
On the Ability of Graph Neural Networks to
Model Interactions Between Vertices

Anonymous Author(s)
Affiliation
Address
email

Abstract

Graph neural networks (GNNs) are widely used for modeling complex interactions1

between entities represented as vertices of a graph. Despite recent efforts to2

theoretically analyze the expressive power of GNNs, a formal characterization of3

their ability to model interactions is lacking. The current paper aims to address4

this gap. Formalizing strength of interactions through an established measure5

known as separation rank, we quantify the ability of certain GNNs to model6

interaction between a given subset of vertices and its complement, i.e. between7

the sides of a given partition of input vertices. Our results reveal that the ability8

to model interaction is primarily determined by the partition’s walk index — a9

graph-theoretical characteristic defined by the number of walks originating from10

the boundary of the partition. Experiments with common GNN architectures11

corroborate this finding. As a practical application of our theory, we design12

an edge sparsification algorithm named Walk Index Sparsification (WIS), which13

preserves the ability of a GNN to model interactions when input edges are removed.14

WIS is simple, computationally efficient, and in our experiments has markedly15

outperformed alternative methods in terms of induced prediction accuracy. More16

broadly, it showcases the potential of improving GNNs by theoretically analyzing17

the interactions they can model.18

1 Introduction19

Graph neural networks (GNNs) are a family of deep learning architectures, designed to model20

complex interactions between entities represented as vertices of a graph. In recent years, GNNs have21

been successfully applied across a wide range of domains, including social networks, biochemistry,22

and recommender systems (see, e.g., [36, 59, 45, 49, 96, 104, 101, 18]). Consequently, significant23

interest in developing a mathematical theory behind GNNs has arisen.24

One of the fundamental questions a theory of GNNs should address is expressivity, which concerns25

the class of functions a given architecture can realize. Existing studies of expressivity largely fall26

into three categories. First, and most prominent, are characterizations of ability to distinguish non-27

isomorphic graphs [103, 74, 72, 70, 6, 15, 10, 17, 43, 42, 80], as measured by equivalence to classical28

Weisfeiler-Leman graph isomorphism tests [99]. Second, are proofs for universal approximation of29

continuous permutation invariant or equivariant functions, possibly up to limitations in distinguishing30

some classes of graphs [73, 55, 25, 69, 3, 42]. Last, are works examining specific properties of GNNs31

such as frequency response [77, 5] or computability of certain graph attributes, e.g. moments, shortest32

paths, and substructure multiplicity [35, 9, 26, 39, 69, 23, 17, 105].33

A major drawback of many existing approaches — in particular proofs of equivalence to Weisfeiler-34

Leman tests and those of universality — is that they operate in asymptotic regimes of unbounded35

network width or depth. Moreover, to the best of our knowledge, none of the existing approaches36

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

Example: length two walks

walk #1 walk #2 walk #48

example: length two walks

can model between and
Interaction depth GNN -walk index of :

walks from# length

Figure 1: Illustration of our main theoretical contribution: quantifying the ability of GNNs to model interactions
between vertices of an input graph. Consider a partition of vertices (I, Ic), illustrated on the left, and a depth L
GNN with product aggregation (Section 3). As illustrated on the right, for graph prediction, the strength of
interaction the GNN can model between I and Ic, measured via separation rank (Section 2.2), is primarily
determined by the partition’s (L − 1)-walk index — the number of length L − 1 walks emanating from CI ,
which is the set of vertices with an edge crossing the partition. The same holds for vertex prediction, except that
there walk index is defined while only considering walks ending at the target vertex.

formally characterize the strength of interactions GNNs can model between vertices, and how that37

depends on the structure of the input graph and the architecture of the neural network.38

The current paper addresses the foregoing gaps. Namely, it theoretically quantifies the ability of39

fixed-size GNNs to model interactions between vertices, delineating the impact of the input graph40

structure and the neural network architecture (width and depth). Strength of modeled interactions41

is formalized via separation rank [12] — a commonly used measure for the interaction a function42

models between a subset of input variables and its complement (the rest of the input variables). Given43

a function and a partition of its input variables, the higher the separation rank, the more interaction the44

function models between the sides of the partition. Separation rank is prevalent in quantum mechanics,45

where it can be viewed as a measure of entanglement [62]. It was previously used for analyzing46

variants of convolutional, recurrent, and self-attention neural networks, yielding both theoretical47

insights and practical tools [30, 33, 61, 62, 64, 100, 65, 85]. We employ it for studying GNNs.48

Key to our theory is a widely studied correspondence between neural networks with polynomial non-49

linearity and tensor networks1 [32, 29, 30, 34, 90, 61, 62, 7, 56, 57, 63, 64, 83, 100, 84, 85, 65]. We50

extend this correspondence, and use it to analyze message-passing GNNs with product aggregation.51

We treat both graph prediction, where a single output is produced for an entire input graph, and52

vertex prediction, in which the network produces an output for every vertex. For graph prediction, we53

prove that the separation rank of a depth L GNN with respect to a partition of vertices is primarily54

determined by the partition’s (L − 1)-walk index — a graph-theoretical characteristic defined to55

be the number of length L− 1 walks originating from vertices with an edge crossing the partition.56

The same holds for vertex prediction, except that there walk index is defined while only considering57

walks ending at the target vertex. Our result, illustrated in Figure 1, implies that for a given input58

graph, the ability of GNNs to model interaction between a subset of vertices I and its complement Ic,59

predominantly depends on the number of walks originating from the boundary between I and Ic. We60

corroborate this proposition through experiments with standard GNN architectures, such as Graph61

Convolutional Network (GCN) [59] and Graph Isomorphism Network (GIN) [103].62

Our theory formalizes conventional wisdom by which GNNs can model stronger interaction between63

regions of the input graph that are more interconnected. More importantly, we show that it facilitates64

an edge sparsification algorithm that preserves the expressive power of GNNs (in terms of ability65

to model interactions). Edge sparsification concerns removal of edges from a graph for reducing66

computational and/or memory costs, while attempting to maintain selected properties of the graph67

(cf. [11, 93, 48, 20, 86, 98, 67, 24]). In the context of GNNs, our interest lies in maintaining prediction68

accuracy as the number of edges removed from the input graph increases. We propose an algorithm69

for removing edges, guided by our separation rank characterization. The algorithm, named Walk70

Index Sparsification (WIS), is demonstrated to yield high predictive performance for GNNs (e.g. GCN71

and GIN) over standard benchmarks of various scales, even when removing a significant portion of72

edges. WIS is simple, computationally efficient, and in our experiments has markedly outperformed73

1Tensor networks form a graphical language for expressing contractions of tensors — multi-dimensional
arrays. They are widely used for constructing compact representations of quantum states in areas of physics
(see, e.g., [97, 79]).

2

alternative methods in terms of induced prediction accuracy across edge sparsity levels. More broadly,74

WIS showcases the potential of improving GNNs by theoretically analyzing the interactions they can75

model, and we believe its further empirical investigation is a promising direction for future research.76

The remainder of the paper is organized as follows. Section 2 introduces notation and the concept77

of separation rank. Section 3 presents the theoretically analyzed GNN architecture. Section 478

theoretically quantifies (via separation rank) its ability to model interactions between vertices of an79

input graph. Section 5 proposes and evaluates WIS — an edge sparsification algorithm for arbitrary80

GNNs, born from our theory. Lastly, Section 6 summarizes. Related work is discussed throughout,81

and for the reader’s convenience, is recapitulated in Appendix B.82

2 Preliminaries83

2.1 Notation84

For N ∈ N, let [N] := {1, . . . , N}. We consider an undirected input graph G = (V, E) with85

vertices V = [|V|] and edges E ⊆ {{i, j} : i, j ∈ V}. Vertices are equipped with features X :=86

(x(1), . . . ,x(|V|)) ∈ RDx×|V| — one Dx-dimensional feature vector per vertex (Dx ∈ N). For i ∈ V ,87

we use N (i) := {j ∈ V : {i, j} ∈ E} to denote its set of neighbors, and, as customary in the context88

of GNNs, assume the existence of all self-loops, i.e. i ∈ N (i) for all i ∈ V (cf. [59, 50]). Furthermore,89

for I ⊆ V we let N (I) := ∪i∈IN (i) be the neighbors of vertices in I, and Ic := V \ I be the90

complement of I . We use CI to denote the boundary of the partition (I, Ic), i.e. the set of vertices with91

an edge crossing the partition, defined by CI := {i ∈ I : N (i)∩Ic 6= ∅}∪{j ∈ Ic : N (j)∩I 6= ∅}.292

Lastly, we denote the number of length l ∈ N≥0 walks from any vertex in I ⊆ V to any vertex in93

J ⊆ V by ρl(I,J).3 In particular, ρl(I,J) =
∑
i∈I,j∈J ρl({i}, {j}).94

Note that we focus on undirected graphs for simplicity of presentation. As discussed in Section 4,95

our results are extended to directed graphs in Appendix D.96

2.2 Separation Rank: A Measure of Modeled Interaction97

A prominent measure quantifying the interaction a multivariate function models between a subset98

of input variables and its complement (i.e. all other variables) is known as separation rank. The99

separation rank was introduced in [12], and has since been employed for various applications [51,100

47, 13]. It is also a common measure of entanglement, a profound concept in quantum physics101

quantifying interaction between particles [62]. In the context of deep learning, it enabled analyses102

of expressiveness and generalization in certain convolutional, recurrent, and self-attention neural103

networks, resulting in theoretical insights and practical methods (guidelines for neural architecture104

design, pretraining schemes, and regularizers — see [30, 33, 61, 62, 64, 100, 65, 85]).105

Given a multivariate function f : (RDx)
N → R, its separation rank with respect to a subset of input106

variables I ⊆ [N] is the minimal number of summands required to express it, where each summand107

is a product of two functions — one that operates over variables indexed by I, and another that108

operates over the remaining variables. Formally:109

Definition 1. The separation rank of f : (RDx)
N → R with respect to I ⊆ [N] is:110

sep(f ; I) := min
{
R ∈ N≥0 : ∃ g(1), . . . , g(R) : (RDx)

|I| → R, ḡ(1), . . . , ḡ(R) : (RDx)
|Ic| → R

s.t. f(X) =
∑R

r=1
g(r)(XI) · ḡ(r)(XIc)

}
,

(1)

where X := (x(1), . . . ,x(N)), XI := (x(i))i∈I , and XIc := (x(j))j∈Ic . By convention, if f is111

identically zero then sep(f ; I) = 0, and if the set on the right hand side of Equation (1) is empty112

then sep(f ; I) =∞.113

Interpretation If sep(f ; I) = 1, the function is separable, meaning it does not model any inter-114

action between XI and XIc , i.e. between the sides of the partition (I, Ic). Specifically, it can be115

represented as f(X) = g(XI) · ḡ(XIc) for some functions g and ḡ. In a statistical setting, where116

2Due to the existence of self-loops, CI is exactly the shared neighbors of I and Ic, i.e. CI = N (I)∩N (Ic).
3For l ∈ N≥0, a sequence of vertices i0, . . . , il ∈ V is a length l walk if {il′−1, il′} ∈ E for all l′ ∈ [l].

3

f is a probability density function, this would mean that XI and XIc are statistically independent.117

The higher sep(f ; I) is, the farther f is from separability, implying stronger modeling of interaction118

between XI and XIc .119

3 Graph Neural Networks120

Modern GNNs predominantly follow the message-passing paradigm [45, 50], whereby each vertex is121

associated with a hidden embedding that is updated according to its neighbors. The initial embedding122

of i ∈ V is taken to be its input features: h(0,i) := x(i) ∈ RDx . Then, in a depth L message-passing123

GNN, a common update scheme for the hidden embedding of i ∈ V at layer l ∈ [L] is:124

h(l,i) = AGGREGATE
({{

W(l)h(l−1,j) : j ∈ N (i)
}})

, (2)

where {{·}} denotes a multiset, W(1) ∈ RDh×Dx ,W(2) ∈ RDh×Dh , . . . ,W(L) ∈ RDh×Dh are125

learnable weight matrices, with Dh ∈ N being the network’s width (i.e. hidden dimension), and126

AGGREGATE is a function combining multiple input vectors into a single vector. A notable special127

case is GCN [59], in which AGGREGATE performs a weighted average followed by a non-linear128

activation function (e.g. ReLU). Other aggregation operators are also viable, e.g. element-wise sum,129

max, or product (cf. [49, 53]). We note that distinguishing self-loops from other edges, and more130

generally, treating multiple edge types, is possible through the use of different weight matrices for131

different edge types [49, 88]. For conciseness, we hereinafter focus on the case of a single edge type,132

and treat multiple edge types in Appendix D.133

After L layers, the GNN generates hidden embeddings h(L,1), . . . ,h(L,|V|) ∈ RDh . For graph134

prediction, where a single output is produced for the whole graph, the hidden embeddings are usually135

combined into a single vector through the AGGREGATE function. A final linear layer with weights136

W(o) ∈ R1×Dh is then applied to the resulting vector.4 Overall, the function realized by a depth L137

graph prediction GNN receives an input graph G with vertex features X := (x(1), . . . ,x(|V|)) ∈138

RDx×|V|, and returns:139

(graph prediction) f (θ,G)(X) := W(o)AGGREGATE
({{

h(L,i) : i ∈ V
}})

, (3)

with θ := (W(1), . . . ,W(L),W(o)) denoting the network’s learnable weights. For vertex prediction140

tasks, where the network produces an output for every t ∈ V , the final linear layer is applied to141

each h(L,t) separately. That is, for a target vertex t ∈ V , the function realized by a depth L vertex142

prediction GNN is given by:143

(vertex prediction) f (θ,G,t)(X) := W(o)h(L,t) . (4)

Our aim is to investigate the ability of GNNs to model interactions between vertices. Prior studies144

of interactions modeled by different deep learning architectures have focused on neural networks145

with polynomial non-linearity, building on their representation as tensor networks [32, 30, 34, 90,146

61, 62, 7, 56, 63, 64, 83, 100, 84, 85, 65]. Although neural networks with polynomial non-linearity147

are less common in practice, they have demonstrated competitive performance [28, 31, 91, 94, 27,148

37, 53], and hold promise due to their compatibility with quantum computation [46, 14] and fully149

homomorphic encryption [44]. More importantly, their analyses brought forth numerous insights150

that were demonstrated empirically and led to development of practical tools for widespread deep151

learning models (with non-linearities such as ReLU).152

Following the above, in our theoretical analysis (Section 4) we consider GNNs with (element-wise)153

product aggregation, which are polynomial functions of their inputs. Namely, the AGGREGATE154

operator from Equations (2) and (3) is taken to be:155

AGGREGATE(X) := �x∈Xx , (5)

where � stands for the Hadamard product and X is a multiset of vectors. The resulting architecture156

can be viewed as a variant of the GNN proposed in [53], where it was shown to achieve competitive157

performance in practice. Central to our proofs are tensor network representations of GNNs with158

product aggregation (formally established in Appendix E), analogous to those used for analyzing159

4We treat the case of output dimension one merely for the sake of presentation. Extension of our theory
(delivered in Section 4) to arbitrary output dimension is straightforward — the results hold as stated for each of
the functions computing an output entry.

4

Low Walk Index High Walk Index

Low separation rank High separation rank

Figure 2: Depth L GNNs can model stronger interactions between sides of partitions that have a higher walk
index (Definition 2). The partition (I1, Ic1) (left) divides the vertices into two separate cliques, connected by a
single edge. Only two vertices reside in CI1 — the set of vertices with an edge crossing the partition. Taking
for example depth L = 3, the 2-walk index of I1 is Θ(|V|2) and its (2, t)-walk index is Θ(|V|), for t ∈ V . In
contrast, the partition (I2, Ic2) (right) equally divides the vertices in each clique to different sides. All vertices
reside in CI2 , meaning the 2-walk index of I2 is Θ(|V|3) and its (2, t)-walk index is Θ(|V|2), for t ∈ V . Hence,
in both graph and vertex prediction scenarios, the walk index of I1 is relatively low compared to that of I2. Our
analysis (Section 4.1 and Appendix A) states that a higher separation rank can be attained with respect to I2,
meaning stronger interaction can be modeled across (I2, Ic2) than across (I1, Ic1). We empirically confirm this
prospect in Section 4.2.

other types of neural networks. We empirically demonstrate our theoretical findings on popular GNNs160

(Section 4.2), such as GCN and GIN with ReLU non-linearity, and use them to derive a practical161

edge sparsification algorithm (Section 5).162

We note that some of the aforementioned analyses of neural networks with polynomial non-linearity163

were extended to account for additional non-linearities, including ReLU, through constructs known164

as generalized tensor networks [29]. We thus believe our theory may be similarly extended, and165

regard this as an interesting direction for future work.166

4 Theoretical Analysis: The Effect of Input Graph Structure and Neural167

Network Architecture on Modeled Interactions168

In this section, we employ separation rank (Definition 1) to theoretically quantify how the input169

graph structure and network architecture (width and depth) affect the ability of a GNN with product170

aggregation to model interactions between input vertices. We overview the main results and their171

implications in Section 4.1, while deferring the formal analysis to Appendix A due to lack of space.172

Section 4.2 provides experiments demonstrating our theory’s implications on common GNNs, such173

as GCN and GIN with ReLU non-linearity.174

4.1 Overview and Implications175

Consider a depth L GNN with width Dh and product aggregation (Section 3). Given a graph G,176

any assignment to the weights of the network θ induces a multivariate function — f (θ,G) for graph177

prediction (Equation (3)) and f (θ,G,t) for prediction over a given vertex t ∈ V (Equation (4)) — whose178

variables correspond to feature vectors of input vertices. The separation rank of this function with179

respect to I ⊆ V thus measures the interaction modeled across the partition (I, Ic), i.e. between the180

vertices in I and those in Ic. The higher the separation rank is, the stronger the modeled interaction.181

Key to our analysis are the following notions of walk index, defined by the number of walks emanating182

from the boundary of the partition (I, Ic), i.e. from vertices with an edge crossing the partition183

induced by I (see Figure 1 for an illustration).184

Definition 2. Let I ⊆ V . Denote by CI the set of vertices with an edge crossing the partition (I, Ic),185

i.e. CI := {i ∈ I : N (i) ∩ Ic 6= ∅} ∪ {j ∈ Ic : N (j) ∩ I 6= ∅}, and recall that ρl(CI ,J) denotes186

the number of length l ∈ N≥0 walks from any vertex in CI to any vertex in J ⊆ V . For L ∈ N:187

• (graph prediction) we define the (L− 1)-walk index of I , denoted WIL−1(I), to be the number188

of length L− 1 walks originating from CI , i.e. WIL−1(I) = ρL−1(CI ,V); and189

• (vertex prediction) for t ∈ V we define the (L− 1, t)-walk index of I , denoted WIL−1,t(I), to190

be the number of length L− 1 walks from CI that end at t, i.e. WIL−1,t(I) = ρL−1(CI , {t}).191

5

As our main theoretical contribution, we prove:192

Theorem 1 (informally stated). For all weight assignments θ and t ∈ V:193

(graph prediction) log
(
sep
(
f (θ,G); I

))
= O

(
log(Dh) ·WIL−1(I)

)
,

(vertex prediction) log
(
sep
(
f (θ,G,t); I

))
= O

(
log(Dh) ·WIL−1,t(I)

)
.

Moreover, nearly matching lower bounds hold for almost all weight assignments.5194

The upper and lower bounds are formally established by Theorems 2 and 3 in Appendix A, respec-195

tively, and are generalized to input graphs with directed edges and multiple edge types in Appendix D.196

Theorem 1 implies that, the (L − 1)-walk index of I in graph prediction and its (L − 1, t)-walk197

index in vertex prediction control the separation rank with respect to I, and are thus paramount for198

modeling interaction between I and Ic — see Figure 2 for an illustration. It thereby formalizes the199

conventional wisdom by which GNNs can model stronger interaction between areas of the input graph200

that are more interconnected. We support this finding empirically with common GNN architectures201

(e.g. GCN and GIN with ReLU non-linearity) in Section 4.2.202

One may interpret Theorem 1 as encouraging addition of edges to an input graph. Indeed, the203

theorem states that such addition can enhance the GNN’s ability to model interactions between input204

vertices. This accords with existing evidence by which increasing connectivity can improve the205

performance of GNNs in practice (see, e.g., [40, 1]). However, special care needs to be taken when206

adding edges: it may distort the semantic meaning of the input graph, and may lead to plights known207

as over-smoothing and over-squashing [68, 78, 22, 1, 8]. Rather than employing Theorem 1 for208

adding edges, we use it to select which edges to preserve in a setting where some must be removed.209

That is, we employ it for designing an edge sparsification algorithm. The algorithm, named Walk210

Index Sparsification (WIS), is simple, computationally efficient, and in our experiments has markedly211

outperformed alternative methods in terms of induced prediction accuracy. We present and evaluate it212

in Section 5.213

4.2 Empirical Demonstration214

Our theoretical analysis establishes that, the strength of interaction GNNs can model between the215

sides of a partition of input vertices, is primarily determined by the partition’s walk index — a216

graph-theoretical characteristic defined by the number of walks originating from the boundary of217

the partition (see Definition 2). The analysis formally applies to GNNs with product aggregation218

(see Section 3), yet we empirically demonstrate that its conclusions carry over to various other219

message-passing GNN architectures, namely GCN [59], GAT [96], and GIN [103] (with ReLU220

non-linearity). Specifically, through controlled experiments, we show that such models perform better221

on tasks in which the partitions that require strong interaction are ones with higher walk index, given222

that all other aspects of the tasks are the same. A description of these experiments follows. For223

brevity, we defer some implementation details to Appendix H.2.224

We constructed two graph prediction datasets, in which the vertex features of each input graph are225

patches of pixels from two randomly sampled Fashion-MNIST [102] images, and the goal is to226

predict whether the two images are of the same class.6 In both datasets, all input graphs have the227

same structure: two separate cliques with 16 vertices each, connected by a single edge. The datasets228

differ in how the image patches are distributed among the vertices: in the first dataset each clique229

holds all the patches of a single image, whereas in the second dataset each clique holds half of the230

patches from the first image and half of the patches from the second image. Figure 2 illustrates how231

image patches are distributed in the first (left hand side of the figure) and second (right hand side of232

the figure) datasets, with blue and red marking assignment of vertices to images.233

Each dataset requires modeling strong interaction across the partition separating the two images,234

referred to as the essential partition of the dataset. In the first dataset the essential partition separates235

the two cliques, thus it has low walk index. In the second dataset each side of the essential partition236

contains half of the vertices from the first clique and half of the vertices from the second clique, thus237

the partition has high walk index. For an example illustrating the gap between these walk indices238

see Figure 2.239

5Almost all in the sense of all weight assignments but a set of Lebesgue measure zero.
6Images are sampled such that the amount of positive and negative examples are roughly balanced.

