´1 agree on aL,1, ¨ ¨ ¨ , aL,n. Thus for all n P r2L´1 ´ 2s,

n
ÿ

i“1

pfn`1paiq ´ f2L´1paiqq “ 0,

while fn`1pan`1q ´ f2L´1pan`1q “ 12ε ą ε. This shows aL,1, ¨ ¨ ¨ , aL,2L´1´1 is a size 2L´1 ´ 1
independent sequence. Since the eluder dimension equals the size of the largest independence
sequence this implies the result.

E Model Selection

E.1 Proof of Proposition 7.1

Proposition 7.1. There exists a universal constant c ą 0 such that,

Ex„P,a„UniformpAq

„

´

f‹px, aq ´ pf
piq
T px, aq

¯2
ȷ

ď
cmax2pB, B̄q logpT maxpM, |Fi‹

|q{δq

T
.

With probability at lest 1 ´ δ.

Proof. Let’s start by considering pf
pi‹q

T . Standard analysis (Lemma A.8) yields that with probability
at least 1 ´ δ{2

Ex„P,a„UniformpAq

„

´

f‹px, aq ´ pf
pi‹q

T px, aq

¯2
ȷ

ď
2C

pi‹q

T,δ{2

T
. (30)

Let’s write rℓ “ f‹pxℓ, aℓq ` ξℓ where ξℓ are 1´subgaussian conditionally zero mean. Lemma A.9
yields that,

Ex„P,a„UniformpAq

„

´

f‹px, aq ´ pf
piq
T px, aq

¯2
ȷ

ď
8

T

ÿ

pxℓ,aℓ,rℓqP rDpTestq

T

´

pf
piq
T pxℓ, aℓq ´ rℓ

¯2

´
8

T

T {2
ÿ

ℓ“1

ξ2ℓ `
C̄1

pB̄2 ` B2q logpTM{δq

T

(31)
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for all i P rM s simultaneously (union bound) with probability at least 1 ´ δ{2 for some constant
C̄1

ą 0. Incorporating the definition of i as the minimizer of the empirical loss (see Equation 7) into
Equation 31 implies

Ex„P,a„UniformpAq

„

´

f‹px, aq ´ pf
piq
T px, aq

¯2
ȷ

ď
8

T

ÿ

pxℓ,aℓ,rℓqP rDpTestq

T

´

pf
piq
T pxℓ, aℓq ´ rℓ

¯2

´
8

T

T {2
ÿ

ℓ“1

ξ2ℓ `
C̄1

pB̄2 ` B2q logpTM{δq

T

ď
8

T

ÿ

pxℓ,aℓ,rℓqP rDpTestq

T

´

pf
pi‹q

T pxℓ, aℓq ´ rℓ

¯2

´
8

T

T {2
ÿ

ℓ“1

ξ2ℓ `
C̄1

pB̄2 ` B2q logpTM{δq

T

with probability at least 1 ´ δ{2 where i is on the LHS and i‹ is on the right hand side. Using the
RHS of the inequality from Lemma A.9 yields that,

Ex„P,a„UniformpAq

„

´

f‹px, aq ´ pf
piq
T px, aq

¯2
ȷ

ď 16Ex„P,a„UniformpAq

„

´

f‹px, aq ´ pf
pi‹q

T px, aq

¯2
ȷ

`
C̄2

pB̄2 ` B2q logpTM{δq

T
(32)

for some universal constant C̄2
ą 0 with probability at least 1 ´ 3δ{4. Finally, the Least Squares

guarantee of Lemma A.8 applied to Fi‹
and least squares estimator pf

pi‹q

T (where all Pt “ P) implies
the first term of the RHS of the equation above can be bounded as,

Ex„P,a„UniformpAq

„

´

f‹px, aq ´ pf
pi‹q

T px, aq

¯2
ȷ

ď
2CT {2,δ{4

T
.

with probability at least 1 ´ δ
4 . Since in this case CT {2,δ{4 “ O

´

pB2 ` B̄2q log
´

T |Fi‹ |

δ

¯¯

, combin-
ing this with Equation 32 and a union bound implies

Ex„P,a„UniformpAq

„

´

f‹px, aq ´ pf
piq
T px, aq

¯2
ȷ

ď
cpB̄2 ` B2q logpT maxpM, |Fi‹

|q{δq

T
.

for some universal constant c ą 0 and with probability at least 1 ´ δ. The result follows.
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