
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A TENSOR ALGEBRA

To facilitate our analysis, we briefly present some tensor algebra preliminaries and refer the reader to
Sidiropoulos et al. (2017); Kolda & Bader (2009) for further details.

A N -order tensor X 2 RI1⇥I2⇥···⇥IN is an N -way array indexed by i1, i2, . . . , iN with
elements X (i1, i2, . . . , iN ). It consists of N types of modes: X (:, i2, . . . , iN ), X (i1, :
, . . . , iN ), . . . ,X (i1, i2, . . . , :).

A rank-one tensor Z 2 RI1⇥I2⇥···⇥IN is the outer product of N vectors defined as:

Z = a1 � a2 � · · · � aN , (15)

where a1 2 RI1 , a2 2 RI2 , . . . , aN 2 RIN and � denotes the outer product. The elementwise
formula of the above expression is:

Z(i1, i2, . . . , iN ) = a1(i1)a2(i2) · · ·aN (iN ), for alli1, i2, . . . , iN , (16)

Any tensor can be realized as a sum of N -way outer products (rank one tensors), i.e.

X =
RX

r=1

af

1 � af

2 � · · · � af

N
. (17)

The above expression represents the canonical polyadic decomposition (CPD) or parallel factor

analysis (PARAFAC) (Harshman & Lundy, 1994) of a tensor. The CPD elementwise representation
is:

X (i, j, k) =
RX

r=1

A1(i1, f)A2(i2, f) · · ·AN (iN , f), (18)

where An = [a1
n
,a2

n
, . . . ,aF

n
] 2 RIn⇥F

, n = 1, . . . , N are called the low rank factors of the tensor.
A tensor can be fully characterized by its latent factors, so we can represent a tensor by its CPD
model as:

X = JA1,A2, . . . ,AN K . (19)

A tensor can be also represented as a set of matrices, by fixing all the modes but two as:

X [:, :, i3, . . . , iN ] =

A1 (Diag (A3 (i3, :))� · · ·� Diag (AN (iN , :)))AT

2 , (20)

where Diag (An (in, :)) is the diagonal matrix with diagonal equal to AN (in, :).

B ADDITIONAL RELATED WORK

Model Compression While these techniques differ from PEFT in that they focus on reducing
the requirements of a trained model rather than efficient adaptation, they offer valuable insights
for developing more efficient PEFT approaches. Pruning and quantization are key techniques for
compressing neural networks, that have also been extensively applied to LLMs. Pruning removes
less important weights, with some methods achieving high compression rates, e.g. (Ma et al., 2023).
Quantization reduces weight precision, decreasing model size and also allowing more efficient
operations (Lin et al., 2024a). Knowledge distillation is an alternative approach that involves
transferring knowledge from a large “teacher” model to a smaller “student” model (Gu et al., 2024).

Low Rank Training. Exploiting low rank structure to improve efficiency during both training
and inference in deep models has long been studied (Sainath et al., 2013), and also combined with
sparsity (Sprechmann et al., 2015). Recent advancements include Cuttlefish (Wang et al., 2023) and
ELRT (Sui et al., 2024).

Data efficient fine tuning. An alternative approach to reducing fine-tuning costs is to reduce the
amount of data. In this direction, Few-shot and continual learning approaches have been shown to be
effective in LLM fine-tuning tasks (Lin et al., 2024b; Wang et al., 2024).

Efficient Architectures Another relevant direction in resource usage is using more efficient model
architectures. Mixture of Experts (MoE) technique, implemented in models like Switch Transform-
ers (Fedus et al., 2022) and GLaM (Du et al., 2022), has shown promise in scaling model capacity

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

while maintaining computational efficiency by activating only relevant sub-models for given inputs.
There is also relevant work on non-transformer architectures, such as RWKV (Peng et al., 2023) and
Mamba (Gu & Dao, 2023), which combines the strengths of RNNs and Transformers to achieve
efficient inference and training.

C PARAMETER EFFICIENCY GAINS BREAKDOWN.

We provide a breakdown of the parameter savings achieved by our proposed method, LoRTA,
compared to LoRA, by parameterizing the weight updates using low-rank tensor decompositions at
different granularities. The table below summarizes the dimensions of the update tensors, the number
of update tensors used, and the corresponding parameter savings when the tensor rank r matches the
tensor rank of LoRA rank r. The first row corresponds to LoRA.

Table 2: Update Tensor Modes, Parameters, and Savings

Added Modes Update Tensor Dimensions Number of Update Tensors Parameter Savings

d⇥ d 4L 0

Heads d⇥ d

H
⇥H 4L 1� d(1+ 1

H )+H

2dr

Heads, QKVP d⇥ d

H
⇥H ⇥ 4 L 1� d(1+ 1

H )+H+4

2dr

Heads, QKVP, Layers d⇥ d

H
⇥H ⇥ 4⇥ L 1 1� d(1+ 1

H )+H+4+L

2dr

D EXPERIMENTAL DETAILS

In this appendix, we provide further details on the experiments presented in the main paper.

D.1 NLU

In our GLUE experiments we implemented our method using Huggingface’s PEFT and VeRA’s
codebase, the hyperparameters are detailed below.