6

Table 1: In accordance with our theory (Section 4.1 and Appendix A), GNNs can better fit datasets in which the
partitions (of input vertices) that require strong interaction are ones with higher walk index (Definition 2). Table
reports means and standard deviations, taken over five runs, of train and test accuracies obtained by GNNs of
depth 3 and width 16 on two datasets: one in which the essential partition — i.e. the main partition requiring
strong interaction — has low walk index, and another in which it has high walk index (see Section 4.2 for
a detailed description of the datasets). For all GNNs, the train accuracy attained over the second dataset is
considerably higher than that attained over the first dataset. Moreover, the better train accuracy translates to
better test accuracy. See Appendix H.2 for further implementation details.

Essential Partition Walk Index

Low High

GCN Train Acc. (%) 70.4 ± 1.7 81.4 ± 2.0

Test Acc. (%) 52.7 ± 1.9 66.2 ± 1.1

GAT Train Acc. (%) 82.8 ± 2.6 88.5 ± 1.1

Test Acc. (%) 69.6 ± 0.6 72.1 ± 1.2

GIN Train Acc. (%) 83.2 ± 0.8 94.2 ± 0.8

Test Acc. (%) 53.7 ± 1.8 64.8 ± 1.4

Table 1 reports train and test accuracies achieved by GCN, GAT, and GIN (with ReLU non-linearity)240

over both datasets. In compliance with our theory, the GNNs fit the dataset whose essential partition241

has high walk index significantly better than they fit the dataset whose essential partition has low242

walk index. Furthermore, the improved train accuracy translates to improvements in test accuracy.243

5 Practical Application: Expressivity Preserving Edge Sparsification244

Section 4 theoretically characterizes the ability of a GNN to model interactions between input245

vertices. It reveals that this ability is controlled by a graph-theoretical property we call walk index246

(Definition 2). The current section derives a practical application of our theory, specifically, an edge247

sparsification algorithm named Walk Index Sparsification (WIS), which preserves the ability of a248

GNN to model interactions when input edges are removed. We present WIS, and show that it yields249

high predictive performance for GNNs over standard vertex prediction benchmarks of various scales,250

even when removing a significant portion of edges. In particular, we evaluate WIS using GCN [59],251

GIN [103], and ResGCN [66] over multiple datasets, including: Cora [89], which contains thousands252

of edges, DBLP [16], which contains tens of thousands of edges, and OGBN-ArXiv [52], which253

contains more than a million edges. WIS is simple, computationally efficient, and in our experiments254

has markedly outperformed alternative methods in terms of prediction accuracy across edge sparsity255

levels. We believe its further empirical investigation is a promising direction for future research.256

5.1 Walk Index Sparsification (WIS)257

Running GNNs over large-scale graphs can be prohibitively expensive in terms of runtime and258

memory. A natural way to tackle this problem is edge sparsification — removing edges from an input259

graph while attempting to maintain prediction accuracy (cf. [67, 24]).7260

Our theory (Section 4) establishes that the strength of interaction a depth L GNN can model between261

a subset of input vertices and its complement, i.e. between the sides of a given partition of input262

vertices, is determined by the partition’s walk index, defined by the number of length L− 1 walks263

originating from the partition’s boundary. This brings forth a recipe for pruning edges. First, choose264

partitions across which the ability to model interactions is to be preserved. Then, for every input265

edge (excluding self-loops), compute a tuple holding what the walk indices of the chosen partitions266

will be if the edge is to be removed. Lastly, remove the edge whose tuple is maximal according to a267

preselected order over tuples (e.g. an order based on the sum, min, or max of a tuple’s entries). This268

process repeats until the desired number of edges are removed. The idea behind the above-described269

recipe, which we call General Walk Index Sparsification, is that each iteration greedily prunes the270

edge whose removal takes the smallest toll in terms of ability to model interactions across chosen271

partitions — see Algorithm 3 in Appendix F for a formal outline. Below we describe a specific272

instantiation of the recipe for vertex prediction tasks, yielding our proposed algorithm — Walk Index273

7An alternative approach is to remove vertices from an input graph (see, e.g., [60]). This approach however
is unsuitable for vertex prediction tasks, so we limit our attention to edge sparsification.

7

Algorithm 1 (L− 1)-Walk Index Sparsification (WIS)

Input: G — graph , L ∈ N — GNN depth , N ∈ N — number of edges to remove
Result: Sparsified graph obtained by removing N edges from G

for n = 1, . . . , N do
per edge, compute walk indices of partitions induced by {t}, for t ∈ V , after its removal
for e ∈ E (excluding self-loops) do

initialize s(e) = (0, . . . , 0) ∈ R|V|
remove e from G (temporarily)
for every t ∈ V , set s(e)

t = WIL−1,t({t}) # = number of length L− 1 walks from C{t} to t
add e back to G

end for
prune edge whose removal harms walk indices the least according to an order over (s(e))e∈E
for e ∈ E , sort the entries of s(e) in ascending order
let e′ ∈ argmaxe∈E s

(e) according to lexicographic order over tuples
remove e′ from G (permanently)

end for

Algorithm 2 1-Walk Index Sparsification (WIS) (efficient version of Algorithm 1 for L = 2)

Input: G — graph , N ∈ N — number of edges to remove
Result: Sparsified graph obtained by removing N edges from G

for n = 1, . . . , N do
for {i, j} ∈ E (excluding self-loops) do

let degmin(i, j) := min{|N (i)|, |N (j)|}
let degmax(i, j) := max{|N (i)|, |N (j)|}

end for
prune edge {i, j} ∈ E with maximal degmin(i, j), breaking ties using degmax(i, j)

let e′ ∈ argmax{i,j}∈E
(
degmin(i, j), degmax(i, j)

)
according to lexicographic order over pairs

remove e′ from G
end for

Sparsification (WIS). Exploration of other instantiations is regarded as a promising avenue for future274

work.275

In vertex prediction tasks, the interaction between an input vertex and the remainder of the input276

graph is of central importance. Thus, it is natural to choose the partitions induced by singletons277

(i.e. the partitions ({t},V \ {t}), where t ∈ V) as those across which the ability to model interactions278

is to be preserved. We would like to remove edges while avoiding a significant deterioration in the279

ability to model interaction under any of the chosen partitions. To that end, we compare walk index280

tuples according to their minimal entries, breaking ties using the second smallest entries, and so281

forth. This is equivalent to sorting (in ascending order) the entries of each tuple separately, and then282

ordering the tuples lexicographically.283

Algorithm 1 provides a self-contained description of the method attained by the foregoing choices.284

We refer to this method as (L− 1)-Walk Index Sparsification (WIS), where the “(L− 1)” indicates285

that only walks of length L − 1 take part in the walk indices. Since (L − 1)-walk indices can286

be computed by taking the (L − 1)’th power of the graph’s adjacency matrix, (L − 1)-WIS runs287

in O(N |E||V|3 log(L)) time and requires O(|E||V| + |V|2) memory, where N is the number of288

edges to be removed. For large graphs a runtime cubic in the number of vertices can be restrictive.289

Fortunately, 1-WIS, which can be viewed as an approximation for (L−1)-WIS with L > 2, facilitates290

a particularly simple and efficient implementation based solely on vertex degrees, requiring only linear291

time and memory — see Algorithm 2 (whose equivalence to 1-WIS is explained in Appendix G).292

Specifically, 1-WIS runs in O(N |E|+ |V|) time and requires O(|E|+ |V|) memory.293

8

Figure 3: Comparison of GNN accuracies following sparsification of input edges — WIS, the edge sparsification
algorithm brought forth by our theory (Algorithm 1), markedly outperforms alternative methods. Plots present
test accuracies achieved by a depth L = 3 GCN of width 64 over the Cora (left), DBLP (middle), and OGBN-
ArXiv (right) vertex prediction datasets, with increasing percentage of removed edges (for each combination
of dataset, edge sparsification algorithm, and percentage of removed edges, a separate GCN was trained and
evaluated). WIS, designed to maintain the ability of a GNN to model interactions between input vertices, is
compared against: (i) removing edges uniformly at random; (ii) a spectral sparsification method [93]; and (iii) an
adaptation of UGS [24]. For Cora, we run both 2-WIS, which is compatible with the GNN’s depth, and 1-WIS,
which can be viewed as an approximation that admits a particularly efficient implementation (Algorithm 2). For
DBLP and OGBN-ArXiv, due to their larger scale only 1-WIS is evaluated. Markers and error bars report means
and standard deviations, respectively, taken over ten runs per configuration. Note that 1-WIS achieves results
similar to 2-WIS, suggesting that the efficiency it brings does not come at a significant cost in performance.
Appendix H provides further implementation details and experiments with additional GNN architectures (GIN
and ResGCN) and datasets (Chameleon, Squirrel, and Amazon Computers).

5.2 Empirical Evaluation294

Below is an empirical evaluation of WIS. For brevity, we defer to Appendix H some implementation295

details, as well as experiments with additional GNN architectures (GIN and ResGCN) and datasets296

(Chameleon [82], Squirrel [82], and Amazon Computers [92]).297

Using depth L = 3 GNNs (with ReLU non-linearity), we evaluate over the Cora dataset both 2-298

WIS, which is compatible with the GNNs’ depth, and 1-WIS, which can be viewed as an efficient299

approximation. Over the DBLP and OGBN-ArXiv datasets, due to their larger scale only 1-WIS300

is evaluated. Figure 3 (and Figure 8 in Appendix H) shows that WIS significantly outperforms301

the following alternative methods in terms of induced prediction accuracy: (i) a baseline in which302

edges are removed uniformly at random; (ii) a well-known spectral algorithm [93] designed to303

preserve the spectrum of the sparsified graph’s Laplacian; and (iii) an adaptation of UGS [24] — a304

recent supervised approach for learning to prune edges.8 Both 2-WIS and 1-WIS lead to higher test305

accuracies, while (as opposed to UGS) avoiding the need for labels, and for training a GNN over the306

original (non-sparsified) graph — a procedure which in some settings is prohibitively expensive in307

terms of runtime and memory. Interestingly, 1-WIS performs similarly to 2-WIS, indicating that the308

efficiency it brings does not come at a sizable cost in performance.309

6 Summary310

GNNs are designed to model complex interactions between entities represented as vertices of a311

graph. The current paper provides the first theoretical analysis for their ability to do so. We proved312

that, given a partition of input vertices, the strength of interaction that can be modeled between its313

sides is controlled by the walk index — a graph-theoretical characteristic defined by the number of314

walks originating from the boundary of the partition. Experiments with common GNN architectures,315

e.g. GCN [59] and GIN [103], corroborated this result.316

Our theory formalizes conventional wisdom by which GNNs can model stronger interaction between317

regions of the input graph that are more interconnected. More importantly, we showed that it318

facilitates a novel edge sparsification algorithm which preserves the ability of a GNN to model319

interactions when edges are removed. Our algorithm, named Walk Index Sparsification (WIS), is320

simple, computationally efficient, and in our experiments has led to significantly higher prediction321

accuracies over sparsified graphs compared to alternative methods. More broadly, WIS showcases322

the potential of improving GNNs by theoretically analyzing the interactions they can model, and we323

believe its further empirical investigation is a promising direction for future research.324

8UGS [24] jointly prunes input graph edges and GNN weights. For fair comparison, we adapt it to only
remove edges.

9

References325

[1] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.326

International Conference on Learning Representations (ICLR), 2021.327

[2] Arash Amini, Amin Karbasi, and Farokh Marvasti. Low-rank matrix approximation using point-wise328

operators. IEEE transactions on information theory, 58(1):302–310, 2011.329

[3] Waiss Azizian and Marc Lelarge. Expressive power of invariant and equivariant graph neural networks.330

International Conference on Learning Representations (ICLR), 2021.331

[4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint332

arXiv:1607.06450, 2016.333

[5] Muhammet Balcilar, Renton Guillaume, Pierre Héroux, Benoit Gaüzère, Sébastien Adam, and Paul334

Honeine. Analyzing the expressive power of graph neural networks in a spectral perspective. International335

Conference on Learning Representations (ICLR), 2021.336

[6] Muhammet Balcilar, Pierre Héroux, Benoit Gauzere, Pascal Vasseur, Sébastien Adam, and Paul Honeine.337

Breaking the limits of message passing graph neural networks. In International Conference on Machine338

Learning (ICML), 2021.339

[7] Emilio Rafael Balda, Arash Behboodi, and Rudolf Mathar. A tensor analysis on dense connectivity via340

convolutional arithmetic circuits. Preprint, 2018.341

[8] Pradeep Kr Banerjee, Kedar Karhadkar, Yu Guang Wang, Uri Alon, and Guido Montúfar. Oversquashing342

in gnns through the lens of information contraction and graph expansion. In 2022 58th Annual Allerton343

Conference on Communication, Control, and Computing (Allerton), pages 1–8. IEEE, 2022.344

[9] Pablo Barceló, Egor Kostylev, Mikael Monet, Jorge Pérez, Juan Reutter, and Juan-Pablo Silva. The345

logical expressiveness of graph neural networks. International Conference on Learning Representations346

(ICLR), 2020.347

[10] Pablo Barceló, Floris Geerts, Juan Reutter, and Maksimilian Ryschkov. Graph neural networks with local348

graph parameters. In Advances in Neural Information Processing Systems (NeurIPS), 2021.349

[11] Surender Baswana and Sandeep Sen. A simple and linear time randomized algorithm for computing350

sparse spanners in weighted graphs. Random Structures & Algorithms, 30(4):532–563, 2007.351

[12] Gregory Beylkin and Martin J Mohlenkamp. Numerical operator calculus in higher dimensions. Proceed-352

ings of the National Academy of Sciences, 99(16):10246–10251, 2002.353

[13] Gregory Beylkin, Jochen Garcke, and Martin J Mohlenkamp. Multivariate regression and machine354

learning with sums of separable functions. SIAM Journal on Scientific Computing, 31(3):1840–1857,355

2009.356

[14] Amandeep Singh Bhatia, Mandeep Kaur Saggi, Ajay Kumar, and Sushma Jain. Matrix product state–based357

quantum classifier. Neural computation, 31(7):1499–1517, 2019.358

[15] Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Lio, Guido F Montufar, and Michael359

Bronstein. Weisfeiler and lehman go cellular: Cw networks. In Advances in Neural Information360

Processing Systems (NeurIPS), 2021.361

[16] Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsupervised362

inductive learning via ranking. International Conference on Learning Representations (ICLR), 2018.363

[17] Giorgos Bouritsas, Fabrizio Frasca, Stefanos P Zafeiriou, and Michael Bronstein. Improving graph neural364

network expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern Analysis and365

Machine Intelligence, 2022.366

[18] Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning: Grids,367

groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.368

[19] Richard Caron and Tim Traynor. The zero set of a polynomial. WSMR Report, pages 05–02, 2005.369

[20] Alireza Chakeri, Hamidreza Farhidzadeh, and Lawrence O Hall. Spectral sparsification in spectral370

clustering. In 2016 23rd international conference on pattern recognition (icpr), pages 2301–2306. IEEE,371

2016.372

10

[21] Michail Chatzianastasis, Johannes F Lutzeyer, George Dasoulas, and Michalis Vazirgiannis. Graph373

ordering attention networks. Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2023.374

[22] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-375

smoothing problem for graph neural networks from the topological view. In Proceedings of the AAAI376

Conference on Artificial Intelligence (AAAI), 2020.377

[23] Lei Chen, Zhengdao Chen, and Joan Bruna. On graph neural networks versus graph-augmented mlps.378

International Conference on Learning Representations (ICLR), 2021.379

[24] Tianlong Chen, Yongduo Sui, Xuxi Chen, Aston Zhang, and Zhangyang Wang. A unified lottery ticket380

hypothesis for graph neural networks. In International Conference on Machine Learning (ICML), 2021.381

[25] Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence between graph isomor-382

phism testing and function approximation with gnns. In Advances in Neural Information Processing383

Systems (NeurIPS), 2019.384

[26] Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count substruc-385

tures? In Advances in Neural Information Processing Systems (NeurIPS), 2020.386

[27] Grigorios G Chrysos, Stylianos Moschoglou, Giorgos Bouritsas, Yannis Panagakis, Jiankang Deng,387

and Stefanos Zafeiriou. P-nets: Deep polynomial neural networks. In Proceedings of the IEEE/CVF388

Conference on Computer Vision and Pattern Recognition (CVPR), pages 7325–7335, 2020.389

[28] Nadav Cohen and Amnon Shashua. Simnets: A generalization of convolutional networks. Advances in390

Neural Information Processing Systems (NeurIPS), Deep Learning Workshop, 2014.391

[29] Nadav Cohen and Amnon Shashua. Convolutional rectifier networks as generalized tensor decompositions.392

International Conference on Machine Learning (ICML), 2016.393

[30] Nadav Cohen and Amnon Shashua. Inductive bias of deep convolutional networks through pooling394

geometry. International Conference on Learning Representations (ICLR), 2017.395

[31] Nadav Cohen, Or Sharir, and Amnon Shashua. Deep simnets. IEEE Conference on Computer Vision and396

Pattern Recognition (CVPR), 2016.397

[32] Nadav Cohen, Or Sharir, and Amnon Shashua. On the expressive power of deep learning: A tensor398

analysis. Conference On Learning Theory (COLT), 2016.399

[33] Nadav Cohen, Or Sharir, Yoav Levine, Ronen Tamari, David Yakira, and Amnon Shashua. Analysis and400

design of convolutional networks via hierarchical tensor decompositions. Intel Collaborative Research401

Institute for Computational Intelligence (ICRI-CI) Special Issue on Deep Learning Theory, 2017.402

[34] Nadav Cohen, Ronen Tamari, and Amnon Shashua. Boosting dilated convolutional networks with mixed403

tensor decompositions. International Conference on Learning Representations (ICLR), 2018.404

[35] Nima Dehmamy, Albert-László Barabási, and Rose Yu. Understanding the representation power of graph405

neural networks in learning graph topology. In Advances in Neural Information Processing Systems406

(NeurIPS), 2019.407

[36] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán408

Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular fingerprints.409

Advances in neural information processing systems, 28, 2015.410

[37] Timo Felser, Marco Trenti, Lorenzo Sestini, Alessio Gianelle, Davide Zuliani, Donatella Lucchesi, and411

Simone Montangero. Quantum-inspired machine learning on high-energy physics data. npj Quantum412

Information, 7(1):1–8, 2021.413

[38] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. arXiv414

preprint arXiv:1903.02428, 2019.415

[39] Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits of graph416

neural networks. In International Conference on Machine Learning (ICML), 2020.417

[40] Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph learning.418

In Advances in Neural Information Processing Systems (NeurIPS), 2019.419

[41] Floris Geerts. The expressive power of kth-order invariant graph networks. arXiv preprint420

arXiv:2007.12035, 2020.421

11

[42] Floris Geerts and Juan L Reutter. Expressiveness and approximation properties of graph neural networks.422

International Conference on Learning Representations (ICLR), 2022.423

[43] Floris Geerts, Filip Mazowiecki, and Guillermo Perez. Let’s agree to degree: Comparing graph convolu-424

tional networks in the message-passing framework. In International Conference on Machine Learning425

(ICML), 2021.426

[44] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John Werns-427

ing. Cryptonets: Applying neural networks to encrypted data with high throughput and accuracy. In428

International Conference on Machine Learning (ICML), 2016.429

[45] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message430

passing for quantum chemistry. In International Conference on Machine Learning (ICML), 2017.431

[46] Edward Grant, Marcello Benedetti, Shuxiang Cao, Andrew Hallam, Joshua Lockhart, Vid Stojevic,432

Andrew G Green, and Simone Severini. Hierarchical quantum classifiers. npj Quantum Information, 4(1):433

1–8, 2018.434

[47] Wolfgang Hackbusch. On the efficient evaluation of coalescence integrals in population balance models.435

Computing, 78(2):145–159, 2006.436

[48] Michael Hamann, Gerd Lindner, Henning Meyerhenke, Christian L Staudt, and Dorothea Wagner.437

Structure-preserving sparsification methods for social networks. Social Network Analysis and Mining, 6438

(1):1–22, 2016.439

[49] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In440

Advances in Neural Information Processing Systems (NeurIPS), 2017.441

[50] William L Hamilton. Graph representation learning. Synthesis Lectures on Artifical Intelligence and442

Machine Learning, 14(3):1–159, 2020.443

[51] Robert J Harrison, George I Fann, Takeshi Yanai, and Gregory Beylkin. Multiresolution quantum444

chemistry in multiwavelet bases. In International Conference on Computational Science, pages 103–110.445

Springer, 2003.446

[52] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and447

Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In Advances in Neural448

Information Processing Systems (NeurIPS), 2020.449

[53] Chenqing Hua, Guillaume Rabusseau, and Jian Tang. High-order pooling for graph neural networks with450

tensor decomposition. In Advances in Neural Information Processing Systems (NeurIPS), 2022.451

[54] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing452

internal covariate shift. In International Conference on Machine Learning (ICML), 2015.453

[55] Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks. In454

Advances in Neural Information Processing Systems (NeurIPS), 2019.455

[56] Valentin Khrulkov, Alexander Novikov, and Ivan Oseledets. Expressive power of recurrent neural456

networks. International Conference on Learning Representations (ICLR), 2018.457

[57] Valentin Khrulkov, Oleksii Hrinchuk, and Ivan Oseledets. Generalized tensor models for recurrent neural458

networks. International Conference on Learning Representations (ICLR), 2019.459

[58] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint460

arXiv:1412.6980, 2014.461

[59] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.462

International Conference on Learning Representations (ICLR), 2017.463

[60] Jure Leskovec and Christos Faloutsos. Sampling from large graphs. In Proceedings of the 12th ACM464

SIGKDD international conference on Knowledge discovery and data mining, pages 631–636, 2006.465

[61] Yoav Levine, Or Sharir, and Amnon Shashua. Benefits of depth for long-term memory of recurrent466

networks. International Conference on Learning Representations (ICLR) Workshop, 2018.467

[62] Yoav Levine, David Yakira, Nadav Cohen, and Amnon Shashua. Deep learning and quantum entanglement:468

Fundamental connections with implications to network design. International Conference on Learning469

Representations (ICLR), 2018.470

12

[63] Yoav Levine, Or Sharir, Nadav Cohen, and Amnon Shashua. Quantum entanglement in deep learning471

architectures. Physical review letters, 122(6):065301, 2019.472

[64] Yoav Levine, Noam Wies, Or Sharir, Hofit Bata, and Amnon Shashua. Limits to depth efficiencies of473

self-attention. In Advances in Neural Information Processing Systems (NeurIPS), 2020.474

[65] Yoav Levine, Noam Wies, Daniel Jannai, Dan Navon, Yedid Hoshen, and Amnon Shashua. The inductive475

bias of in-context learning: Rethinking pretraining example design. International Conference on Learning476

Representations (ICLR), 2022.477

[66] Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. Deepergcn: All you need to train deeper478

gcns. arXiv preprint arXiv:2006.07739, 2020.479

[67] Jiayu Li, Tianyun Zhang, Hao Tian, Shengmin Jin, Makan Fardad, and Reza Zafarani. Sgcn: A graph480

sparsifier based on graph convolutional networks. In Pacific-Asia Conference on Knowledge Discovery481

and Data Mining, pages 275–287. Springer, 2020.482

[68] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for483

semi-supervised learning. In Thirty-Second AAAI conference on artificial intelligence (AAAI), 2018.484

[69] Andreas Loukas. What graph neural networks cannot learn: depth vs width. International Conference on485

Learning Representations (ICLR), 2020.486

[70] Andreas Loukas. How hard is to distinguish graphs with graph neural networks? In Advances in Neural487

Information Processing Systems (NeurIPS), 2020.488

[71] Dongsheng Luo, Wei Cheng, Wenchao Yu, Bo Zong, Jingchao Ni, Haifeng Chen, and Xiang Zhang.489

Learning to drop: Robust graph neural network via topological denoising. In Proceedings of the 14th490

ACM international conference on web search and data mining, pages 779–787, 2021.491

[72] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph networks.492

In Advances in Neural Information Processing Systems (NeurIPS), 2019.493

[73] Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of invariant networks.494

In International Conference on Machine Learning (ICML), 2019.495

[74] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav Rattan,496

and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks. In Proceedings497

of the AAAI Conference on Artificial Intelligence, volume 33, pages 4602–4609, 2019.498

[75] Christopher Morris, Yaron Lipman, Haggai Maron, Bastian Rieck, Nils M Kriege, Martin Grohe, Matthias499

Fey, and Karsten Borgwardt. Weisfeiler and leman go machine learning: The story so far. arXiv preprint500

arXiv:2112.09992, 2021.501

[76] Galileo Namata, Ben London, Lise Getoor, Bert Huang, and U Edu. Query-driven active surveying for502

collective classification. In 10th international workshop on mining and learning with graphs, volume 8,503

page 1, 2012.504

[77] Hoang NT and Takanori Maehara. Revisiting graph neural networks: All we have is low-pass filters.505

arXiv preprint arXiv:1905.09550, 2019.506

[78] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node507

classification. International Conference on Learning Representations (ICLR), 2020.508

[79] Román Orús. A practical introduction to tensor networks: Matrix product states and projected entangled509

pair states. Annals of physics, 349:117–158, 2014.510

[80] Pál András Papp and Roger Wattenhofer. A theoretical comparison of graph neural network extensions.511

In International Conference on Machine Learning (ICML), 2022.512

[81] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming513

Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. In NIPS-W,514

2017.515

[82] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric516

graph convolutional networks. International Conference on Learning Representations (ICLR), 2020.517

[83] Noam Razin and Nadav Cohen. Implicit regularization in deep learning may not be explainable by norms.518

In Advances in Neural Information Processing Systems (NeurIPS), 2020.519

13

[84] Noam Razin, Asaf Maman, and Nadav Cohen. Implicit regularization in tensor factorization. International520

Conference on Machine Learning (ICML), 2021.521

[85] Noam Razin, Asaf Maman, and Nadav Cohen. Implicit regularization in hierarchical tensor factorization522

and deep convolutional neural networks. International Conference on Machine Learning (ICML), 2022.523

[86] Veeru Sadhanala, Yu-Xiang Wang, and Ryan Tibshirani. Graph sparsification approaches for laplacian524

smoothing. In Artificial Intelligence and Statistics, pages 1250–1259. PMLR, 2016.525

[87] Venu Satuluri, Srinivasan Parthasarathy, and Yiye Ruan. Local graph sparsification for scalable clustering.526

In Proceedings of the 2011 ACM SIGMOD International Conference on Management of data, pages527

721–732, 2011.528

[88] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max Welling.529

Modeling relational data with graph convolutional networks. In European semantic web conference,530

pages 593–607. Springer, 2018.531

[89] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.532

Collective classification in network data. AI magazine, 29(3):93–93, 2008.533

[90] Or Sharir and Amnon Shashua. On the expressive power of overlapping architectures of deep learning.534

International Conference on Learning Representations (ICLR), 2018.535

[91] Or Sharir, Ronen Tamari, Nadav Cohen, and Amnon Shashua. Tensorial mixture models. arXiv preprint,536

2016.537

[92] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls of538

graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.539

[93] Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. SIAM Journal on540

Computing, 40(6):1913–1926, 2011.541

[94] E Miles Stoudenmire. Learning relevant features of data with multi-scale tensor networks. Quantum542

Science and Technology, 3(3):034003, 2018.543

[95] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M544

Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. International545

Conference on Learning Representations (ICLR), 2022.546

[96] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.547

Graph attention networks. International Conference on Learning Representations (ICLR), 2018.548

[97] Guifré Vidal. Class of quantum many-body states that can be efficiently simulated. Physical review549

letters, 101(11):110501, 2008.550

[98] Elli Voudigari, Nikos Salamanos, Theodore Papageorgiou, and Emmanuel J Yannakoudakis. Rank degree:551

An efficient algorithm for graph sampling. In 2016 IEEE/ACM International Conference on Advances in552

Social Networks Analysis and Mining (ASONAM), pages 120–129. IEEE, 2016.553

[99] Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra which554

appears therein. NTI, Series, 2(9):12–16, 1968.555

[100] Noam Wies, Yoav Levine, Daniel Jannai, and Amnon Shashua. Which transformer architecture fits my556

data? a vocabulary bottleneck in self-attention. International Conference on Machine Learning (ICML),557

2021.558

[101] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A compre-559

hensive survey on graph neural networks. IEEE transactions on neural networks and learning systems,560

32(1):4–24, 2020.561

[102] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking562

machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.563

[103] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks?564

International Conference on Learning Representations (ICLR), 2019.565

[104] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.566

Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the 24th567

ACM SIGKDD international conference on knowledge discovery & data mining, pages 974–983, 2018.568

14

[105] Bohang Zhang, Shengjie Luo, Liwei Wang, and Di He. Rethinking the expressive power of gnns via569

graph biconnectivity. International Conference on Learning Representations (ICLR), 2023.570

[106] Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao Yu, Haifeng Chen, and Wei571

Wang. Robust graph representation learning via neural sparsification. In International Conference on572

Machine Learning (ICML), 2020.573

15

A Formal Analysis: Quantifying the Ability of Graph Neural Networks to574

Model Interactions575

We begin by upper bounding the separation ranks a GNN can achieve.576

Theorem 2. For an undirected graph G and t ∈ V , let f (θ,G) and f (θ,G,t) be the functions realized577

by depth L graph and vertex prediction GNNs, respectively, with width Dh, learnable weights θ, and578

product aggregation (Equations (2) to (5)). Then, for any I ⊆ V and assignment of weights θ it holds579

that:580

(graph prediction) log
(
sep
(
f (θ,G); I

))
≤ log(Dh) ·

(
4 ρL−1(CI ,V)︸ ︷︷ ︸

WIL−1(I)

+1
)

, (6)

(vertex prediction) log
(
sep
(
f (θ,G,t); I

))
≤ log(Dh) · 4 ρL−1(CI , {t})︸ ︷︷ ︸

WIL−1,t(I)

. (7)

Proof sketch (proof in Appendix I.2). In Appendix E, we show that the computations performed by a581

GNN with product aggregation can be represented as a tensor network. In brief, a tensor network is582

a weighted graph that describes a sequence of arithmetic operations known as tensor contractions583

(see Appendices E.1 and E.2 for a self-contained introduction to tensor networks). The tensor584

network corresponding to a GNN with product aggregation adheres to a tree structure — its leaves585

are associated with input vertex features and interior nodes embody the operations performed by the586

GNN. Importing machinery from tensor analysis literature, we prove that sep(f (θ,G); I) is upper587

bounded by a minimal cut weight in the corresponding tensor network, among cuts separating leaves588

associated with input vertices in I from leaves associated with input vertices in Ic. Equation (6)589

then follows by finding such a cut in the tensor network with sufficiently low weight. Equation (7) is590

established analogously.591

A natural question is whether the upper bounds in Theorem 2 are tight, i.e. whether separation ranks592

close to them can be attained. We show that nearly matching lower bounds hold for almost all593

assignments of weights θ. To this end, we define admissible subsets of CI , based on a notion of vertex594

subsets with no repeating shared neighbors.595

Definition 3. We say that I,J ⊆ V have no repeating shared neighbors if every k ∈ N (I)∩N (J)596

has only a single neighbor in each of I and J , i.e. |N (k) ∩ I| = |N (k) ∩ J | = 1.597

Definition 4. For I ⊆ V , we refer to C ⊆ CI as an admissible subset of CI if there exist I ′ ⊆598

I,J ′ ⊆ Ic with no repeating shared neighbors such that C = N (I ′) ∩ N (J ′). We use S(I) to599

denote the set comprising all admissible subsets of CI :600

S(I) :=
{
C ⊆ CI : C is an admissible subset of CI

}
.

Theorem 3 below establishes that almost all possible values for the network’s weights lead the upper601

bounds in Theorem 2 to be tight, up to logarithmic terms and to the number of walks from CI being602

replaced with the number of walks from any single C ∈ S(I). The extent to which CI can be covered603

by an admissible subset thus determines how tight the upper bounds are. Trivially, at least the shared604

neighbors of any i ∈ I, j ∈ Ic can be covered, since N (i) ∩N (j) ∈ S(I). Appendix C shows that605

for various canonical graphs all of CI , or a large part of it, can be covered by an admissible subset.606

Theorem 3. Consider the setting and notation of Theorem 2. Given I ⊆ V , for almost all assignments607

of weights θ, i.e. for all but a set of Lebesgue measure zero, it holds that:608

(graph prediction) log
(
sep
(
f (θ,G); I

))
≥ max
C∈S(I)

log(αC) · ρL−1(C,V) , (8)

(vertex prediction) log
(
sep
(
f (θ,G,t); I

))
≥ max
C∈S(I)

log(αC,t) · ρL−1(C, {t}) , (9)

where:609

αC :=

{
D1/ρ0(C,V) , if L = 1

(D − 1) · ρL−1(C,V)
−1

+ 1 , if L ≥ 2
,

αC,t :=

{
D , if L = 1

(D − 1) · ρL−1(C, {t})−1
+ 1 , if L ≥ 2

,

16

with D := min{Dx, Dh}. If ρL−1(C,V) = 0 or ρL−1(C, {t}) = 0, the respective lower bound610

(right hand side of Equation (8) or Equation (9)) is zero by convention.611

Proof sketch (proof in Appendix I.3). Our proof follows a line similar to that used in [64, 100, 65]612

for lower bounding the separation rank of self-attention neural networks. The separation rank of any613

f : (RDx)|V| → R can be lower bounded by examining its outputs over a grid of inputs. Specifically,614

for M ∈ N template vectors v(1), . . . ,v(M) ∈ RDx , we can create a grid tensor for f by evaluating615

it over each point in {(v(d1), . . . ,v(d|V|))}Md1,...,d|V|=1 and storing the outcomes in a tensor with |V|616

axes of dimensionM each. Arranging the grid tensor as a matrix B(f) where rows correspond to axes617

indexed by I and columns correspond to the remaining axes, we show that rank(B(f)) ≤ sep(f ; I).618

The proof proceeds by establishing that for almost every assignment of θ, there exist template vectors619

with which log(rank(B(f (θ,G)))) and log(rank(B(f (θ,G,t)))) are greater than (or equal to) the right620

hand sides of Equations (8) and (9), respectively.621

Directed edges and multiple edge types Appendix D generalizes Theorems 2 and 3 to the case of622

graphs with directed edges and an arbitrary number of edge types.623

B Related Work624

Expressivity of GNNs The expressiveness of GNNs has been predominantly evaluated through625

ability to distinguish non-isomorphic graphs, as measured by correspondence to Weisfeiler-Leman626

(WL) graph isomorphism tests (see [75] for a recent survey). [103, 74] instigated this thread of627

research, establishing that message-passing GNNs are at most as powerful as the WL algorithm,628

and can match it under certain technical conditions. Subsequently, architectures surpassing WL629

were proposed, whose expressivity was measured via higher-order WL variants (see, e.g., [74, 72,630

25, 41, 6, 15, 10, 42, 17, 80]). A related line of inquiry regards universality among continuous631

permutation invariant or equivariant functions [73, 55, 69, 3, 42]. In a sense, [25] showed that these632

two approaches are equivalent. Lastly, other analyses of expressivity focused on the frequency633

response of GNNs [77, 5] and their capacity to compute specific graph functions, e.g. moments,634

shortest paths, and substructure counting [35, 9, 39, 69, 26, 23, 17].635

Although a primary purpose of GNNs is to model interactions between vertices, none of the past636

works formally characterize their ability to do so, as our theory does.9 The current work thus provides637

a novel perspective on the expressive power of GNNs. Furthermore, a major limitation of existing638

approaches — in particular, proofs of equivalence to WL tests and universality — is that they often639

operate in asymptotic regimes of unbounded network width or depth. Consequently, they fall short640

of addressing which type of functions can be realized by GNNs of practical size. In contrast, we641

characterize how the modeled interactions depend on both the input graph structure and the neural642

network architecture (width and depth). As shown in Section 5, this facilitates designing an efficient643

and effective edge sparsification algorithm.644

Measuring modeled interactions via separation rank Separation rank (Section 2.2) has been645

paramount to the study of interactions modeled by certain convolutional, recurrent, and self-attention646

neural networks. It enabled analyzing how different architectural parameters impact expressivity [32,647

29, 30, 34, 7, 90, 62, 61, 56, 57, 64, 100, 65] and implicit regularization [83, 84, 85]. On the practical648

side, insights brought forth by separation rank led to tools for improving performance, including:649

guidelines for architecture design [30, 62, 64, 100], pretraining schemes [65], and regularizers for650

countering locality in convolutional neural networks [85]. We employ separation rank for studying651

the interactions GNNs model between vertices, and similarly provide both theoretical insights as well652

as a practical application — edge sparsification algorithm (Section 5).653

Edge sparsification Computations over large-scale graphs can be prohibitively expensive in terms654

of runtime and memory. As a result, various heuristics were proposed for sparsifying graphs655

by removing edges while attempting to maintain structural properties, such as distances between656

vertices [11, 48], graph Laplacian spectrum [93, 86], and vertex degree distribution [98], or outcomes657

9In [21], the mutual information between the embedding of a vertex and the embeddings of its neighbors
was proposed as a measure of interaction. However, this measure is inherently local and allows reasoning only
about the impact of neighboring nodes on each other in a GNN layer. In contrast, separation rank formulates the
strength of interaction the whole GNN models across any partition of an input graph’s vertices.

17

of graph analysis and clustering algorithms [87, 20]. Most relevant to our work, are recent edge658

sparsification methods aiming to preserve the prediction accuracy of GNNs as the number of removed659

edges increases [67, 24].10 These methods require training a GNN over the original (non-sparsified)660

graph, hence only inference costs are reduced. Guided by our theory, in Section 5 we propose661

Walk Index Sparsification (WIS) — an edge sparsification algorithm that preserves expressive power662

in terms of ability to model interactions. WIS improves efficiency for both training and inference.663

Moreover, comparisons with the spectral algorithm of [93] and a recent method from [24] demonstrate664

that WIS brings about higher prediction accuracy across edge sparsity levels.665

C Tightness of Upper Bounds for Separation Rank666

Theorem 2 upper bounds the separation rank with respect to I ⊆ V of a depth L GNN with product667

aggregation. According to it, under the setting of graph prediction, the separation rank is largely668

capped by the (L− 1)-walk index of I, i.e. the number of length L− 1 walks from CI — the set of669

vertices with an edge crossing the partition (I, Ic). Similarly, for prediction over t ∈ V , separation670

rank is largely capped by the (L− 1, t)-walk index of I, which takes into account only length L− 1671

walks from CI ending at t. Theorem 3 provides matching lower bounds, up to logarithmic terms and672

to the number of walks from CI being replaced with the number of walks from any single admissible673

subset C ∈ S(I) (Definition 4). Hence, the match between the upper and lower bounds is determined674

by the portion of CI that can be covered by an admissible subset.675

In this appendix, to shed light on the tightness of the upper bounds, we present several concrete676

examples on which a significant portion of CI can be covered by an admissible subset.677

Complete graph Suppose that every two vertices are connected by an edge, i.e. E =678

{{i, j} : i, j ∈ V}. For any non-empty I (V , clearly CI = N (I) ∩ N (Ic) = V . In this679

case, CI = V ∈ S(I), meaning CI is an admissible subset of itself. To see it is so, notice that for680

any i ∈ I, j ∈ Ic, all vertices are neighbors of both I ′ := {i} and J ′ := {j}, which trivially have681

no repeating shared neighbors (Definition 3). Thus, up to a logarithmic factor, the upper and lower682

bounds from Theorems 2 and 3 coincide.683

Chain graph Suppose that E = {{i, i+ 1} : i ∈ [|V| − 1]} ∪ {{i, i} : i ∈ V}. For any non-empty684

I (V , at least half of the vertices in CI can be covered by an admissible subset. That is, there685

exists C ∈ S(I) satisfying |C| ≥ 2−1 · |CI |. For example, such C can be constructed algorithmically686

as follows. Let I ′,J ′ = ∅. Starting from k = 1, if {k, k + 1} ⊆ CI and one of {k, k + 1} is in687

I while the other is in Ic, then assign I ′ ← I ′ ∪ ({k, k + 1} ∩ I), J ′ ← J ′ ∪ ({k, k + 1} ∩ Ic),688

and k ← k + 3. That is, add each of {k, k + 1} to either I ′ if it is in I or J ′ if it is in Ic, and689

skip vertex k + 2. Otherwise, set k ← k + 1. The process terminates once k > |V| − 1. By690

construction, I ′ ⊆ I and J ′ ⊆ Ic, implying that N (I ′) ∩ N (J ′) ⊆ CI . Due to the chain graph691

structure, I ′∪J ′ ⊆ N (I ′)∩N (J ′) and I ′ and J ′ have no repeating shared neighbors (Definition 3).692

Furthermore, for every pair of vertices from CI added to I ′ and J ′, we can miss at most two other693

vertices from CI . Thus, C := N (I ′)∩N (J ′) is an admissible subset of CI satisfying |C| ≥ 2−1 ·|CI |.694

General graph For an arbitrary graph and non-empty I (V , an admissible subset of CI can be695

obtained by taking any sequence of pairs (i1, j1), . . . , (iM , jM) ∈ I × Ic with no shared neighbors,696

in the sense that [N (im) ∪N (jm)] ∩ [N (im′) ∪N (jm′)] = ∅ for all m 6= m′ ∈ [M]. Defining697

I ′ := {i1, . . . , iM} and J ′ := {j1, . . . , jM}, by construction they do not have repeating shared698

neighbors (Definition 3), and so N (I ′) ∩N (J ′) ∈ S(I). In particular, the shared neighbors of each699

pair are covered by N (I ′) ∩N (J ′), i.e. ∪Mm=1N (im) ∩N (jm) ⊆ N (I ′) ∩N (J ′).700

D Extension of Analysis to Directed Graphs With Multiple Edge Types701

In this appendix, we generalize the separation rank bounds from Theorems 2 and 3 to directed graphs702

with multiple edge types.703

Let G = (V, E , τ) be a directed graph with vertices V = [|V|], edges E ⊆ {(i, j) : i, j ∈ V},704

and a map τ : E → [Q] from edges to one of Q ∈ N edge types. For i ∈ V , let Nin(i) :=705

{j ∈ V : (j, i) ∈ E} be its incoming neighbors and Nout(i) := {j ∈ V : (i, j) ∈ E} be its outgoing706

10As opposed to edge rewiring methods that add or remove only a few edges with the goal of improving
prediction accuracy (e.g., [106, 71, 95, 8]).

18

neighbors. For I ⊆ V , we denote Nin(I) := ∪i∈INin(i) and Nout(I) := ∪i∈INout(i). As707

customary in the context of GNNs, we assume the existence of all self-loops (cf. Section 2.1).708

Message-passing GNNs (Section 3) operate identically over directed and undirected graphs, except709

that in directed graphs the hidden embedding of a vertex is updated only according to its incoming710

neighbors. For handling multiple edge types, common practice is to use different weight matrices711

per type in the GNN’s update rule (cf. [49, 88]). Hence, we consider the following update rule for712

directed graphs with multiple edge types, replacing that from Equation (2):713

h(l,i) = AGGREGATE
({{

W(l,τ(j,i))h(l−1,j) : j ∈ Nin(i)
}})

, (10)

where (W(1,q) ∈ RDh×Dx)q∈[Q] and (W(l,q) ∈ RDh×Dh)l∈{2,...,L},q∈[Q] are learnable weight ma-714

trices.715

In our analysis for undirected graphs (Appendix A), a central concept is CI — the set of vertices with716

an edge crossing the partition induced by I ⊆ V . Due to the existence of self-loops it is equal to717

the shared neighbors of I and Ic, i.e. CI = N (I) ∩N (Ic). We generalize this concept to directed718

graphs, defining C→I to be the set of vertices with an incoming edge from the other side of the partition719

induced by I, i.e. C→I := {i ∈ I : Nin(i) ∩ Ic 6= ∅} ∪ {j ∈ Ic : Nin(j) ∩ I 6= ∅}. Due to the720

existence of self-loops it is given by C→I = Nout(I) ∩ Nout(Ic). Indeed, for undirected graphs721

C→I = CI .722

With the definition of C→I in place, Theorem 4 upper bounds the separation ranks a GNN can achieve723

over directed graphs with multiple edge types. A technical subtlety is that the bounds depend on724

walks of lengths l = L−1, L−2, . . . , 0, while those in Theorem 2 for undirected graphs depend only725

on walks of length L− 1. As shown in the proof of Theorem 2, this dependence exists in undirected726

graphs as well. Though, in undirected graphs with self-loops, the number of length l ∈ N walks from727

CI decays exponentially as l decreases. One can therefore replace the sum over walk lengths with728

walks of length L− 1 (up to a multiplicative constant). By contrast, in directed graphs this is not true729

in general, e.g., when C→I contains only vertices with no outgoing edges (besides self-loops).730

Theorem 4. For a directed graph with multiple edge types G and t ∈ V , let f (θ,G) and f (θ,G,t) be731

the functions realized by depth L graph and vertex prediction GNNs, respectively, with width Dh,732

learnable weights θ, and product aggregation (Equations (3) to (5) and (10)). Then, for any I ⊆ V733

and assignment of weights θ it holds that:734

(graph prediction) log
(
sep
(
f (θ,G); I

))
≤ log(Dh) ·

(∑L

l=1
ρL−l(C→I ,V) + 1

)
, (11)

(vertex prediction) log
(
sep
(
f (θ,G,t); I

))
≤ log(Dh) ·

∑L

l=1
ρL−l(C→I , {t}) . (12)

Proof sketch (proof in Appendix I.4). The proof follows a line identical to that of Theorem 2, only735

requiring adjusting definitions from undirected graphs to directed graphs with multiple edge types.736

Towards lower bounding separation ranks, we generalize the definitions of vertex subsets with no737

repeating shared neighbors (Definition 3) and admissible subsets of CI (Definition 4) to directed738

graphs.739

Definition 5. We say that I,J ⊆ V have no outgoing repeating shared neighbors if every k ∈740

Nout(I) ∩ Nout(J) has only a single incoming neighbor in each of I and J , i.e. |Nin(k) ∩ I| =741

|Nin(k) ∩ J | = 1.742

Definition 6. For I ⊆ V , we refer to C ⊆ C→I as an admissible subset of C→I if there exist743

I ′ ⊆ I,J ′ ⊆ Ic with no outgoing repeating shared neighbors such that C = Nout(I ′) ∩Nout(J ′).744

We use S→(I) to denote the set comprising all admissible subsets of C→I :745

S→(I) :=
{
C ⊆ C→I : C is an admissible subset of C→I

}
.