Model Hyperparameter SST-2 MRPC CoLA QNLI RTE STS-B

Optimizer AdamW
Warmup Ratio 0.06
LR Schedule Linear
Init. of Shared Matrices Kaiming Uniform
Initial Value of d 0.1

LoRTA Rank 4
Epochs 60 30 80 25 160 80
Learning Rate (Head) 4E-3 4E-3 1E-2 4E-3 1E-2 1E-2
Learning Rate (LoRTA) 4E-3 1E-2 1E-2 1E-2 4E-3 5E-2
Max Seq. Len. 512
Batch Size 64

LoRTA Rank 8
Epochs 10 40 40 20 40 20
Learning Rate (Head) 6E-3 3E-3 6E-3 2E-4 2E-3 2E-3
Learning Rate (LoRTA) 1E-2 1E-2 1E-2 1E-2 2E-2 2E-2
Max Seq. Len. 128
Batch Size 32

Table 3: Hyperparameter configurations for different model sizes on GLUE benchmark. Optimizer,
Warmup Ratio, and LR Schedule are taken from Hu et al. (2021), all other hyperparameters except for
learning rate are taken from Kopiczko et al. (2023).

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

D.2 INSTRUCTION TUNING

For instruction tuning experiments we utilized Lightning AI’s LitGPT codebase and training recipe.
Hyperparameters are detailed below.

Parameter Value

↵ 16
Learning Rate 0.01
Scheduler Cosine
Optimizer AdamW
Weight Decay 0.01
Number of Epochs 1
Steps 51000
Batch Size 16
Warmup Steps 318

Table 4: Hyperparameter configurations for LLama2-7B on the Alpaca dataset.

D.3 DPO

For preference optimization experiments we utilized using Huggingface trl library’s dpo implementa-
tion and example script. Hyperparameters are detailed below.

Table 5: Hyperparameter configurations for LLama2-7B on intel orca DPO pairs.

Parameter Value

↵ 16
Learning Rate 0.00005
Scheduler Cosine
Optimizer AdamW
Weight Decay 0
Number of Epochs 1
Batch Size 16
Warmup Steps 200

D.4 PROTEIN FOLDING

For protein folding experiments, we utilized OpenFold Ahdritz et al. (2024) training code and datasets.
The following modifications were made to the ESMFold model architecture due to limited compute
resources: a) utilize 12 Evoformer layers instead of the 48 used in (Lin et al., 2023) b) utilize ESM-2
35M instead of ESM-2 3B c) maintain outer product mean implementation from (Jumper et al., 2021).
Optimizer and learning rate scheduler were identical to (Jumper et al., 2021). Models were trained
for 850,000 steps with batch size of 32. Validation metrics were computed using the validation set
from (Ahdritz et al., 2024).

Preliminary experiments revealed that higher values of ↵ yield better results in this setting. ↵

for LoRA and LoRTA experiments was then selected in multiple stages. Initially, models were
trained with ↵ values of 256⇥ r and 128⇥ r, and the best-performing model was chosen. If both
configurations diverged, ↵ was halved, and models were retrained with the next lower pair (e.g.,
64⇥ r and 32⇥ r). This halving process continued until a convergent model was found. See Table 6
for the selected ↵ values across experiments.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 6: Selected ↵ and LDDT-CA for protein folding models.

Model ↵ Validation LDDT-C↵

LoRA (r = 1) 128 0.668
LoRTA (r = 64) 128 0.663
LoRTA (r = 8) 256 0.667
LoRTA (r = 1) 2 0.656

E ADDITIONAL RESULTS

Figure 6 shows that Validation gains were primarily driven by reduced training error, though general-
ization slightly worsened, particularly at rank 2. On the other hand, as already mentioned, MT-bench
performance was comparable o superior for LoRTA across all ranks, as shown in Figure 7.

Figure 6. Mean DPO loss on the training (Left) and on held-out data (Right) from the orca dpo pairs dataset vs
number of trainable parameters, lower is better.

Figure 7. Performance on MT-Bench Zheng et al. (2023) for llama2-7b Touvron et al. (2023) models fine-tuned
with LoRA and LoRTA using dpo on intel orca pairs. Average score per task. Higher is better.

F NOTATION

Our notation is summarized in Table 5.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 5: Overview of notation.

a , scalar
a , vector
A , matrix

AT , transpose of matrix A
Ak , A[k, :]T , k-th row of matrix A
ak , A[:, k], k-th column of matrix A
U , eigenvector matrix

U [k, :] , k-th row of U (row vector)
U [:, k] , k-th column of U

18


	Introduction
	Preliminaries
	Transformer Architecture
	Low Rank (matrix) Adaptation
	Tensor Algebra

	Tensors are all you need
	Parameter sharing across layers
	LoRTA: A General tensor model

	Experiments
	Natural Language Understanding
	Instruction Tuning
	Preference Optimization
	Protein Folding

	Conclusion
	Tensor Algebra
	Additional related work
	Parameter efficiency gains breakdown.
	Experimental details
	NLU
	Instruction tuning
	DPO
	Protein Folding

	Additional results
	Notation