Theorem 5 generalizes the lower bounds from Theorem 3 to directed graphs with multiple edge types.746

19

Theorem 5. Consider the setting and notation of Theorem 4. Given I ⊆ V , for almost all assignments747

of weights θ, i.e. for all but a set of Lebesgue measure zero, it holds that:748

(graph prediction) log
(
sep
(
f (θ,G); I

))
≥ max
C∈S→(I)

log(αC) · ρL−1(C,V) , (13)

(vertex prediction) log
(
sep
(
f (θ,G,t); I

))
≥ max
C∈S→(I)

log(αC,t) · ρL−1(C, {t}) , (14)

where:749

αC :=

{
D1/ρ0(C,V) , if L = 1

(D − 1) · ρL−1(C,V)
−1

+ 1 , if L ≥ 2
,

αC,t :=

{
D , if L = 1

(D − 1) · ρL−1(C, {t})−1
+ 1 , if L ≥ 2

,

with D := min{Dx, Dh}. If ρL−1(C,V) = 0 or ρL−1(C, {t}) = 0, the respective lower bound750

(right hand side of Equation (13) or Equation (14)) is zero by convention.751

Proof sketch (proof in Appendix I.5). The proof follows a line identical to that of Theorem 3, only752

requiring adjusting definitions from undirected graphs to directed graphs with multiple edge types.753

E Representing Graph Neural Networks With Product Aggregation as754

Tensor Networks755

In this appendix, we prove that GNNs with product aggregation (Section 3) can be represented756

through tensor networks — a graphical language for expressing tensor contractions, widely used in757

quantum mechanics literature for modeling quantum states (cf. [97]). This representation facilitates758

upper bounding the separation ranks of a GNN with product aggregation (proofs for Theorem 2 and its759

extension in Appendix D), and is delivered in Appendix E.3. We note that analogous tensor network760

representations were shown for variants of recurrent and convolutional neural networks [61, 62].761

For the convenience of the reader, we lay out basic concepts from the field of tensor analysis762

in Appendix E.1 and provide a self-contained introduction to tensor networks in Appendix E.2763

(see [79] for a more in-depth treatment).764

E.1 Primer on Tensor Analysis765

For our purposes, a tensor is simply a multi-dimensional array. The order of a tensor is its number of766

axes, which are typically called modes (e.g. a vector is an order one tensor and a matrix is an order767

two tensor). The dimension of a mode refers to its length, i.e. the number of values it can be indexed768

with. For an order N ∈ N tensor A ∈ RD1×···×DN with modes of dimensions D1, . . . , DN ∈ N, we769

will denote by Ad1,...,dN its (d1, . . . , dN)’th entry, where (d1, . . . , dN) ∈ [D1]× · · · × [DN].770

It is possible to rearrange tensors into matrices — a process known as matricization. The matricization771

of A with respect to I ⊆ [N], denoted JA; IK ∈ R
∏
i∈I Di×

∏
j∈Ic Dj is its arrangement as a matrix772

where rows correspond to modes indexed by I and columns correspond to the remaining modes.773

Specifically, denoting the elements in I by i1 < · · · < i|I| and those in Ic by j1 < · · · <774

j|Ic|, the matricization JA; IK holds the entries of A such that Ad1,...,dN is placed in row index775

1 +
∑|I|
l=1(dil − 1)

∏|I|
l′=l+1Dil′ and column index 1 +

∑|Ic|
l=1 (djl − 1)

∏|Ic|
l′=l+1Djl′ .776

Tensors with modes of the same dimension can be combined via contraction — a generalization of777

matrix multiplication. It will suffice to consider contractions where one of the modes being contracted778

is the last mode of its tensor.779

Definition 7. Let A ∈ RD1×···×DN ,B ∈ RD′1×···×D′N′ for orders N,N ′ ∈ N and mode dimensions780

D1, . . . , DN , D
′
1, . . . , D

′
N ′ ∈ N satisfying Dn = D′N ′ for some n ∈ [N]. The mode-n contraction781

of A with B, denoted A ∗nB ∈ RD1×···×Dn−1×D′1×···×D
′
N′−1

×Dn+1×···×DN , is given element-wise782

by:783

(A ∗n B)d1,...,dn−1,d′1,...,d
′
N′−1

,dn+1,...,dN
=
∑Dn

dn=1
Ad1,...,dN ·Bd′1,...,d′N′−1

,dn ,

for all d1 ∈ [D1], . . . , dn−1 ∈ [Dn−1], d′1 ∈ [D′1], . . . , d′N ′−1 ∈ [D′N ′−1], dn+1 ∈784

[Dn+1], . . . , dN ∈ [DN].785

20

Vector Matrix Order 𝑁 Tensor

𝐯
1
𝐷

∈ ℝ" 𝐌
1
𝐷#

𝐷$
2

∈ ℝ"!×"" 𝓣

𝐷#
𝐷$

𝐷'

𝑁

1

Vector-Matrix Multiplication

𝐌
1

𝐷#

𝐷$ ∈ ℝ"!

𝐯

2

1

2
∈ ℝ"!×⋯×"#

𝐌𝐯

Figure 4: Tensor network diagrams of (from left to right): a vector v ∈ RD , matrix M ∈ RD1×D2 , order
N ∈ N tensor T ∈ RD1×···×DN , and vector-matrix multiplication Mv ∈ RD1 . The mode index associated
with a leg’s end point is specified in gray, and the weight of the leg, specified in black, determines the mode
dimension.

For example, the mode-2 contraction of A ∈ RD1×D2 with B ∈ RD′1×D2 boils down to multiplying786

A with B> from the right, i.e. A∗2B = AB>. It is oftentimes convenient to jointly contract multiple787

tensors. Given an orderN tensor A andM ∈ N≤N tensors B(1), . . . ,B(M), we use A∗i∈[M]B(i) to788

denote the contraction of A with B(1), . . . ,B(M) in modes 1, . . . ,M , respectively (assuming mode789

dimensions are such that the contractions are well-defined).790

E.2 Tensor Networks791

A tensor network is an undirected weighted graph T = (VT , ET , wT) that describes a sequence of792

tensor contractions (Definition 7), with vertices VT , edges ET , and a function mapping edges to793

natural weights wT : ET → N. We will only consider tensor networks that are connected. To avoid794

confusion with vertices and edges of a GNN’s input graph, and in accordance with tensor network795

terminology, we refer by nodes and legs to the vertices and edges of a tensor network, respectively.796

Every node in a tensor network is associated with a tensor, whose order is equal to the number of797

legs emanating from the node. Each end point of a leg is associated with a mode index, and the leg’s798

weight determines the dimension of the corresponding tensor mode. That is, an end point of e ∈ ET799

is a pair (A, n) ∈ VT × N, with n ranging from one to the order of A, and wT (e) is the dimension800

of A in mode n. A leg can either connect two nodes or be connected to a node on one end and be801

loose on the other end. If two nodes are connected by a leg, their associated tensors are contracted802

together in the modes specified by the leg. Legs with a loose end are called open legs. The number803

of open legs is exactly the order of the tensor produced by executing all contractions in the tensor804

network, i.e. by contracting the tensor network. Figure 4 presents exemplar tensor network diagrams805

of a vector, matrix, order N ∈ N tensor, and vector-matrix multiplication.806

E.3 Tensor Networks Corresponding to Graph Neural Networks With Product Aggregation807

Fix some undirected graph G and learnable weights θ = (W(1), . . . ,W(L),W(o)). Let f (θ,G) and808

f (θ,G,t), for t ∈ V , be the functions realized by depth L graph and vertex prediction GNNs, respec-809

tively, with width Dh and product aggregation (Equations (2) to (5)). For X = (x(1), . . . ,x(|V|)) ∈810

RDx×|V|, we construct tensor networks T (X) and T (t)(X) whose contraction yields f (θ,G)(X)811

and f (θ,G,t)(X), respectively. Both T (X) and T (t)(X) adhere to a tree structure, where each leaf812

node is associated with a vertex feature vector, i.e. one of x(1), . . . ,x(|V|), and each interior node is813

associated with a weight matrix from W(1), . . . ,W(L),W(o) or a δ-tensor with modes of dimension814

Dh, holding ones on its hyper-diagonal and zeros elsewhere. We denote an order N ∈ N tensor of the815

latter type by δ(N) ∈ RDh×···×Dh , i.e. δ(N)
d1,...,dN

= 1 if d1 = · · · = dN and δ(N)
d1,...,dN

= 0 otherwise816

for all d1, . . . , dN ∈ [Dh].817

Intuitively, T (X) and T (t)(X) embody unrolled computation trees, describing the operations per-818

formed by the respective GNNs through tensor contractions. Let h(l,i) = �j∈N (i)(W
(l)h(l−1,j))819

be the hidden embedding of i ∈ V at layer l ∈ [L] (recall h(0,j) = x(j) for j ∈ V), and820

denote N (i) = {j1, . . . , jM}. We can describe h(l,i) as the outcome of contracting each821

h(l−1,j1), . . . ,h(l−1,jM) with W(l), i.e. computing W(l)h(l−1,j1), . . . ,W(l)h(l−1,jM), followed by822

21

𝑾(𝒍) 𝑾(𝒍)

𝜹(𝓝 𝒊 &𝟏)

𝒉(𝒍(𝟏,𝒋𝟏) 𝒉(𝒍(𝟏,𝒋𝑴) 𝒉(𝑳,𝟏) 𝒉(𝑳, 𝓥)

𝜹(𝓥 &𝟏)

𝑾(𝒐)
𝒇 𝜽,𝓖 (𝑿)

𝒉(𝑳,𝒕)

𝑾(𝒐)

𝒇 𝜽,𝓖,𝒕 (𝑿)𝒉(𝒍,𝒊)

(a) (b) (c)

Figure 5: Tensor network diagrams of the operations performed by GNNs with product aggregation (Section 3).
(a) Hidden embedding update (cf. Equations (2) and (5)): h(l,i) = (W(l)h(l−1,j1))� · · · � (W(l)h(l−1,jM)),
where N (i) = {j1, . . . , jM}, for l ∈ [L], i ∈ V . (b) Output layer for graph prediction (cf. Equations (3)
and (5)): f (θ,G)(X) = W(o)(h(L,1) � · · · � h(L,|V|)). (c) Output layer for vertex prediction over t ∈ V
(cf. Equation (4)): f (θ,G,t)(X) = W(o)h(L,t). We draw nodes associated with δ-tensors as rectangles to signify
their special (hyper-diagonal) structure, and omit leg weights to avoid clutter (legs connected to h(0,i) = x(i),
for i ∈ V , have weight Dx while all other legs have weight Dh).

contracting the resulting vectors with δ(|N (i)|+1), which induces product aggregation (see Figure 5(a)).823

Furthermore, in graph prediction, the output layer producing f (θ,G)(X) = W(o)(�i∈Vh(L,i))824

amounts to contracting h(L,1), . . . ,h(L,|V|) with δ(|V|+1), and subsequently contracting the resulting825

vector with W(o) (see Figure 5(b)); while for vertex prediction, f (θ,G,t)(X) = W(o)h(L,t) is a826

contraction of h(L,t) with W(o) (see Figure 5(c)).827

Overall, every layer in a GNN with product aggregation admits a tensor network formulation given828

the outputs of the previous layer. Thus, we can construct a tree tensor network for the whole GNN by829

starting from the output layer — Figure 5(b) for graph prediction or Figure 5(c) for vertex prediction —830

and recursively expanding nodes associated with h(l,i) according to Figure 5(a), for l = L, . . . , 1 and831

i ∈ V . A technical subtlety is that each h(l,i) can appear multiple times during this procedure. In the832

language of tensor networks this translate to duplication of nodes. Namely, there are multiple copies833

of the sub-tree representing h(l,i) in the tensor network — one copy per appearance when unraveling834

the recursion. Figure 6 displays examples for tensor network diagrams of T (X) and T (t)(X).835

We note that, due to the node duplication mentioned above, the explicit definitions of T (X) and836

T (t)(X) entail cumbersome notation. Nevertheless, we provide them in Appendix E.3.1 for the837

interested reader.838

E.3.1 Explicit Tensor Network Definitions839

The tree tensor network representing f (θ,G)(X) consists of an initial input level — the leaves of the840

tree — comprising ρL({i},V) copies of x(i) for each i ∈ V . We will use x(i,γ) to denote the copies841

of x(i) for i ∈ V and γ ∈ [ρL({i},V)]. In accordance with the GNN inducing f (θ,G), following842

the initial input level are L + 1 layers. Each layer l ∈ [L] includes two levels: one comprising843

ρL−l+1(V,V) nodes standing for copies of W(l), and another containing δ-tensors — ρL−l({i},V)844

copies of δ(|N (i)|+1) per i ∈ V . We associate each node in these layers with its layer index and a845

vertex of the input graph i ∈ V . Specifically, we will use W(l,i,γ) to denote copies of W(l) and846

δ(l,i,γ) to denote copies of δ(|N (i)|+1), for l ∈ [L], i ∈ V , and γ ∈ N. In terms of connectivity,847

every leaf x(i,γ) has a leg to W(1,i,γ). The rest of the connections between nodes are such that each848

sub-tree whose root is δ(l,i,γ) represents h(l,i), i.e. contracting the sub-tree results in the hidden849

embedding for i ∈ V at layer l ∈ [L] of the GNN inducing f (θ,G). Last, is an output layer consisting850

of two connected nodes: a δ(|V|+1) node, which has a leg to every δ-tensor from layer L, and a W(o)851

node. See Figure 7 (left) for an example of a tensor network diagram representing f (θ,G)(X) with852

this notation.853

22

𝐡(𝟏,𝟑)𝐡(𝟏,𝟐)

𝐖(𝟏) 𝐖(𝟏)

𝜹(𝟑)

𝐖(𝟐)

𝐖(𝟏) 𝐖(𝟏)

𝜹(𝟑)

𝐖(𝟐)

𝜹(𝟑)

𝐖(𝟏)

𝜹(𝟐)

𝐖(𝟐)

𝐖(𝒐)

𝐖(𝟏) 𝐖(𝟏)

𝜹(𝟑)

𝐖(𝟐)

𝐖(𝟏) 𝐖(𝟏)

𝜹(𝟑)

𝐖(𝟐)

𝜹(𝟑)

𝐖(𝒐)

𝐱(𝟏) 𝐱(𝟐) 𝐱(𝟏) 𝐱(𝟐) 𝐱(𝟑) 𝐱(𝟏) 𝐱(𝟐) 𝐱(𝟏) 𝐱(𝟐)

𝒇 𝜽,𝓖,𝟏 (𝑿)
depth 𝐿 = 2

𝒇 𝜽,𝓖 (𝑿)
depth 𝐿 = 2

𝐡(𝟏,𝟏)

𝟏 𝟐 𝟑𝒢 = 𝒱 = 1,2,3 ℰ = 1,2 , 1,1 , 2,2 , 3,3

𝐡(𝟐,𝟏) 𝐡(𝟐,𝟑) 𝜹(𝟐)

𝐡(𝟏,𝟐)

𝐖(𝟏) 𝐖(𝟏)

𝜹(𝟑)

𝐖(𝟐)

𝐖(𝟏) 𝐖(𝟏)

𝜹(𝟑)

𝐖(𝟐)

𝐱(𝟏) 𝐱(𝟐) 𝐱(𝟏) 𝐱(𝟐)

𝐡(𝟏,𝟏)

𝐡(𝟐,𝟐) 𝜹(𝟑)

𝓣(𝟏)(𝐗)𝓣(𝐗)

𝜹(𝟒)

Figure 6: Tensor network diagrams of T (X) (left) and T (t)(X) (right) representing f (θ,G)(X) and f (θ,G,t)(X),
respectively, for t = 1 ∈ V , vertex features X = (x(1), . . . ,x(|V|)), and depth L = 2 GNNs with product
aggregation (Section 3). The underlying input graph G, over which the GNNs operate, is depicted at the top. We
draw nodes associated with δ-tensors as rectangles to signify their special (hyper-diagonal) structure, and omit
leg weights to avoid clutter (legs connected to x(1),x(2),x(3) have weight Dx while all other legs have weight
Dh). See Appendix E.3 for further details on the construction of T (X) and T (t)(X), and Appendix E.3.1 for
explicit formulations.

The tensor network construction for f (θ,G,t)(X) is analogous to that for f (θ,G)(X), comprising an854

initial input level followed by L+ 1 layers. Its input level and first L layers are structured the same,855

up to differences in the number of copies for each node. Specifically, the number of copies of x(i)856

is ρL({i}, {t}) instead of ρL({i},V), the number of copies of W(l) is ρL−l+1(V, {t}) instead of857

ρL−l+1(V,V), and the number of copies of δ(|N (i)|+1) is ρL−l({i}, {t}) instead of ρL−l({i},V),858

for i ∈ V and l ∈ [L]. The output layer consists only of a W(o) node, which is connected to the859

δ-tensor in layer L corresponding to vertex t. See Figure 7 (right) for an example of a tensor network860

diagram representing f (θ,G,t)(X) with this notation.861

23

𝐡(𝟏,𝟑)𝐡(𝟏,𝟐)

𝐖(𝟏,𝟏,𝟏) 𝐖(𝟏,𝟐,𝟏)

𝐖(𝟐,𝟏,𝟏)

𝐖(𝟏,𝟏,𝟑) 𝐖(𝟏,𝟐,𝟑)

𝐖(𝟐,𝟐,𝟏)

𝜹(𝟐,𝟏,𝟏)

𝐖(𝟏,𝟑,𝟏)

𝜹(𝟏,𝟑,𝟏)

𝐖(𝟐,𝟑,𝟏)

𝐖(𝒐)

𝐖(𝟏,𝟏,𝟏) 𝐖(𝟏,𝟐,𝟏)

𝜹(𝟏,𝟏,𝟏)

𝐖(𝟐,𝟏,𝟏)

𝐖(𝟏,𝟏,𝟐) 𝐖(𝟏,𝟐,𝟐)

𝜹(𝟏,𝟐,𝟏)

𝐖(𝟐,𝟐,𝟏)

𝜹(𝟐,𝟏,𝟏)

𝐖(𝒐)

𝐱(𝟏,𝟏) 𝐱(𝟐,𝟏) 𝐱(𝟏,𝟑) 𝐱(𝟐,𝟑) 𝐱(𝟑,𝟏) 𝐱(𝟏,𝟏) 𝐱(𝟐,𝟏) 𝐱(𝟏,𝟐) 𝐱(𝟐,𝟐)

𝒇 𝜽,𝓖,𝟏 (𝑿)
depth 𝐿 = 2

𝒇 𝜽,𝓖 (𝑿)
depth 𝐿 = 2

𝐡(𝟏,𝟏)

𝓣(𝟏)(𝐗)𝓣(𝐗)

𝐡(𝟐,𝟏) 𝐡(𝟐,𝟑) 𝜹(𝟐,𝟑,𝟏)

𝐡(𝟏,𝟐)

𝐖(𝟏,𝟏,𝟐) 𝐖(𝟏,𝟐,𝟐)

𝜹(𝟏,𝟏,𝟐)

𝐖(𝟐,𝟏,𝟐)

𝐖(𝟏,𝟏,𝟒) 𝐖(𝟏,𝟐,𝟒)

𝜹(𝟏,𝟐,𝟐)

𝐖(𝟐,𝟐,𝟐)

𝐱(𝟏,𝟐) 𝐱(𝟐,𝟐) 𝐱(𝟏,𝟒) 𝐱(𝟐)

𝐡(𝟏,𝟏)

𝐡(𝟐,𝟐)

𝐱(𝟐,𝟒)

𝜹(𝟐,𝟐,𝟏)

𝜹(𝟏,𝟏,𝟏) 𝜹(𝟏,𝟐,𝟏)

𝟏 𝟐 𝟑𝒢 = 𝒱 = 1,2,3 ℰ = 1,2 , 1,1 , 2,2 , 3,3

𝜹(𝟒)

Figure 7: Tensor network diagrams (with explicit node duplication notation) of T (X) (left) and T (t)(X) (right)
representing f (θ,G)(X) and f (θ,G,t)(X), respectively, for t = 1 ∈ V , vertex features X = (x(1), . . . ,x(|V|)),
and depth L = 2 GNNs with product aggregation (Section 3). This figure is identical to Figure 6, except
that it uses the explicit notation for node duplication detailed in Appendix E.3.1. Specifically, each feature
vector, weight matrix, and δ-tensor is attached with an index specifying which copy it is (rightmost index in
the superscript). Additionally, weight matrices and δ-tensors are associated with a layer index and vertex in V
(except for the output layer δ-tensor in T (X) and W(o)). See Equations (15) and (16) for the explicit definitions
of these tensor networks.

Formally, the tensor network producing f (θ,G)(X), denoted T (X) = (VT (X), ET (X), wT (X)), is862

defined by:863

VT (X) :=
{
x(i,γ) : i ∈ V, γ ∈ [ρL({i},V)]

}
∪{

W(l,i,γ) : l ∈ [L], i ∈ V, γ ∈ [ρL−l+1({i},V)]
}
∪{

δ(l,i,γ) : l ∈ [L], i ∈ V, γ ∈ [ρL−l({i},V)]
}
∪{

δ(|V|+1),W(o)
}

,

ET (X) :=
{{

(x(i,γ), 1), (W(1,i,γ), 2)
}

: i ∈ V, γ ∈ [ρL({i},V)]
}
∪{{

(δ(l,i,γ), j), (W(l,N (i)j ,φl,i,j(γ)), 1)
}

: l ∈ [L], i ∈ V, j ∈ [|N (i)|], γ ∈ [ρL−l({i},V)]
}
∪{{

(δ(l,i,γ), |N (i)|+ 1), (W(l+1,i,γ), 2)
}

: l ∈ [L− 1], i ∈ V, γ ∈ [ρL−l({i},V)]
}
∪{{

(δ(|V|+1), i), (δ(L,i,1), |N (i)|+ 1)
}

: i ∈ V
}
∪
{{

(δ(|V|+1), |V|+ 1), (W(o), 2)
}}

,

wT (X)(e) :=

{
Dx , if (x(i,γ), 1) is an endpoint of e ∈ ET for some i ∈ V, γ ∈ [ρL({i},V)]

Dh , otherwise
,

(15)

where φl,i,j(γ) := γ +
∑
k<i s.t. k∈N (j) ρL−l({k},V), for l ∈ [L], i ∈ V, and γ ∈ [ρL−l({i},V)],864

is used to map a δ-tensor copy corresponding to i in layer l to a W(l) copy, and N (i)j , for i ∈ V865

and j ∈ [|N (i)|], denotes the j’th neighbor of i according to an ascending order (recall vertices are866

represented by indices from 1 to |V|).867

24

Similarly, the tensor network producing f (θ,G,t)(X), denoted T (t)(X) =868

(VT (t)(X), ET (t)(X), wT (t)(X)), is defined by:869

VT (t)(X) :=
{
x(i,γ) : i ∈ V, γ ∈ [ρL({i}, {t})]

}
∪{

W(l,i,γ) : l ∈ [L], i ∈ V, γ ∈ [ρL−l+1({i}, {t})]
}
∪{

δ(l,i,γ) : l ∈ [L], i ∈ V, γ ∈ [ρL−l({i}, {t})]
}
∪{

W(o)
}

,

ET (t)(X) :=
{{

(x(i,γ), 1), (W(1,i,γ), 2)
}

: i ∈ V, γ ∈ [ρL({i}, {t})]
}
∪{{

(δ(l,i,γ), j), (W(l,N (i)j ,φ
(t)
l,i,j(γ)), 1)

}
: l ∈ [L], i ∈ V, j ∈ [|N (i)|], γ ∈ [ρL−l({i}, {t})]

}
∪{{

(δ(l,i,γ), |N (i)|+ 1), (W(l+1,i,γ), 2)
}

: l ∈ [L− 1], i ∈ V, γ ∈ [ρL−l({i}, {t})]
}
∪{{

(δ(L,t,1), |N (t)|+ 1), (W(o), 2)
}}

,

wT (t)(X)(e) :=

{
Dx , if (x(i,γ), 1) is an endpoint of e ∈ ET for some i ∈ V, γ ∈ [ρL({i}, {t})
Dh , otherwise

,

(16)

where φ(t)
l,i,j(γ) := γ+

∑
k<i s.t. k∈N (j) ρL−l({k}, {t}), for l ∈ [L], i ∈ V, and γ ∈ [ρL−l({i}, {t})],870

is used to map a δ-tensor copy corresponding to i in layer l to a W(l) copy.871

Proposition 1 verifies that contracting T (X) and T (t)(X) yields f (θ,G)(X) and f (θ,G,t)(X), respec-872

tively.873

Proposition 1. For an undirected graph G and t ∈ V , let f (θ,G) and f (θ,G,t) be the functions874

realized by depth L graph and vertex prediction GNNs, respectively, with width Dh, learn-875

able weights θ, and product aggregation (Equations (2) to (5)). For vertex features X =876

(x(1), . . . ,x(|V|)) ∈ RDx×|V|, let the tensor networks T (X) = (VT (X), ET (X), wT (X)) and877

T (t)(X) = (VT (t)(X), ET (t)(X), wT (t)(X)) be as defined in Equations (15) and (16), respectively.878

Then, performing the contractions described by T (X) produces f (θ,G)(X), and performing the879

contractions described by T (t)(X) produces f (θ,G,t)(X).880

Proof sketch (proof in Appendix I.6). For both T (X) and T (t)(X), a straightforward induction over881

the layer l ∈ [L] establishes that contracting the sub-tree whose root is δ(l,i,γ) results in h(l,i)882

for all i ∈ V and γ, where h(l,i) is the hidden embedding for i at layer l of the GNNs inducing883

f (θ,G) and f (θ,G,t), given vertex features x(1), . . . ,x(|V|). The proof concludes by showing that the884

contractions in the output layer of T (X) and T (t)(X) reproduce the operations defining f (θ,G)(X)885

and f (θ,G,t)(X) in Equations (3) and (4), respectively.886

F General Walk Index Sparsification887

Our edge sparsification algorithm — Walk Index Sparsification (WIS) — was obtained as an instance888

of the General Walk Index Sparsification (GWIS) scheme described in Section 5. Algorithm 3889

formally outlines this general scheme.890

25

Algorithm 3 (L− 1)-General Walk Index Sparsification (GWIS)

Input:
• G — graph
• L ∈ N — GNN depth
• N ∈ N — number of edges to remove
• I1, . . . , IM ⊆ V — vertex subsets specifying walk indices to maintain for graph prediction
• J1, . . . ,JM ′ ⊆ V and t1, . . . , tM ′ ∈ V — vertex subsets specifying walk indices to maintain

with respect to target vertices, for vertex prediction
• ARGMAX — operator over tuples (s(e) ∈ RM+M ′)e∈E that returns the edge whose tuple is

maximal according to some order
Result: Sparsified graph obtained by removing N edges from G

for n = 1, . . . , N do
for every edge, compute walk indices of partitions after the edge’s removal
for e ∈ E (excluding self-loops) do

initialize s(e) = (0, . . . , 0) ∈ RM+M ′

remove e from G (temporarily)
for every m ∈ [M], set s(e)

m = WIL−1(Im) # = ρL−1(CIm ,V)

for every m ∈ [M ′], set s(e)
M+m = WIL−1,tm(Jm) # = ρL−1(CJm , {tm})

add e back to G
end for
prune edge whose removal harms walk indices the least according to the ARGMAX operator
let e′ ∈ ARGMAXe∈Es

(e)

remove e′ from G (permanently)
end for

G Efficient Implementation of 1-Walk Index Sparsification891

Algorithm 2 (Section 5) provides an efficient implementation for 1-WIS, i.e. Algorithm 1 with L = 2.892

In this appendix, we formalize the equivalence between the two algorithms, meaning, we establish893

that Algorithm 2 indeed implements 1-WIS.894

Examining some iteration n ∈ [N] of 1-WIS, let s ∈ R|V| be the tuple defined by st = WI1,t({t}) =895

ρ1(C{t}, {t}) for t ∈ V . Recall that C{t} is the set of vertices with an edge crossing the partition896

induced by {t}. Thus, if t is not isolated, then C{t} = N (t) and st = WI1,t({t}) = |N (t)|.897

Otherwise, if t is isolated, then C{t} = ∅ and st = WI1,t({t}) = 0. 1-WIS computes for each e ∈ E898

(excluding self-loops) a tuple s(e) ∈ R|V| holding in its t’th entry what the value of WI1,t({t})899

would be if e is to be removed, for all t ∈ V . Notice that s(e) and s agree on all entries except for900

i, j ∈ e, since removing e from the graph only affects the degrees of i and j. Specifically, for i ∈ e,901

either s(e)
i = si − 1 = |N (i)| − 1 if the removal of e did not isolate i, or s(e)

i = si − 2 = 0 if it902

did (due to self-loops, if a vertex has a single edge to another then |N (i)| = 2, so removing that903

edge changes WI1,i({i}) from two to zero). As a result, for any e = {i, j}, e′ = {i′, j′} ∈ E , after904

sorting the entries of s(e) and s(e′) in ascending order we have that s(e′) is greater in lexicographic905

order than s(e) if and only if the pair (min{|N (i′)|, |N (j′)|},max{|N (i′)|, |N (j′)|}) is greater in906

lexicographic order than (min{|N (i)|, |N (j)|},max{|N (i)|, |N (j)|}). Therefore, at every iteration907

n ∈ [N] Algorithm 2 and 1-WIS (Algorithm 1 with L = 2) remove the same edge.908

H Further Experiments and Implementation Details909

H.1 Further Experiments910

Figure 8 supplements Figure 3 from Section 5.2 by including experiments with additional: (i) GNN911

architectures — GIN and ResGCN; and (ii) datasets — Chameleon, Squirrel, and Amazon Computers.912

Overall, our evaluation includes six standard vertex prediction datasets in which we observed the913

26

Figure 8: Comparison of GNN accuracies following sparsification of input edges — WIS, the edge sparsification
algorithm brought forth by our theory (Algorithm 1), markedly outperforms alternative methods. This figure
supplements Figure 3 from Section 5.2 by including experiments with: (i) a depth L = 3 GIN over the Cora,
DBLP, and OGBN-ArXiv datasets; (ii) a depth L = 10 ResGCN over the Cora, DBLP, and OGBN-ArXiv
datasets; and (iii) a depth L = 3 GCN over the Chameleon, Squirrel, and Amazon Computers datasets. Markers
and error bars report means and standard deviations, respectively, taken over ten runs per configuration for GCN
and GIN, and over five runs per configuration for ResGCN (we use fewer runs due to the larger size of ResGCN).
For further details see caption of Figure 3 as well as Appendix H.2.

graph structure to be crucial for accurate prediction, as measured by the difference between the914

test accuracy of a GCN trained and evaluated over the original graph and its test accuracy when915

trained and evaluated over the graph after all of the graph’s edges are removed. We also considered,916

but excluded, the following datasets in which the accuracy difference was insignificant (less than917

five percentage points): Citeseer [89], PubMed [76], Coauthor CS and Physics [92], and Amazon918

Photo [92].919

H.2 Further Implementation Details920

We provide implementation details omitted from our experimental reports (Section 4.2, Section 5,921

and Appendix H.1). Source code for reproducing our results and figures, based on the PyTorch [81]922

and PyTorch Geometric [38] frameworks, is attached as supplementary material and will be made923

publicly available. All experiments were run either on a single Nvidia RTX 2080 Ti GPU or a single924

Nvidia RTX A6000 GPU.925

H.2.1 Empirical Demonstration of Theoretical Analysis (Table 1)926

Models All models used, i.e. GCN, GAT, and GIN, had three layers of width 16 with ReLU non-927

linearity. To ease optimization, we added layer normalization [4] after each one. Mean aggregation928

and a linear output layer were applied over the last hidden embeddings for prediction. As in the929

synthetic experiments of [1], each GAT layer consisted of four attention heads. Each GIN layer had930

27

its ε parameter fixed to zero and contained a two-layer feed-forward network, whose layers comprised931

a linear layer, batch normalization [54], and ReLU non-linearity.932

Data The datasets consisted of 10000 train and 2000 test graphs. For every graph, we drew933

uniformly at random a label from {0, 1} and an image from Fashion-MNIST. Then, depending on the934

chosen label, another image was sampled either from the same class (for label 1) or from all other935

classes (for label 0). We extracted patches of pixels from each image by flattening it into a vector and936

splitting the vector to 16 equally sized segments.937

Optimization The binary cross-entropy loss was minimized via the Adam optimizer [58] with de-938

fault β1, β2 coefficients and full-batches (i.e. every batch contained the whole training set). Optimiza-939

tion proceeded until the train accuracy did not improve by at least 0.01 over 1000 consecutive epochs940

or 10000 epochs elapsed. The learning rates used for GCN, GAT, and GIN were 5 · 10−3, 5 · 10−3,941

and 10−2, respectively.942

Hyperparameter tuning For each model separately, to tune the learning rate we carried out five943

runs (differing in random seed) with every value in the range {10−1, 5 · 10−2, 10−2, 5 · 10−3, 10−3}944

over the dataset whose essential partition has low walk index. Since our interest resides in expressivity,945

which manifests in ability to fit the training set, for every model we chose the learning rate that led to946

the highest mean train accuracy.947

H.2.2 Edge Sparsification (Figures 3 and 8)948

Adaptations to UGS [24] [24] proposed UGS as a framework for jointly pruning input graph edges949

and weights of a GNN. At a high-level, UGS trains two differentiable masks,mg andmθ, that are950

multiplied with the graph adjacency matrix and the GNN’s weights, respectively. Then, after a certain951

number of optimization steps, a predefined percentage pg of graph edges are removed according to952

the magnitudes of entries in mg, and similarly, pθ percent of the GNN’s weights are fixed to zero953

according to the magnitudes of entries in mθ. This procedure continues in iterations, where each954

time the remaining GNN weights are rewinded to their initial values, until the desired sparsity levels955

are attained — see Algorithms 1 and 2 in [24]. To facilitate a fair comparison of our (L− 1)-WIS956

edge sparsification algorithm with UGS, we make the following adaptations to UGS.957

• We adapt UGS to only remove edges, which is equivalent to fixing the entries in the weight958

maskmθ to one and setting pθ = 0 in Algorithm 1 of [24].959

• For comparing performance across a wider range of sparsity levels, the number of edges removed960

at each iteration is changed from 5% of the current number of edges to 5% of the original number961

of edges.962

• Since our evaluation focuses on undirected graphs, we enforce the adjacency matrix maskmg963

to be symmetric.964

Spectral sparsification [93] For Cora and DBLP, we used a Python implementation of the spectral965

sparsification algorithm from [93], based on the PyGSP library implementation.11 To enable more966

efficient experimentation over the larger scale OGBN-ArXiv dataset, we used a Julia implementation967

based on that from the Laplacians library.12968

Models The GCN and GIN models had three layers of width 64 with ReLU non-linearity. As969

in the experiments of Section 4.2, we added layer normalization [4] after each one. Every GIN970

layer had a trainable ε parameter and contained a two-layer feed-forward network, whose layers971

comprised a linear layer, batch normalization [54], and ReLU non-linearity. For ResGCN, we used972

the implementation from [24] with ten layers of width 64. In all models, a linear output layer was973

applied over the last hidden embeddings for prediction.974

Data All datasets in our evaluation are multi-class vertex prediction tasks, each consisting of a975

single graph. In Cora, DBLP, and OGBN-ArXiv, vertices represent scientific publications and edges976

stand for citation links. In Chameleon and Squirrel, vertices represent web pages on Wikipedia and977

edges stand for mutual links between pages. In Amazon Computers, vertices represent products and978

edges indicate that two products are frequently bought together. For simplicity, we treat all graphs979

11See https://github.com/epfl-lts2/pygsp/.
12See https://github.com/danspielman/Laplacians.jl.

28

https://github.com/epfl-lts2/pygsp/
https://github.com/danspielman/Laplacians.jl

Table 3: Optimization hyperparameters used in the experiments of Figures 3 and 8 per model and dataset.

Learning Rate Weight Decay Edge Mask `1 Regularization of UGS

GCN

Cora 5 · 10−4 10−3 10−2

DBLP 10−3 10−4 10−2

OGBN-ArXiv 10−3 0 10−2

Chameleon 10−3 10−4 10−2

Squirrel 5 · 10−4 0 10−4

Amazon Computers 10−3 10−4 10−2

GIN
Cora 10−3 10−3 10−2

DBLP 10−3 10−3 10−2

OGBN-ArXiv 10−4 0 10−2

ResGCN
Cora 5 · 10−4 10−3 10−4

DBLP 5 · 10−4 10−4 10−4

OGBN-ArXiv 10−3 0 10−2

as undirected. Table 2 reports the number of vertices and undirected edges in each dataset. For all980

datasets, except OGBN-ArXiv, we randomly split the labels of vertices into train, validation, and981

test sets comprising 80%, 10%, and 10% of all labels, respectively. For OGBN-ArXiv, we used the982

default split from [52].983

Table 2: Graph size of each dataset used for comparing edge sparsification algorithms in Figures 3 and 8.
of Vertices # of Undirected Edges

Cora 2,708 5,278
DBLP 17,716 52,867
OGBN-ArXiv 169,343 1,157,799
Chameleon 2,277 31,396
Squirrel 5,201 198,423
Amazon Computers 13,381 245,861

Optimization The cross-entropy loss was minimized via the Adam optimizer [58] with default984

β1, β2 coefficients and full-batches (i.e. every batch contained the whole training set). Optimization985

proceeded until the validation accuracy did not improve by at least 0.01 over 1000 consecutive epochs986

or 10000 epochs elapsed. The test accuracies reported in Figure 3 are those achieved during the987

epochs with highest validation accuracies. Table 3 specifies additional optimization hyperparameters.988

Hyperparameter tuning For each combination of model and dataset separately, we tuned the989

learning rate, weight decay coefficient, and edge mask `1 regularization coefficient for UGS, and990

applied the chosen values for evaluating all methods without further tuning (note that the edge mask991

`1 regularization coefficient is relevant only for UGS). In particular, we carried out a grid search over992

learning rates {10−3, 5 · 10−4, 10−4}, weight decay coefficients {10−3, 10−4, 0}, and edge mask993

`1 regularization coefficients {10−2, 10−3, 10−4}. Per hyperparameter configuration, we ran ten994

repetitions of UGS (differing in random seed), each until all of the input graph’s edges were removed.995

At every edge sparsity level (0%, 5%, 10%, . . . ,100%), in accordance with [24], we trained a new996

model with identical hyperparameters, but a fixed edge mask, over each of the ten graphs. We chose997

the hyperparameters that led to the highest mean validation accuracy, taken over the sparsity levels998

and ten runs.999

Due to the size of the ResGCN model, tuning its hyperparameters entails significant computational1000

costs. Thus, over the Cora and DBLP datasets, per hyperparameter configuration we ran five1001

repetitions of UGS with ResGCN instead of ten. For the large-scale OGBN-ArXiv dataset, we1002

adopted the same hyperparameters used for GCN.1003

Other To allow more efficient experimentation, we compute the edge removal order of 2-WIS1004

(Algorithm 1) in batches of size 100. Specifically, at each iteration of 2-WIS, instead of removing the1005

edge e′ with maximal walk index tuple s(e′), the 100 edges with largest walk index tuples are removed.1006

For randomized edge sparsification algorithms — random pruning, the spectral sparsification method1007

29

of [93], and the adaptation of UGS [24] — the evaluation runs for a given dataset and percentage of1008

removed edges were carried over sparsified graphs obtained using different random seeds.1009

I Deferred Proofs1010

I.1 Additional Notation1011

For vectors, matrices, or tensors, parenthesized superscripts denote elements in a collection,1012

e.g. (a(i) ∈ RD)
N
n=1, while subscripts refer to entries, e.g. Ad1,d2 ∈ R is the (d1, d2)’th entry1013

of A ∈ RD1×D2 . A colon is used to indicate a range of entries, e.g. a:d is the first d entries of1014

a ∈ RD. We use ∗ to denote tensor contractions (Definition 7), ◦ to denote the Kronecker product,1015

and� to denote the Hadamard product. For P ∈ N≥0 , the P ’th Hadamard power operator is denoted1016

by �P , i.e. [�PA]d1,d2 = AP
d1,d2

for A ∈ RD1×D2 . Lastly, when enumerating over sets of indices1017

an ascending order is assumed.1018

I.2 Proof of Theorem 21019

We assume familiarity with the basic concepts from tensor analysis introduced in Appendix E.1, and1020

rely on the tensor network representations established for GNNs with product aggregation in Ap-1021

pendix E. Specifically, we use the fact that for any X = (x(1), . . . ,x(|V|)) ∈ RDx×|V| there exist1022

tree tensor networks T (X) and T (t)(X) (described in Appendix E.3 and formally defined in Equa-1023

tions (15) and (16)) such that: (i) their contraction yields f (θ,G)(X) and f (θ,G,t)(X), respectively1024

(Proposition 1); and (ii) each of their leaves is associated with a vertex feature vector, i.e. one of1025

x(1), . . . ,x(|V|), whereas all other aspects of the tensor networks do not depend on x(1), . . . ,x(|V|).1026

The proof proceeds as follows. In Appendix I.2.1, by importing machinery from tensor analysis1027

literature (in particular, adapting Claim 7 from [62]), we show that the separation ranks of f (θ,G) and1028

f (θ,G,t) can be upper bounded via cuts in their corresponding tensor networks. Namely, sep(f (θ,G); I)1029

is at most the minimal multiplicative cut weight in T (X), among cuts separating leaves associated1030

with vertices of the input graph in I from leaves associated with vertices of the input graph in Ic,1031

where multiplicative cut weight refers to the product of weights belonging to legs crossing the cut.1032

Similarly, sep(f (θ,G,t); I) is at most the minimal multiplicative cut weight in T (t)(X), among cuts1033

of the same form. We conclude in Appendices I.2.2 and I.2.3 by applying this technique for upper1034

bounding sep(f (θ,G); I) and sep(f (θ,G,t); I), respectively, i.e. by finding cuts in the respective tensor1035

networks with sufficiently low multiplicative weights.1036

I.2.1 Upper Bounding Separation Rank via Multiplicative Cut Weight in Tensor Network1037

In a tensor network T = (VT , ET , wT), every JT ⊆ VT induces a cut (JT ,J cT), i.e. a partition1038

of the nodes into two sets. We denote by ET (JT) := {{u, v} ∈ ET : u ∈ JT , v ∈ J cT } the set of1039

legs crossing the cut, and define the multiplicative cut weight of JT to be the product of weights1040

belonging to legs in ET (JT), i.e.:1041

wΠ
T (JT) :=

∏
e∈ET (JT)

wT (e) .

For X = (x(1), . . . ,x(|V|)) ∈ RDx×|V|, let T (X) and T (t)(X) be the tensor networks corresponding1042

to f (θ,G)(X) and f (θ,G,t)(X) (detailed in Appendix E.3), respectively. Both T (X) and T (t)(X)1043

adhere to a tree structure. Each leaf node is associated with a vertex feature vector (i.e. one of1044

x(1), . . . ,x(|V|)), while interior nodes are associated with weight matrices or δ-tensors. The latter are1045

tensors with modes of equal dimension holding ones on their hyper-diagonal and zeros elsewhere.1046

The restrictions imposed by δ-tensors induce a modified notion of multiplicative cut weight, where1047

legs incident to the same δ-tensor only contribute once to the weight product (note that weights of1048

legs connected to the same δ-tensor are equal since they stand for mode dimensions).1049

Definition 8. For a tensor network T = (VT , ET , wT) and subset of nodes JT ⊆ VT , let ET (JT)1050

be the set of edges crossing the cut (JT ,J cT). Denote by ẼT (JT) ⊆ ET (JT) a subset of legs1051

containing for each δ-tensor in VT only a single leg from ET (JT) incident to it, along with all legs1052

in ET (JT) not connected to δ-tensors. Then, the modified multiplicative cut weight of JT is:1053

w̃Π
T (JT) :=

∏
e∈ẼT (JT)

wT (e) .

30

Lemma 1 establishes that sep(f (θ,G); I) and sep(f (θ,G,t); I) are upper bounded by the minimal1054

modified multiplicative cut weights in T (X) and T (t)(X), respectively, among cuts separating leaves1055

associated with vertices in I from leaves associated vertices in Ic.1056

Lemma 1. For any X = (x(1), . . . ,x(|V|)) ∈ RDx×|V|, let T (X) = (VT (X), ET (X), wT (X)) and1057

T (t)(X) = (VT (t)(X), ET (t)(X), wT (t)(X)) be the tensor network representations of f (θ,G)(X) and1058

f (θ,G,t)(X) (described in Appendix E.3 and formally defined in Equations (15) and (16)), respectively.1059

Denote by VT (X)[I] ⊆ VT (X) and VT (t)(X)[I] ⊆ VT (t)(X) the sets of leaf nodes in T (X) and1060

T (t)(X), respectively, associated with vertices in I from the input graph G. Formally:1061

VT (X)[I] :=
{
x(i,γ) ∈ VT (X) : i ∈ I, γ ∈ [ρL({i},V)]

}
,

VT (t)(X)[I] :=
{
x(i,γ) ∈ VT (t)(X) : i ∈ I, γ ∈ [ρL({i}, {t})]

}
.

Similarly, denote by VT (X)[Ic] ⊆ VT (X) and VT (t)(X)[Ic] ⊆ VT (t)(X) the sets of leaf nodes in T (X)1062

and T (t)(X), respectively, associated with vertices in Ic. Then, the following hold:1063

(graph prediction) sep
(
f (θ,G); I

)
≤ min

JT (X)⊆VT (X)

s.t. VT (X)[I]⊆JT (X) and VT (X)[Ic]⊆J cT (X)

w̃Π
T (X)(JT (X)) , (17)

(vertex prediction) sep
(
f (θ,G,t); I

)
≤ min

JT (t)(X)
⊆VT (t)(X)

s.t. VT (t)(X)
[I]⊆JT (t)(X)

and VT (t)(X)
[Ic]⊆J c

T (t)(X)

w̃Π
T (t)(X)(JT (t)(X)) ,

(18)

where w̃Π
T (X)(JT (X)) is the modified multiplicative cut weight of JT (X) in T (X) and1064

w̃Π
T (t)(X)

(JT (t)(X)) is the modified multiplicative cut weight of JT (t)(X) in T (t)(X) (Definition 8).1065

Proof. We first prove Equation (17). Examining T (X), notice that: (i) by Proposition 1 its contraction1066

yields f (θ,G)(X); (ii) it has a tree structure; and (iii) each of its leaves is associated with a vertex1067

feature vector, i.e. one of x(1), . . . ,x(|V|), whereas all other aspects of the tensor network do not1068

depend on x(1), . . . ,x(|V|). Specifically, for any X and X′ the nodes, legs, and leg weights of T (X)1069

and T (X′) are identical, up to the assignment of features in the leaf nodes. Let F ∈ RDx×···×Dx be1070

the order ρL(V,V) tensor obtained by contracting all interior nodes in T (X). The above implies that1071

we may write f (θ,G)(X) as a contraction of F with x(1), . . . ,x(|V|). Specifically, it holds that:1072

f (θ,G)(X) = F ∗n∈[ρL(V,V)] x
(µ(n)) , (19)

for any X = (x(1), . . . ,x(|V|)) ∈ RDx×|V|, where µ : [ρL(V,V)] → V maps a mode index of F1073

to the appropriate vertex of G according to T (X). Let µ−1(I) := {n ∈ [ρL(V,V)] : µ(n) ∈ I} be1074

the mode indices of F corresponding to vertices in I. Invoking Lemma 2 leads to the following1075

matricized form of Equation (19):1076

f (θ,G)(X) =
(
◦n∈µ−1(I)x

(µ(n))
)>q

F ;µ−1(I)
y(
◦n∈µ−1(Ic)x

(µ(n))
)

,

where ◦ denotes the Kronecker product.1077

We claim that sep(f (θ,G); I) ≤ rank
q
F ;µ−1(I)

y
. To see it is so, denote R := rank

q
F ;µ−1(I)

y
1078

and let u(1), . . . ,u(R) ∈ RD
ρL(I,V)
x and ū(1), . . . , ū(R) ∈ RD

ρL(Ic,V)
x be such that

q
F ;µ−1(I)

y
=1079 ∑R

r=1 u
(r)(ū(r))

>. Then, defining g(r) : (RDx)|I| → R and ḡ(r) : (RDx)|I
c| → R, for r ∈ [R], as:1080

g(r)(XI) :=
〈
◦n∈µ−1(I)x

(µ(n)),u(r)
〉

, ḡ(r)(XIc) :=
〈
◦n∈µ−1(Ic)x

(µ(n)), ū(r)
〉

,

where XI := (x(i))i∈I and XIc := (x(j))j∈Ic , we have that:1081

f (θ,G)(X) =
(
◦n∈µ−1(I)x

(µ(n))
)>(∑R

r=1
u(r)

(
ū(r)

)>)(◦n∈µ−1(Ic)x
(µ(n))

)
=
∑R

r=1

〈
◦n∈µ−1(I)x

(µ(n)),u(r)
〉
·
〈
◦n∈µ−1(Ic)x

(µ(n)), ū(r)
〉

=
∑R

r=1
g(r)(XI) · ḡ(r)(XIc) .

31

Since sep(f (θ,G); I) is the minimal number of summands in a representation of this form of f (θ,G),1082

indeed, sep(f (θ,G); I) ≤ R = rank
q
F ;µ−1(I)

y
.1083

What remains is to apply Claim 7 from [62], which upper bounds the rank of a tensor’s matricization1084

with multiplicative cut weights in a tree tensor network. In particular, consider an order N ∈ N1085

tensor A produced by contracting a tree tensor network T . Then, for any K ⊆ [N] we have that1086

rankJA;KK is at most the minimal modified multiplicative cut weight in T , among cuts separating1087

leaves corresponding to modes K from leaves corresponding to modes Kc. Thus, invoking Claim 71088

from [62] establishes Equation (17):1089

sep
(
f (θ,G); I

)
≤ rank

q
F ;µ−1(I)

y
≤ min

JT (X)⊆VT (X)

s.t. VT (X)[I]⊆JT (X) and VT (X)[Ic]⊆J cT (X)

w̃Π
T (X)(JT (X)) .

Equation (18) readily follows by steps analogous to those used above for proving Equation (17).1090

I.2.2 Cut in Tensor Network for Graph Prediction (Proof of Equation (6))1091

For X = (x(1), . . . ,x(|V|)) ∈ RDx×|V|, let T (X) = (VT (X), ET (X), wT (X)) be the tensor network1092

corresponding to f (θ,G)(X) (detailed in Appendix E.3 and formally defined in Equation (15)).1093

By Lemma 1, to prove that1094

sep
(
f (θ,G); I

)
≤ D4ρL−1(CI ,V)+1

h ,
it suffices to find JT (X) ⊆ VT (X) satisfying: (i) leaves of T (X) associated with vertices in I are in1095

JT (X), whereas leaves associated with vertices in Ic are not in JT (X); and (ii) w̃Π
T (X)(JT (X)) ≤1096

D
4ρL−1(CI ,V)+1
h , where w̃Π

T (X)(JT (X)) is the modified multiplicative cut weight of JT (X) (Def-1097

inition 8). To this end, define JT (X) to hold all nodes in VT (X) corresponding to vertices in I.1098

Formally:1099

JT (X) :=
{
x(i,γ) : i ∈ I, γ ∈ [ρL({i},V)]

}
∪{

W(l,i,γ) : l ∈ [L], i ∈ I, γ ∈ [ρL−l+1({i},V)]
}
∪{

δ(l,i,γ) : l ∈ [L], i ∈ I, γ ∈ [ρL−l({i},V)]
}

.

Clearly, JT (X) upholds (i).1100

As for (ii), there are two types of legs crossing the cut induced by JT (X) in T (X). First, are those1101

connecting a δ-tensor with a weight matrix in the same layer, where one is associated with a vertex1102

in I and the other with a vertex in Ic. That is, legs connecting δ(l,i,γ) with W(l,N (i)j ,φl,i,j(γ)),1103

where i ∈ V and N (i)j ∈ V are on different sides of the partition (I, Ic) in the input graph, for1104

j ∈ [|N (i)|], l ∈ [L], γ ∈ [ρL−l({i},V)]. The δ-tensors participating in these legs are exactly those1105

associated with some i ∈ CI (recall CI is the set of vertices with an edge crossing the partition1106

(I, Ic)). So, for every l ∈ [L] and i ∈ CI there are ρL−l({i},V) such δ-tensors. Second, are legs1107

from δ-tensors associated with i ∈ I in the L’th layer to the δ-tensor in the output layer of T (X).1108

That is, legs connecting δ(L,i,1) with δ(|V|+1), for i ∈ I. Legs incident to the same δ-tensor only1109

contribute once to w̃Π
T (X)(JT (X)). Thus, since the weights of all legs connected to δ-tensors are1110

equal to Dh, we have that:1111

w̃Π
T (X)(JT (X)) ≤ D

1+
∑L
l=1

∑
i∈CI

ρL−l({i},V)

h = D
1+

∑L
l=1 ρL−l(CI ,V)

h .

Lastly, it remains to show that
∑L
l=1 ρL−l(CI ,V) ≤ 4ρL−1(CI ,V), since in that case Lemma 11112

implies:1113

sep
(
f (θ,G); I

)
≤ w̃Π

T (X)(JT (X)) ≤ D
4ρL−1(CI ,V)+1
h ,

which yields Equation (6) by taking the log of both sides.1114

The main idea is that, in an undirected graph with self-loops, the number of length l ∈ N walks1115

from vertices with at least one neighbor decays exponentially when l decreases. Observe that1116

ρl(CI ,V) ≤ ρl+1(CI ,V) for all l ∈ N. Hence:1117 ∑L

l=1
ρL−l(CI ,V) ≤ 2

∑
l∈{1,3,...,L−1}

ρL−l(CI ,V) . (20)

32

Furthermore, any length l ∈ N≥0 walk i0, i1, . . . , il ∈ V from CI induces at least two walks of length1118

l+2 from CI , distinct from those induced by other length l walks — one which goes twice through the1119

self-loop of i0 and then proceeds according to the length l walk, i.e. i0, i0, i0, i1, . . . , il, and another1120

that goes to a neighboring vertex (exists since i0 ∈ CI), returns to i0, and then proceeds according to1121

the length l walk. This means that ρL−l(CI ,V) ≤ 2−1·ρL−l+2(CI ,V) ≤ · · · ≤ 2−bl/2c·ρL−1(CI ,V)1122

for all l ∈ {3, 5, . . . , L− 1}. Going back to Equation (20), this leads to:1123 ∑L

l=1
ρL−l(CI ,V) ≤ 2

∑
l∈{1,3,...,L−1}

2bl/2c · ρL−1(CI ,V)

≤ 2
∑∞

l=0
2−l · ρL−1(CI ,V)

= 4ρL−1(CI ,V) ,

completing the proof of Equation (6).1124

I.2.3 Cut in Tensor Network for Vertex Prediction (Proof of Equation (7))1125

This part of the proof follows a line similar to that of Appendix I.2.2, with differences stemming from1126

the distinction between the operation of a GNN over graph and vertex prediction tasks.1127

For X = (x(1), . . . ,x(|V|)) ∈ RDx×|V|, let T (t)(X) = (VT (t)(X), ET (t)(X), wT (t)(X)) be the tensor1128

network corresponding to f (θ,G,t)(X) (detailed in Appendix E.3 and formally defined in Equa-1129

tion (16)). By Lemma 1, to prove that1130

sep
(
f (θ,G,t); I

)
≤ D4ρL−1(CI ,{t})

h ,

it suffices to find JT (t)(X) ⊆ VT (t)(X) satisfying: (i) leaves of T (t)(X) associated with ver-1131

tices in I are in JT (t)(X), whereas leaves associated with vertices in Ic are not in JT (t)(X); and1132

(ii) w̃Π
T (t)(X)

(JT (t)(X)) ≤ D
4ρL−1(CI ,{t})
h , where w̃Π

T (t)(X)
(JT (t)(X)) is the modified multiplicative1133

cut weight of JT (t)(X) (Definition 8). To this end, define JT (t)(X) to hold all nodes in VT (t)(X)1134

corresponding to vertices in I. Formally:1135

JT (t)(X) :=
{
x(i,γ) : i ∈ I, γ ∈ [ρL({i}, {t})]

}
∪{

W(l,i,γ) : l ∈ [L], i ∈ I, γ ∈ [ρL−l+1({i}, {t})]
}
∪{

δ(l,i,γ) : l ∈ [L], i ∈ I, γ ∈ [ρL−l({i}, {t})]
}
∪

W(o) ,

whereW(o) := {W(o)} if t ∈ I andW(o) := ∅ otherwise. Clearly, JT (t)(X) upholds (i).1136

As for (ii), the legs crossing the cut induced by JT (t)(X) in T (t)(X) are those connecting a δ-tensor1137

with a weight matrix in the same layer, where one is associated with a vertex in I and the other1138

with a vertex in Ic. That is, legs connecting δ(l,i,γ) with W(l,N (i)j ,φ
(t)
l,i,j(γ)), where i ∈ V and1139

N (i)j ∈ V are on different sides of the partition (I, Ic) in the input graph, for j ∈ [|N (i)|], l ∈1140

[L], γ ∈ [ρL−l({i}, {t})]. The δ-tensors participating in these legs are exactly those associated with1141

some i ∈ CI (recall CI is the set of vertices with an edge crossing the partition (I, Ic)). Hence,1142

for every l ∈ [L] and i ∈ CI there are ρL−l({i}, {t}) such δ-tensors. Legs connected to the same1143

δ-tensor only contribute once to w̃Π
T (t)(X)

(JT (t)(X)). Thus, since the weights of all legs connected to1144

δ-tensors are equal to Dh, we have that:1145

w̃Π
T (t)(X)(JT (t)(X)) = D

∑L
l=1

∑
i∈CI

ρL−l({i},{t})
h = D

∑L
l=1 ρL−l(CI ,{t})

h .

Lastly, it remains to show that
∑L
l=1 ρL−l(CI , {t}) ≤ 4ρL−1(CI , {t}), as in that case Lemma 11146

implies:1147

sep
(
f (θ,G,t); I

)
≤ w̃Π

T (t)(X)(JT (t)(X)) ≤ D
4ρL−1(CI ,{t})
h ,

which leads to Equation (7) by taking the log of both sides.1148

33

The main idea is that, in an undirected graph with self-loops, the number of length l ∈ N walks ending1149

at t that originate from vertices with at least one neighbor decays exponentially when l decreases.1150

First, clearly ρl(CI , {t}) ≤ ρl+1(CI , {t}) for all l ∈ N. Therefore:1151 ∑L

l=1
ρL−l(CI , {t}) ≤ 2

∑
l∈{1,3,...,L−1}

ρL−l(CI , {t}) . (21)

Furthermore, any length l ∈ N≥0 walk i0, i1, . . . , il−1, t ∈ V from CI to t induces at least two1152

walks of length l + 2 from CI to t, distinct from those induced by other length l walks — one1153

which goes twice through the self-loop of i0 and then proceeds according to the length l walk,1154

i.e. i0, i0, i0, i1, . . . , il−1, t, and another that goes to a neighboring vertex (exists since i0 ∈ CI),1155

returns to i0, and then proceeds according to the length l walk. This means that ρL−l(CI , {t}) ≤1156

2−1 · ρL−l+2(CI , {t}) ≤ · · · ≤ 2−bl/2c · ρL−1(CI , {t}) for all l ∈ {3, 5, . . . , L − 1}. Going back1157

to Equation (21), we have that:1158 ∑L

l=1
ρL−l(CI , {t}) ≤ 2

∑
l∈{1,3,...,L−1}

2bl/2c · ρL−1(CI , {t})

≤ 2
∑∞

l=0
2−l · ρL−1(CI , {t})

= 4ρL−1(CI , {t}) ,

concluding the proof of Equation (7).1159

I.2.4 Technical Lemma1160

Lemma 2. For any order N ∈ N tensor A ∈ RD×···×D, vectors x(1), . . . ,x(N) ∈ RD, and subset1161

of mode indices I ⊆ [N], it holds that A ∗i∈[N] x
(i) =

(
◦i∈Ix(i)

)>JA; IK
(
◦j∈Icx(j)

)
∈ R.1162

Proof. The identity follows directly from the definitions of tensor contraction, matricization, and1163

Kronecker product (Appendix I.1):1164

A ∗i∈[N] x
(i) =

∑D

d1,...,dN=1
Ad1,...,dN ·

∏
i∈[N]

x
(i)
di

=
(
◦i∈Ix(i)

)>JA; IK
(
◦j∈Icx(j)

)
.

1165

I.3 Proof of Theorem 31166

We assume familiarity with the basic concepts from tensor analysis introduced in Appendix E.1.1167

We begin by establishing a general technique for lower bounding the separation rank of a function1168

through grid tensors, also used in [64, 100, 65, 85]. For any f : (RDx)N → R and M ∈ N1169

template vectors v(1), . . . ,v(M) ∈ RDx , we can create a grid tensor of f , which is a form of function1170

discretization, by evaluating it over each point in {(v(d1), . . . ,v(dN))}Md1,...,dN=1 and storing the1171

outcomes in an orderN tensor with modes of dimensionM . That is, the grid tensor of f for templates1172

v(1), . . . ,v(M), denoted B(f) ∈ RM×···×M , is defined by B(f)d1,...,dN = f(v(d1), . . . ,v(dN)) for1173

all d1, . . . , dN ∈ [M].13 Lemma 3 shows that sep(f ; I) is lower bounded by the rank of B(f)’s1174

matricization with respect to I.1175

Lemma 3. For f : (RDx)N → R and M ∈ N template vectors v(1), . . . ,v(M) ∈ RDx , let1176

B(f) ∈ RM×···×M be the corresponding order N grid tensor of f . Then, for any I ⊆ [N]:1177

rankJB(f); IK ≤ sep(f ; I) .

Proof. If sep(f ; I) is∞ or zero, i.e. f cannot be represented as a finite sum of separable functions1178

(with respect to I) or is identically zero, then the claim is trivial. Otherwise, denote R := sep(f ; I),1179

and let g(1), . . . , g(R) : (RDx)|I| → R and ḡ(1), . . . , ḡ(R) : (RDx)|I
c| → R such that:1180

f(X) =
∑R

r=1
g(r)(XI) · ḡ(r)(XIc) , (22)

where X := (x(1), . . . ,x(N)), XI := (x(i))i∈I , and XIc := (x(j))j∈Ic . For r ∈ [R], let B(g(r))1181

and B(ḡ(r)) be the grid tensors of g(r) and ḡ(r) over templates v(1), . . . ,v(M), respectively. That is,1182

13The template vectors of a grid tensor B(f) will be clear from context, thus we omit them from the notation.

34

B(g(r))di:i∈I = g(r)((v(di))i∈I) and B(ḡ(r))dj :j∈Ic = ḡ(r)((v(dj))j∈Ic) for all d1, . . . , dN ∈ [M].1183

By Equation (22) we have that for any d1, . . . , dN ∈ [M]:1184

B(f)d1,...,dN = f
(
v(d1), . . . ,v(dN)

)
=
∑R

r=1
g(r)
(
(v(di))i∈I

)
· ḡ(r)

(
(v(dj))j∈Ic

)
=
∑R

r=1
B
(
g(r)
)
di:i∈I

·B
(
ḡ(r)
)
dj :j∈Ic

.

Denoting by u(r) ∈ RM |I| and ū(r) ∈ RM |I
c|

the arrangements of B(g(r)) and B(ḡ(r)) as vectors,1185

respectively for r ∈ [R], this implies that the matricization of B(f) with respect to I can be written1186

as:1187

JB(f); IK =
∑R

r=1
u(r)

(
ū(r)

)>
.

We have arrived at a representation of JB(f); IK as a sum of R outer products between two vectors.1188

An outer product of two vectors is a matrix of rank at most one. Consequently, by sub-additivity of1189

rank we conclude: rankJB(f); IK ≤ R = sep(f ; I).1190

In the context of graph prediction, let C∗ ∈ argmaxC∈S(I) log(αC) · ρL−1(C,V). By Lemma 3,1191

to prove that Equation (8) holds for weights θ, it suffices to find template vectors for which1192

log(rank
q
B
(
f (θ,G)

)
; I

y
) ≥ log(αC∗) · ρL−1(C∗,V). Notice that, since the outputs of f (θ,G) vary1193

polynomially with the weights θ, so do the entries of
q
B
(
f (θ,G)

)
; I

y
for any choice of template1194

vectors. Thus, according to Lemma 9, by constructing weights θ and template vectors satisfying1195

log(rank
q
B
(
f (θ,G)

)
; I

y
) ≥ log(αC∗) · ρL−1(C∗,V), we may conclude that this is the case for al-1196

most all assignments of weights, meaning Equation (8) holds for almost all assignments of weights.1197

In Appendix I.3.1 we construct such weights and template vectors.1198

In the context of vertex prediction, let C∗t ∈ argmaxC∈S(I) log(αC,t) · ρL−1(C, {t}). Due to ar-1199

guments analogous to those above, to prove that Equation (9) holds for almost all assignments of1200

weights, we need only find weights θ and template vectors satisfying log(rank
q
B
(
f (θ,G,t)); Iy) ≥1201

log(αC∗t ,t) · ρL−1(C∗t , {t}). In Appendix I.3.2 we do so.1202

Lastly, recalling that a finite union of measure zero sets has measure zero as well establishes1203

that Equations (8) and (9) jointly hold for almost all assignments of weights.1204

I.3.1 Weights and Template Vectors Assignment for Graph Prediction (Proof1205

of Equation (8))1206

We construct weights θ and template vectors satisfying log(rank
q
B
(
f (θ,G)

)
; I

y
) ≥ log(αC∗) ·1207

ρL−1(C∗,V), where C∗ ∈ argmaxC∈S(I) log(αC) · ρL−1(C,V).1208

If ρL−1(C∗,V) = 0, then the claim is trivial since there exist weights and template vectors for which1209 q
B
(
f (θ,G)

)
; I

y
is not the zero matrix (e.g. taking all weight matrices to be zero-padded identity1210

matrices and choosing a single template vector holding one in its first entry and zeros elsewhere).1211

Now, assuming that ρL−1(C∗,V) > 0, which in particular implies that I 6= ∅, I 6= V, and C∗ 6= ∅,1212

we begin with the case of GNN depth L = 1, after which we treat the more general L ≥ 2 case.1213

Case of L = 1: Consider the weights θ = (W(1),W(o)) given by W(1) := I ∈ RDh×Dx and1214

W(o) := (1, . . . , 1) ∈ R1×Dh , where I is a zero padded identity matrix, i.e. it holds ones on its1215

diagonal and zeros elsewhere. We choose template vectors v(1), . . . ,v(D) ∈ RDx such that v(m)1216

holds the m’th standard basis vector of RD in its first D coordinates and zeros in the remaining1217

entries, for m ∈ [D] (recall D := min{Dx, Dh}). Namely, denote by e(1), . . . , e(D) ∈ RD the1218

standard basis vectors of RD, i.e. e(m)
d = 1 if d = m and e

(m)
d = 0 otherwise for all m, d ∈ [D]. We1219

let v(m)
:D := e(m) and v

(m)
D+1: := 0 for all m ∈ [D].1220

We prove that for this choice of weights and template vectors, for all d1, . . . , d|V| ∈ [D]:1221

f (θ,G)
(
v(d1), . . . ,v(d|V|)

)
=

{
1 , if d1 = · · · = d|V|
0 , otherwise

. (23)

35

To see it is so, notice that:1222

f (θ,G)
(
v(d1), . . . ,v(d|V|)

)
= W(o)

(
�i∈Vh(1,i)

)
=
∑Dh

d=1

∏
i∈V

h
(1,i)
d ,

with h(1,i) = �j∈N (i)(W
(1)v(dj)) = �j∈N (i)(Iv

(dj)) for all i ∈ V . Since v
(dj)
:D = e(dj) for all1223

j ∈ N (i) and I is a zero-padded D ×D identity matrix, it holds that:1224

f (θ,G)
(
v(d1), . . . ,v(d|V|)

)
=
∑D

d=1

∏
i∈V,j∈N (i)

e
(dj)
d .

Due to the existence of self-loops (i.e. i ∈ N (i) for all i ∈ V), for every d ∈ [D]1225

the product
∏
i∈V,j∈N (i) e

(dj)
d includes each of e

(d1)
d , . . . , e

(d|V|)

d at least once. Consequently,1226 ∏
i∈V,j∈N (i) e

(dj)
d = 1 if d1 = · · · = d|V| = d and

∏
i∈V,j∈N (i) e

(dj)
d = 0 otherwise. This1227

implies that f (θ,G)(v(d1), . . . ,v(d|V|)) = 1 if d1 = · · · = d|V| and f (θ,G)(v(d1), . . . ,v(d|V|)) = 01228

otherwise, for all d1, . . . , d|V| ∈ [D].1229

Equation (23) implies that
q
B
(
f (θ,G)

)
; I

y
has exactly D non-zero entries, each in a different row1230

and column. Thus, rank
q
B
(
f (θ,G)

)
; I

y
= D. Recalling that αC∗ := D1/ρ0(C∗,V) for L = 1, we1231

conclude:1232

log
(

rank
r
B
(
f (θ,G)

)
; I

z)
= log(D) = log(αC∗) · ρ0(C∗,V) .

Case of L ≥ 2: Let M :=
((

D
ρL−1(C∗,V)

))
=
(D+ρL−1(C∗,V)−1

ρL−1(C∗,V)

)
be the multiset coefficient of D1233

and ρL−1(C∗,V) (recall D := min{Dx, Dh}). By Lemma 7, there exists Z ∈ RM×D>0 for which1234

rank
(
�ρL−1(C∗,V)

(
ZZ>

))
=

((
D

ρL−1(C∗,V)

))
,

with �ρL−1(C∗,V)(ZZ>) standing for the ρL−1(C∗,V)’th Hadamard power of ZZ>. For this Z,1235

by Lemma 4 below we know that there exist weights θ and template vectors such that
q
B(f (θ,G)); I

y
1236

has an M ×M sub-matrix of the form S(�ρL−1(C∗,V)(ZZ>))Q, where S,Q ∈ RM×M are full-rank1237

diagonal matrices. Since the rank of a matrix is at least the rank of any of its sub-matrices:1238

rank
(r

B
(
f (θ,G)

)
; I

z)
≥ rank

(
S
(
�ρL−1(C∗,V)

(
ZZ>

))
Q
)

= rank
(
�ρL−1(C∗,V)

(
ZZ>

))
=

((
D

ρL−1(C∗,V)

))
,

where the second transition stems from S and Q being full-rank. Applying Lemma 8 to lower bound1239

the multiset coefficient, we have that:1240

rank
(r

B
(
f (θ,G)

)
; I

z)
≥
((

D

ρL−1(C∗,V)

))
≥
(

D − 1

ρL−1(C∗,V)
+ 1

)ρL−1(C∗,V)

.

Taking the log of both sides while recalling that αC∗ := (D − 1) · ρL−1(C∗,V)
−1

+ 1, we conclude1241

that:1242

log(rank
r
B
(
f (θ,G)

)
; I

z
) ≥ log(αC∗) · ρL−1(C∗,V) .

Lemma 4. Suppose that the GNN inducing f (θ,G) is of depth L ≥ 2 and that ρL−1(C∗,V) > 0.1243

For any M ∈ N and matrix with positive entries Z ∈ RM×D>0 , there exist weights θ and1244

M + 1 template vectors v(1), . . . ,v(M+1) ∈ RDx such that
q
B(f (θ,G)); I

y
has an M × M1245

sub-matrix S(�ρL−1(C∗,V)(ZZ>))Q, where S,Q ∈ RM×M are full-rank diagonal matrices and1246

�ρL−1(C∗,V)(ZZ>) is the ρL−1(C∗,V)’th Hadamard power of ZZ>.1247

36

Proof. Consider the weights θ = (W(1), . . . ,W(L),W(o)) given by:1248

W(1) := I ∈ RDh×Dx ,

W(2) :=


1 1 · · · 1
0 0 · · · 0
...

... · · ·
...

0 0 · · · 0

 ∈ RDh×Dh ,

∀l ∈ {3, . . . , L} : W(l) :=


1 0 · · · 0
0 0 · · · 0
...

... · · ·
...

0 0 · · · 0

 ∈ RDh×Dh ,

W(o) := (1 0 · · · 0) ∈ R1×Dh ,

where I is a zero padded identity matrix, i.e. it holds ones on its diagonal and zeros elsewhere. We1249

define the templates v(1), . . . ,v(M) ∈ RDx to be the vectors holding the respective rows of Z in their1250

first D coordinates and zeros in the remaining entries (recall D := min{Dx, Dh}). That is, denoting1251

the rows of Z by z(1), . . . , z(M) ∈ RD>0, we let v(m)
:D := z(m) and v

(m)
D+1: := 0 for all m ∈ [M]. We1252

set all entries of the last template vector to one, i.e. v(M+1) := (1, . . . , 1) ∈ RDx .1253

Since C∗ ∈ S(I), i.e. it is an admissible subset of CI (Definition 4), there exist I ′ ⊆ I,J ′ ⊆ Ic1254

with no repeating shared neighbors (Definition 3) such that C∗ = N (I ′) ∩ N (J ′). Notice that I ′1255

and J ′ are non-empty as C∗ 6= ∅ (this is implied by ρL−1(C∗,V) > 0). We focus on the M ×M1256

sub-matrix of
q
B(f (θ,G)); I

y
that includes only rows and columns corresponding to evaluations of1257

f (θ,G) where all variables indexed by I ′ are assigned the same template vector from v(1), . . . ,v(M),1258

all variables indexed by J ′ are assigned the same template vector from v(1), . . . ,v(M), and all1259

remaining variables are assigned the all-ones template vector v(M+1). Denoting this sub-matrix by1260

U ∈ RM×M , it therefore upholds:1261

Um,n = f (θ,G)
((

x(i) ← v(m)
)
i∈I′ ,

(
x(j) ← v(n)

)
j∈J ′ ,

(
x(k) ← v(M+1)

)
k∈V\(I′∪J ′)

)
,

for all m,n ∈ [M], where we use (x(i) ← v(m))i∈I′ to denote that input variables indexed1262

by I ′ are assigned the value v(m). To show that U obeys the form S(�ρL−1(C∗,V)(ZZ>))Q1263

for full-rank diagonal S,Q ∈ RM×M , we prove there exist φ, ψ : RDx → R>0 such that1264

Um,n = φ(v(m))〈z(m), z(n)〉ρL−1(C∗,V)ψ(v(n)) for all m,n ∈ [M]. Indeed, defining S to hold1265

φ(v(1)), . . . , φ(v(M)) on its diagonal and Q to hold ψ(v(1)), . . . , ψ(v(M)) on its diagonal, we have1266

that U = S(�ρL−1(C∗,V)(ZZ>))Q. Since S and Q are clearly full-rank (diagonal matrices with1267

non-zero entries on their diagonal), the proof concludes.1268

For m,n ∈ [M], let h(l,i) ∈ RDh be the hidden embedding for i ∈ V at layer l ∈ [L] of the GNN1269

inducing f (θ,G), over the following assignment to its input variables (i.e. vertex features):1270 (
x(i) ← v(m)

)
i∈I′ ,

(
x(j) ← v(n)

)
j∈J ′ ,

(
x(k) ← v(M+1)

)
k∈V\(I′∪J ′) .

Invoking Lemma 10 with v(m),v(n), I ′, and J ′, for all i ∈ V it holds that:1271

h
(L,i)
1 = φ(L,i)

(
v(m)

)〈
z(m), z(n)

〉ρL−1(C∗,{i})
ψ(L,i)

(
v(n)

)
, ∀d ∈ {2, . . . , Dh} : h

(L,i)
d = 0 ,

for some φ(L,i), ψ(L,i) : RDx → R>0. Since1272

Um,n = f (θ,G)
((

x(i) ← v(m)
)
i∈I′ ,

(
x(j) ← v(n)

)
j∈J ′ ,

(
x(k) ← v(M+1)

)
k∈V\(I′∪J ′)

)
= W(o)

(
�i∈Vh(L,i)

)
and W(o) = (1, 0, . . . , 0), this implies that:1273

Um,n =
∏

i∈V
h

(L,i)
1

=
∏

i∈V
φ(L,i)

(
v(m)

)〈
z(m), z(n)

〉ρL−1(C∗,{i})
ψ(L,i)

(
v(n)

)
.

37

Rearranging the last term leads to:1274

Um,n =
(∏

i∈V
φ(L,i)

(
v(m)

))
·
〈
z(m), z(n)

〉∑
i∈V ρL−1(C∗,{i}) ·

(∏
i∈V

ψ(L,i)
(
v(n)

))
.

Let φ : v 7→
∏
i∈V φ

(L,i)(v) and ψ : v 7→
∏
i∈V ψ

(L,i)(v). Noticing that their range is indeed R>01275

and that
∑
i∈V ρL−1(C∗, {i}) = ρL−1(C∗,V) yields the sought-after expression for Um,n:1276

Um,n = φ
(
v(m)

)〈
z(m), z(n)

〉ρL−1(C∗,V)
ψ
(
v(n)

)
.

1277

I.3.2 Weights and Template Vectors Assignment for Vertex Prediction (Proof1278

of Equation (9))1279

This part of the proof follows a line similar to that of Appendix I.3.1, with differences stemming1280

from the distinction between the operation of a GNN over graph and vertex prediction. Namely,1281

we construct weights θ and template vectors satisfying log(rank
q
B
(
f (θ,G,t)); Iy) ≥ log(αC∗t ,t) ·1282

ρL−1(C∗t , {t}), where C∗t ∈ argmaxC∈S(I) log(αC,t) · ρL−1(C, {t}).1283

If ρL−1(C∗t , {t}) = 0, then the claim is trivial since there exist weights and template vectors for which1284 q
B
(
f (θ,G,t)); Iy is not the zero matrix (e.g. taking all weight matrices to be zero-padded identity1285

matrices and choosing a single template vector holding one in its first entry and zeros elsewhere).1286

Now, assuming that ρL−1(C∗t , {t}) > 0, which in particular implies that I 6= ∅, I 6= V, and C∗t 6= ∅,1287

we begin with the case of GNN depth L = 1, after which we treat the more general L ≥ 2 case.1288

Case of L = 1: Consider the weights θ = (W(1),W(o)) given by W(1) := I ∈ RDh×Dx and1289

W(o) := (1, . . . , 1) ∈ R1×Dh , where I is a zero padded identity matrix, i.e. it holds ones on its1290

diagonal and zeros elsewhere. We choose template vectors v(1), . . . ,v(D) ∈ RDx such that v(m)1291

holds the m’th standard basis vector of RD in its first D coordinates and zeros in the remaining1292

entries, for m ∈ [D] (recall D := min{Dx, Dh}). Namely, denote by e(1), . . . , e(D) ∈ RD the1293

standard basis vectors of RD, i.e. e(m)
d = 1 if d = m and e

(m)
d = 0 otherwise for all m, d ∈ [D]. We1294

let v(m)
:D := e(m) and v

(m)
D+1: := 0 for all m ∈ [D].1295

We prove that for this choice of weights and template vectors, for all d1, . . . , d|V| ∈ [D]:1296

f (θ,G,t)(v(d1), . . . ,v(d|V|)
)

=

{
1 , if dj = dj′ for all j, j′ ∈ N (t)

0 , otherwise
. (24)

To see it is so, notice that:1297

f (θ,G,t)(v(d1), . . . ,v(d|V|)
)

= W(o)h(1,t) =
∑Dh

d=1
h

(1,t)
d ,

with h(1,t) = �j∈N (t)(W
(1)v(dj)) = �j∈N (t)(Iv

(dj)). Since v
(dj)
:D = e(dj) for all j ∈ N (t) and I1298

is a zero-padded D ×D identity matrix, it holds that:1299

f (θ,G,t)(v(d1), . . . ,v(d|V|)
)

=
∑D

d=1

∏
j∈N (t)

e
(dj)
d .

For every d ∈ [D] we have that
∏
j∈N (t) e

(dj)
d = 1 if dj = d for all j ∈ N (t) and

∏
j∈N (t) e

(dj)
d = 01300

otherwise. This implies that f (θ,G,t)(v(d1), . . . ,v(d|V|)) = 1 if dj = dj′ for all j, j′ ∈ N (t) and1301

f (θ,G,t)(v(d1), . . . ,v(d|V|)) = 0 otherwise, for all d1, . . . , d|V| ∈ [D].1302

Equation (24) implies that
q
B
(
f (θ,G,t)); Iy has a sub-matrix of rank D. Specifically, such a1303

sub-matrix can be obtained by examining all rows and columns of
q
B
(
f (θ,G,t)); Iy correspond-1304

ing to some fixed indices (di ∈ [D])i∈V\N (t) for the vertices that are not neighbors of t. Thus,1305

rank
q
B
(
f (θ,G,t)); Iy ≥ D. Notice that necessarily ρ0(C∗t , {t}) = 1, as it is not zero and there can1306

only be one length zero walk to t (the trivial walk that starts and ends at t). Recalling that αC∗t ,t := D1307

for L = 1, we therefore conclude:1308

log
(

rank
r
B
(
f (θ,G,t)

)
; I

z)
≥ log(D) = log(αC∗t ,t) · ρ0(C∗t , {t}) .

38

Case of L ≥ 2: Let M :=
((

D
ρL−1(C∗t ,{t})

))
=
(D+ρL−1(C∗t ,{t})−1

ρL−1(C∗t ,{t})
)

be the multiset coefficient of D1309

and ρL−1(C∗t , {t}) (recall D := min{Dx, Dh}). By Lemma 7, there exists Z ∈ RM×D>0 for which1310

rank
(
�ρL−1(C∗t ,{t})

(
ZZ>

))
=

((
D

ρL−1(C∗t , {t})

))
,

with �ρL−1(C∗t ,{t})(ZZ>) standing for the ρL−1(C∗t , {t})’th Hadamard power of ZZ>. For this Z,1311

by Lemma 5 below we know that there exist weights θ and template vectors such that
q
B(f (θ,G,t)); I

y
1312

has anM×M sub-matrix of the form S(�ρL−1(C∗t ,{t})(ZZ>))Q, where S,Q ∈ RM×M are full-rank1313

diagonal matrices. Since the rank of a matrix is at least the rank of any of its sub-matrices:1314

rank
(r

B
(
f (θ,G,t)); Iz) ≥ rank

(
S
(
�ρL−1(C∗t ,{t})

(
ZZ>

))
Q
)

= rank
(
�ρL−1(C∗t ,{t})

(
ZZ>

))
=

((
D

ρL−1(C∗t , {t})

))
,

where the second transition is due to S and Q being full-rank. Applying Lemma 8 to lower bound1315

the multiset coefficient, we have that:1316

rank
(r

B
(
f (θ,G,t)); Iz) ≥ ((D

ρL−1(C∗t , {t})

))
≥
(

D − 1

ρL−1(C∗t , {t})
+ 1

)ρL−1(C∗t ,{t})

.

Taking the log of both sides while recalling that αC∗t ,t := (D − 1)·ρL−1(C∗t , {t})
−1

+1, we conclude1317

that:1318

log(rank
r
B
(
f (θ,G,t)

)
; I

z
) ≥ log(αC∗t ,t) · ρL−1(C∗t , {t}) .

Lemma 5. Suppose that the GNN inducing f (θ,G,t) is of depth L ≥ 2 and that ρL−1(C∗t , {t}) >1319

0. For any M ∈ N and matrix with positive entries Z ∈ RM×D>0 , there exist weights θ and1320

M + 1 template vectors v(1), . . . ,v(M+1) ∈ RDx such that
q
B(f (θ,G,t)); I

y
has an M × M1321

sub-matrix S(�ρL−1(C∗t ,{t})(ZZ>))Q, where S,Q ∈ RM×M are full-rank diagonal matrices and1322

�ρL−1(C∗t ,{t})(ZZ>) is the ρL−1(C∗t , {t})’th Hadamard power of ZZ>.1323

Proof. Consider the weights θ = (W(1), . . . ,W(L),W(o)) defined by:1324

W(1) := I ∈ RDh×Dx ,

W(2) :=


1 1 · · · 1
0 0 · · · 0
...

... · · ·
...

0 0 · · · 0

 ∈ RDh×Dh ,

∀l ∈ {3, . . . , L} : W(l) :=


1 0 · · · 0
0 0 · · · 0
...

... · · ·
...

0 0 · · · 0

 ∈ RDh×Dh ,

W(o) := (1 0 · · · 0) ∈ R1×Dh ,

where I is a zero padded identity matrix, i.e. it holds ones on its diagonal and zeros elsewhere. We let1325

the templates v(1), . . . ,v(M) ∈ RDx be the vectors holding the respective rows of Z in their first D1326

coordinates and zeros in the remaining entries (recall D := min{Dx, Dh}). That is, denoting the1327

rows of Z by z(1), . . . , z(M) ∈ RD>0, we let v(m)
:D := z(m) and v

(m)
D+1: := 0 for all m ∈ [M]. We set1328

all entries of the last template vector to one, i.e. v(M+1) := (1, . . . , 1) ∈ RDx .1329

Since C∗t ∈ S(I), i.e. it is an admissible subset of CI (Definition 4), there exist I ′ ⊆ I,J ′ ⊆ Ic1330

with no repeating shared neighbors (Definition 3) such that C∗t = N (I ′) ∩ N (J ′). Notice that I ′1331

and J ′ are non-empty as C∗t 6= ∅ (this is implied by ρL−1(C∗t , {t}) > 0). We focus on the M ×M1332

39

sub-matrix of
q
B(f (θ,G,t)); I

y
that includes only rows and columns corresponding to evaluations of1333

f (θ,G,t) where all variables indexed by I ′ are assigned the same template vector from v(1), . . . ,v(M),1334

all variables indexed by J ′ are assigned the same template vector from v(1), . . . ,v(M), and all1335

remaining variables are assigned the all-ones template vector v(M+1). Denoting this sub-matrix by1336

U ∈ RM×M , it therefore upholds:1337

Um,n = f (θ,G,t)
((

x(i) ← v(m)
)
i∈I′ ,

(
x(j) ← v(n)

)
j∈J ′ ,

(
x(k) ← v(M+1)

)
k∈V\(I′∪J ′)

)
,

for all m,n ∈ [M], where we use (x(i) ← v(m))i∈I′ to denote that input variables indexed1338

by I ′ are assigned the value v(m). To show that U obeys the form S(�ρL−1(C∗t ,{t})(ZZ>))Q1339

for full-rank diagonal S,Q ∈ RM×M , we prove there exist φ, ψ : RDx → R>0 such that1340

Um,n = φ(v(m))〈z(m), z(n)〉ρL−1(C∗t ,{t})ψ(v(n)) for all m,n ∈ [M]. Indeed, defining S to hold1341

φ(v(1)), . . . , φ(v(M)) on its diagonal and Q to hold ψ(v(1)), . . . , ψ(v(M)) on its diagonal, we have1342

that U = S(�ρL−1(C∗t ,{t})(ZZ>))Q. Since S and Q are clearly full-rank (diagonal matrices with1343

non-zero entries on their diagonal), the proof concludes.1344

For m,n ∈ [M], let h(l,i) ∈ RDh be the hidden embedding for i ∈ V at layer l ∈ [L] of the GNN1345

inducing f (θ,G,t), over the following assignment to its input variables (i.e. vertex features):1346 (
x(i) ← v(m)

)
i∈I′ ,

(
x(j) ← v(n)

)
j∈J ′ ,

(
x(k) ← v(M+1)

)
k∈V\(I′∪J ′) .

Invoking Lemma 10 with v(m),v(n), I ′, and J ′, it holds that:1347

h
(L,t)
1 = φ(L,t)

(
v(m)

)〈
z(m), z(n)

〉ρL−1(C∗t ,{t})ψ(L,t)
(
v(n)

)
, ∀d ∈ {2, . . . , Dh} : h

(L,t)
d = 0 ,

for some φ(L,t), ψ(L,t) : RDx → R>0. Since1348

Um,n = f (θ,G,t)
((

x(i) ← v(m)
)
i∈I′ ,

(
x(j) ← v(n)

)
j∈J ′ ,

(
x(k) ← v(M+1)

)
k∈V\(I′∪J ′)

)
= W(o)h(L,t)

and W(o) = (1, 0, . . . , 0), this implies that:1349

Um,n = h
(L,t)
1 = φ(L,t)

(
v(m)

)〈
z(m), z(n)

〉ρL−1(C∗t ,{t})ψ(L,t)
(
v(n)

)
.

Defining φ := φ(L,t) and ψ := ψ(L,t) leads to the sought-after expression for Um,n:1350

Um,n = φ
(
v(m)

)〈
z(m), z(n)

〉ρL−1(C∗t ,{t})ψ
(
v(n)

)
.

1351

I.3.3 Technical Lemmas1352

For completeness, we include the vector rearrangement inequality from [61], which we employ for1353

proving the subsequent Lemma 7.1354

Lemma 6 (Lemma 1 from [61]). Let a(1), . . . ,a(M) ∈ RD≥0 be M ∈ N different vectors with non-1355

negative entries. Then, for any permutation σ : [M]→ [M] besides the identity permutation it holds1356

that:1357 ∑M

m=1

〈
a(m),a(σ(m))

〉
<
∑M

m=1

∥∥a(m)
∥∥2

.

Taking the P ’th Hadamard power of a rank at most D matrix results in a matrix whose rank is at1358

most the multiset coefficient
((
D
P

))
:=
(
D+P−1

P

)
(see, e.g., Theorem 1 in [2]). Lemma 7, adapted1359

from Appendix B.2 in [64], guarantees that we can always find a
((
D
P

))
×D matrix Z with positive1360

entries such that rank(�P
(
ZZ>

)
) is maximal, i.e. equal to

((
D
P

))
.1361

Lemma 7 (adapted from Appendix B.2 in [64]). For any D ∈ N and P ∈ N≥0, there exists a matrix1362

with positive entries Z ∈ R((DP))×D
>0 for which:1363

rank
(
�P
(
ZZ>

))
=

((
D

P

))
,

where �P (ZZ>) is the P ’th Hadamard power of ZZ>.1364

40

Proof. We let M :=
((
D
P

))
for notational convenience. Denote by z(1), . . . , z(M) ∈ RD the row1365

vectors of Z ∈ RM×D>0 . Observing the (m,n)’th entry of �P
(
ZZ>

)
:1366

[
�P
(
ZZ>

)]
m,n

=
〈
z(m), z(n)

〉P
=

(∑D

d=1
z

(m)
d · z(n)

d

)P
,

by expanding the power using the multinomial identity we have that:1367

[
�P
(
ZZ>

)]
m,n

=
∑

q1,...,qD∈N≥0

s.t.
∑D
d=1 qd=P

(
P

q1, . . . , qD

) D∏
d=1

(
z

(m)
d · z(n)

d

)qd

=
∑

q1,...,qD∈N≥0

s.t.
∑D
d=1 qd=P

(
P

q1, . . . , qD

)(D∏
d=1

(
z

(m)
d

)qd)
·

(
D∏
d=1

(
z

(n)
d

)qd)
,

(25)

where in the last equality we separated terms depending on m from those depending on n.1368

Let (a(q1,...,qD) ∈ RM)q1,...,qD∈N≥0 s.t
∑D
d=1 qd=P be M vectors defined by a

(q1,...,qD)
m =1369 ∏D

d=1

(
z

(m)
d

)qd for all q1, . . . , qD ∈ N≥0 satisfying
∑D
d=1 qd = P and m ∈ [M]. As can be1370

seen from Equation (25), we can write:1371

�P
(
ZZ>

)
= ASA> ,

where A ∈ RM×M is the matrix whose columns are (a(q1,...,qD))q1,...,qD∈N≥0 s.t
∑D
d=1 qd=P and1372

S ∈ RM×M is the diagonal matrix holding
(

P
q1,...,qD

)
for every q1, . . . , qD ∈ N≥0 satisfying1373 ∑D

d=1 qd = P on its diagonal. Since all entries on the diagonal of S are positive, it is of full-rank,1374

i.e. rank(S) = M . Thus, to prove that there exists Z ∈ RM×D>0 for which rank(�P (ZZ>)) = M , it1375

suffices to show that we can choose z(1), . . . , z(M) with positive entries inducing rank(A) = M , for1376

A as defined above. Below, we complete the proof by constructing such z(1), . . . , z(M).1377

We associate each of z(1), . . . , z(M) with a different configuration from the set:1378 {
q = (q1, . . . , qD) : q1, . . . , qD ∈ N≥0 ,

∑D

d=1
qd = P

}
,

where note that this set containsM =
((
D
P

))
elements. Form ∈ [M], denote by q(m) the configuration1379

associated with z(m). For a variable γ ∈ R, to be determined later on, and every m ∈ [M] and1380

d ∈ [D], we set:1381

z
(m)
d = γq

(m)
d .

Given these z(1), . . . , z(M), the entries of A have the following form:1382

Am,n =
∏D

d=1

(
z

(m)
d

)q(n)
d

=
∏D

d=1

(
γq

(m)
d

)q(n)
d

= γ
∑D
d=1 q

(m)
d ·q(n)

d = γ〈q
(m),q(n)〉 ,

for all m,n ∈ [M]. Thus, det(A) =
∑

permutation σ:[M]→[M] sign(σ) · γ
∑M
m=1〈q(m),q(σ(m))〉 is polyno-1383

mial in γ. By Lemma 6,
∑M
m=1

〈
q(m),q(σ(m))

〉
<
∑M
m=1‖q(m)‖2 for all σ which is not the identity1384

permutation. This implies that
∑M
m=1‖q(m)‖2 is the maximal degree of a monomial in det(A),1385

and it is attained by a single element in
∑

permutation σ:[M]→[M] sign(σ) · γ
∑M
m=1〈q(m),q(σ(m))〉 — that1386

corresponding to the identity permutation. Consequently, det(A) cannot be the zero polynomial with1387

respect to γ, and so it vanishes only on a finite set of values for γ. In particular, there exists γ > 01388

such that det(A) 6= 0, meaning rank(A) = M . The proof concludes by noticing that for a positive1389

γ the entries of the chosen z(1), . . . , z(M) are positive as well.1390

Additionally, we make use of the following lemmas.1391

41

Lemma 8. For any D,P ∈ N, let
((
D
P

))
:=
(
D+P−1

P

)
be the multiset coefficient. Then:1392 ((

D

P

))
≥
(
D − 1

P
+ 1

)P
.

Proof. For any N ≥ K ∈ N, a known lower bound on the binomial coefficient is
(
N
K

)
≥
(
N
K

)K
.1393

Hence:1394 ((
D

P

))
=

(
D + P − 1

P

)
≥
(
D + P − 1

P

)P
=

(
D − 1

P
+ 1

)P
.

1395

Lemma 9. For D1, D2,K ∈ N, consider a polynomial function mapping variables θ ∈ RK to1396

matrices A(θ) ∈ RD1×D2 , i.e. the entries of A(θ) are polynomial in θ. If there exists a point θ∗ ∈ RK1397

such that rank(A(θ∗)) ≥ R, for R ∈ [min{D1, D2}], then the set {θ ∈ RK : rank(A(θ)) < R}1398

has Lebesgue measure zero.1399

Proof. A matrix is of rank at least R if and only if it has a R × R sub-matrix whose determi-1400

nant is non-zero. The determinant of any sub-matrix of A(θ) is polynomial in the entries of1401

A(θ), and so it is polynomial in θ as well. Since the zero set of a polynomial is either the en-1402

tire space or a set of Lebesgue measure zero [19], the fact that rank(A(θ∗)) ≥ R implies that1403

{θ ∈ RK : rank(A(θ)) < R} has Lebesgue measure zero.1404

Lemma 10. Let v,v′ ∈ RDx≥0 whose first D := min{Dx, Dh} entries are positive, and disjoint1405

I ′,J ′ ⊆ V with no repeating shared neighbors (Definition 3). Denote by h(l,i) ∈ RDh the hidden1406

embedding for i ∈ V at layer l ∈ [L] of a GNN with depth L ≥ 2 and product aggregation1407

(Equations (2) and (5)), given the following assignment to its input variables (i.e. vertex features):1408 (
x(i) ← v

)
i∈I′ ,

(
x(j) ← v′

)
j∈J ′ ,

(
x(k) ← 1

)
k∈V\(I′∪J ′) ,

where 1 ∈ RDx is the vector holding one in all entries. Suppose that the weights W(1), . . . ,W(L)1409

of the GNN are given by:1410

W(1) := I ∈ RDh×Dx ,

W(2) :=


1 1 · · · 1
0 0 · · · 0
...

... · · ·
...

0 0 · · · 0

 ∈ RDh×Dh ,

∀l ∈ {3, . . . , L} : W(l) :=


1 0 · · · 0
0 0 · · · 0
...

... · · ·
...

0 0 · · · 0

 ∈ RDh×Dh ,

where I is a zero padded identity matrix, i.e. it holds ones on its diagonal and zeros elsewhere. Then,1411

for all l ∈ {2, . . . , L} and i ∈ V , there exist φ(l,i), ψ(l,i) : RDx → R>0 such that:1412

h
(l,i)
1 = φ(l,i)(v) 〈v:D,v

′
:D〉

ρl−1(C,{i})
ψ(l,i)(v′) , ∀d ∈ {2, . . . , Dh} : h

(l,i)
d = 0 ,

where C := N (I ′) ∩N (J ′).1413

Proof. The proof is by induction over the layer l ∈ {2, . . . , L}. For l = 2, fix i ∈ V . By the update1414

rule of a GNN with product aggregation:1415

h(2,i) = �j∈N (i)

(
W(2)h(1,j)

)
.

Plugging in the value of W(2) we get:1416

h
(2,i)
1 =

∏
j∈N (i)

(∑Dh

d=1
h

(1,j)
d

)
, ∀d ∈ {2, . . . , Dh} : h

(2,i)
d = 0 . (26)

42

Let v̄, v̄′ ∈ RDh be the vectors holding v:D and v′:D in their first D coordinates and zero in the1417

remaining entries, respectively. Similarly, we use 1̄ ∈ RDh to denote the vector whose first D entries1418

are one and the remaining are zero. Examining h(1,j) for j ∈ N (i), by the assignment of input1419

variables and the fact that W(1) is a zero padded identity matrix we have that:1420

h(1,j) = �k∈N (j)

(
W(1)x(k)

)
=
(
�|N (j)∩I′|v̄

)
�
(
�|N (j)∩J ′|v̄′

)
�
(
�|N (j)\(I′∪J ′)|1̄

)
=
(
�|N (j)∩I′|v̄

)
�
(
�|N (j)∩J ′|v̄′

)
.

Since the first D entries of v̄ and v̄′ are positive while the rest are zero, the same holds for h(1,j).1421

Additionally, recall that I ′ andJ ′ have no repeating shared neighbors. Thus, if j ∈ N (I ′)∩N (J ′) =1422

C, then j has a single neighbor in I ′ and a single neighbor in J ′, implying h(1,j) = v̄�v̄′. Otherwise,1423

if j /∈ C, then N (j) ∩ I ′ = ∅ or N (j) ∩ J ′ = ∅ must hold. In the former h(1,j) does not depend on1424

v, whereas in the latter h(1,j) does not depend on v′.1425

Going back to Equation (26), while noticing that |N (i) ∩ C| = ρ1(C, {i}), we arrive at:1426

h
(2,i)
1 =

∏
j∈N (i)∩C

(∑Dh

d=1
h

(1,j)
d

)
·
∏

j∈N (i)\C

(∑Dh

d=1
h

(1,j)
d

)
=
∏

j∈N (i)∩C

(∑Dh

d=1

[
v̄ � v̄′

]
d

)
·
∏

j∈N (i)\C

(∑Dh

d=1
h

(1,j)
d

)
= 〈v:D,v

′
:D〉

ρ1(C,{i}) ·
∏

j∈N (i)\C

(∑Dh

d=1
h

(1,j)
d

)
.

As discussed above, for each j ∈ N (i) \ C the hidden embedding h(1,j) does not depend on v1427

or it does not depend on v′. Furthermore,
∑Dh
d=1 h

(1,j)
d > 0 for all j ∈ N (i). Hence, there exist1428

φ(2,i), ψ(2,i) : RDx → R>0 such that:1429

h
(2,i)
1 = φ(2,i)(v) 〈v:D,v

′
:D〉

ρ1(C,{i})
ψ(2,i)(v′) ,

completing the base case.1430

Now, assuming that the inductive claim holds for l − 1 ≥ 2, we prove that it holds for l. Let i ∈ V .1431

By the update rule of a GNN with product aggregation h(l,i) = �j∈N (i)(W
(l)h(l−1,j)). Plugging in1432

the value of W(l) we get:1433

h
(l,i)
1 =

∏
j∈N (i)

h
(l−1,j)
1 , ∀d ∈ {2, . . . , Dh} : h

(l,i)
d = 0 .

By the inductive assumption h
(l−1,j)
1 = φ(l−1,j)(v) 〈v:D,v

′
:D〉

ρl−2(C,{j})
ψ(l−1,j)(v′) for all j ∈1434

N (i), where φ(l−1,j), ψ(l−1,j) : RDx → R>0. Thus:1435

h
(l,i)
1 =

∏
j∈N (i)

h
(l−1,j)
1

=
∏

j∈N (i)
φ(l−1,j)(v) 〈v:D,v

′
:D〉

ρl−2(C,{j})
ψ(l−1,j)(v′)

=

(∏
j∈N (i)

φ(l−1,j)(v)

)
· 〈v:D,v

′
:D〉

∑
j∈N(i) ρl−2(C,{j}) ·

(∏
j∈N (i)

ψ(l−1,j)(v′)

)
.

Define φ(l,i) : v 7→
∏
j∈N (i) φ

(l−1,j)(v) and ψ(l,i) : v′ 7→
∏
j∈N (i) ψ

(l−1,j)(v′). Since the range1436

of φ(l−1,j) and ψ(l−1,j) is R>0 for all j ∈ N (i), so is the range of φ(l,i) and ψ(l,i). The desired result1437

thus readily follows by noticing that
∑
j∈N (i) ρl−2(C, {j}) = ρl−1(C, {i}):1438

h
(l,i)
1 = φ(l,i)(v) 〈v:D,v

′
:D〉

ρl−1(C,{i})
ψ(l,i)(v′) .

1439

I.4 Proof of Theorem 41440

The proof follows a line identical to that of Theorem 2 (Appendix I.2), requiring only slight adjust-1441

ments. We outline the necessary changes.1442

Extending the tensor network representations of GNNs with product aggregation to directed graphs1443

and multiple edge types is straightforward. Nodes, legs, and leg weights are as described in Ap-1444

pendix E for undirected graphs with a single edge type, except that:1445

43

• Legs connecting δ-tensors with weight matrices in the same layer are adapted such that only1446

incoming neighbors are considered. Formally, in Equations (15) and (16), N (i) is replaced by1447

Nin(i) in the leg definitions, for i ∈ V .1448

• Weight matrices (W(l,q))l∈[L],q∈[Q] are assigned to nodes in accordance with edge types.1449

Namely, if at layer l ∈ [L] a δ-tensor associated with i ∈ V is connected to a weight ma-1450

trix associated with j ∈ Nin(i), then W(l,τ(j,i)) is assigned to the weight matrix node, as1451

opposed to W(l) in the single edge type setting. Formally, let W(l,j,γ) be a node at layer l ∈ [L]1452

connected to δ(l,i,γ′), for i ∈ V, j ∈ Nin(i), and some γ, γ′ ∈ N. Then, W(l,j,γ) stands for a1453

copy of W(l,τ(j,i)).1454

For X = (x(1), . . . ,x(|V|)) ∈ RDx×|V|, let T (X) and T (t)(X) be the tensor networks corresponding1455

to f (θ,G)(X) and f (θ,G,t)(X), respectively, whose construction is outlined above. Then, Lemma 11456

(from Appendix I.2.1) and its proof apply as stated. Meaning, sep(f (θ,G); I) and sep(f (θ,G,t); I)1457

are upper bounded by the minimal modified multiplicative cut weights in T (X) and T (t)(X),1458

respectively, among cuts separating leaves associated with vertices of the input graph in I from leaves1459

associated with vertices of the input graph in Ic. Therefore, to establish Equations (11) and (12), it1460

suffices to find cuts in the respective tensor networks with sufficiently low modified multiplicative1461

weights. As is the case for undirected graphs with a single edge type (see Appendices I.2.2 and I.2.3),1462

the cuts separating nodes corresponding to vertices in I from all other nodes yield the desired upper1463

bounds.1464

I.5 Proof of Theorem 51465

The proof follows a line identical to that of Theorem 3 (Appendix I.3), requiring only slight adjust-1466

ments. We outline the necessary changes.1467

In the context of graph prediction, let C∗ ∈ argmaxC∈S→(I) log(αC) · ρL−1(C,V). By Lemma 31468

(from Appendix I.3), to prove that Equation (13) holds for weights θ, it suffices to find template1469

vectors for which log(rank
q
B
(
f (θ,G)

)
; I

y
) ≥ log(αC∗) ·ρL−1(C∗,V). Notice that, since the outputs1470

of f (θ,G) vary polynomially with θ, so do the entries of
q
B
(
f (θ,G)

)
; I

y
for any choice of template1471

vectors. Thus, according to Lemma 9 (from Appendix I.3.3), by constructing weights θ and template1472

vectors satisfying log(rank
q
B
(
f (θ,G)

)
; I

y
) ≥ log(αC∗) · ρL−1(C∗,V), we may conclude that this is1473

the case for almost all assignments of weights, meaning Equation (13) holds for almost all assignments1474

of weights. For undirected graphs with a single edge type, Appendix I.3.1 provides such weights1475

W(1), . . . ,W(L),W(o) and template vectors. The proof in the case of directed graphs with multiple1476

edge types is analogous, requiring only a couple adaptations: (i) weight matrices of all edge types at1477

layer l ∈ [L] are set to the W(l) chosen in Appendix I.3.1; and (ii) CI and S(I) are replaced with1478

their directed counterparts C→I and S→(I), respectively.1479

In the context of vertex prediction, let C∗t ∈ argmaxC∈S→(I) log(αC,t) · ρL−1(C, {t}). Due to1480

arguments similar to those above, to prove that Equation (14) holds for almost all assignments of1481

weights, we need only find weights θ and template vectors satisfying log(rank
q
B
(
f (θ,G,t)); Iy) ≥1482

log(αC∗t ,t) · ρL−1(C∗t , {t}). For undirected graphs with a single edge type, Appendix I.3.2 provides1483

such weights and template vectors. The adaptations necessary to extend Appendix I.3.2 to directed1484

graphs with multiple edge types are identical to those specified above for extending Appendix I.3.11485

in the context of graph prediction.1486

Lastly, recalling that a finite union of measure zero sets has measure zero as well establishes1487

that Equations (13) and (14) jointly hold for almost all assignments of weights.1488

I.6 Proof of Proposition 11489

We first prove that the contractions described by T (X) produce f (θ,G)(X). Through an induction1490

over the layer l ∈ [L], for all i ∈ V and γ ∈ [ρL−l({i},V)] we show that contracting the sub-tree1491

whose root is δ(l,i,γ) yields h(l,i) — the hidden embedding for i at layer l of the GNN inducing1492

f (θ,G), given vertex features x(1), . . . ,x(|V|).1493

For l = 1, fix some i ∈ V and γ ∈ [ρL−1({i},V)]. The sub-tree whose root is δ(1,i,γ) comprises1494

|N (i)| copies of W(1), each associated with some j ∈ N (i) and contracted in its second mode with1495

44

a copy of x(j). Additionally, δ(1,i,γ), which is a copy of δ(|N (i)|+1), is contracted with the copies of1496

W(1) in their first mode. Overall, the execution of all contractions in the sub-tree can be written as1497

δ(|N (i)|+1) ∗j∈[|N (i)|] (W(1)x(N (i)j)), whereN (i)j , for j ∈ [|N (i)|], denotes the j’th neighbor of i1498

according to an ascending order (recall vertices are represented by indices from 1 to |V|). The base1499

case concludes by Lemma 11:1500

δ(|N (i)|+1) ∗j∈[|N (i)|]

(
W(1)x(N (i)j)

)
= �j∈[|N (i)|]

(
W(1)x(N (i)j)

)
= h(1,i) .

Assuming that the inductive claim holds for l − 1 ≥ 1, we prove that it holds for l. Let i ∈ V and1501

γ ∈ [ρL−l({i},V)]. The children of δ(l,i,γ) in the tensor network are of the form W(l,N (i)j ,φl,i,j(γ)),1502

for j ∈ [|N (i)|], and each W(l,N (i)j ,φl,i,j(γ)) is connected in its other mode to δ(l−1,N (i)j ,φl,i,j(γ)).1503

By the inductive assumption for l− 1, we know that performing all contractions in the sub-tree whose1504

root is δ(l−1,N (i)j ,φl,i,j(γ)) produces h(l−1,N (i)j), for all j ∈ [|N (i)|]. Since δ(l,i,γ) is a copy of1505

δ(|N (i)|+1), and each W(l,N (i)j ,φl,i,j(γ)) is a copy of W(l), the remaining contractions in the sub-tree1506

of δ(l,i,γ) thus give:1507

δ(|N (i)|+1) ∗j∈[|N (i)|]

(
W(l)h(l−1,N (i)j)

)
,

which according to Lemma 11 amounts to:1508

δ(|N (i)|+1) ∗j∈[|N (i)|]

(
W(l)h(l−1,N (i)j)

)
= �j∈[|N (i)|]

(
W(l)h(l−1,N (i)j)

)
= h(l,i) ,

establishing the induction step.1509

With the inductive claim at hand, we show that contracting T (X) produces f (θ,G)(X). Applying the1510

inductive claim for l = L, we have that h(L,1), . . . ,h(L,|V|) are the vectors produced by executing all1511

contractions in the sub-trees whose roots are δ(L,1,1), . . . , δ(L,|V|,1), respectively. Performing the re-1512

maining contractions, defined by the legs of δ(|V|+1), therefore yields W(o)
(
δ(|V|+1) ∗i∈[|V|] h

(L,i)
)
.1513

By Lemma 11:1514

δ(|V|+1) ∗i∈[|V|] h
(L,i) = �i∈[|V|]h

(L,i) .

Hence, W(o)
(
δ(|V|+1) ∗i∈[|V|] h

(L,i)
)

= W(o)(�i∈[|V|]h
(L,i)) = f (θ,G)(X), meaning contracting1515

T (X) results in f (θ,G)(X).1516

An analogous proof establishes that the contractions described by T (t)(X) yield f (θ,G,t)(X). Specif-1517

ically, the inductive claim and its proof are the same, up to γ taking values in [ρL−l({i}, {t})]1518

instead of [ρL−l({i},V)], for l ∈ [L]. This implies that h(L,t) is the vector produced by contracting1519

the sub-tree whose root is δ(L,t,1). Performing the only remaining contraction, defined by the leg1520

connecting δ(L,t,1) with W(o), thus results in W(o)h(L,t) = f (θ,G,t)(X).1521

I.6.1 Technical Lemma1522

Lemma 11. Let δ(N+1) ∈ RD×···×D be an order N + 1 ∈ N tensor that has ones on its hyper-1523

diagonal and zeros elsewhere, i.e. δ(N+1)
d1,...,dN+1

= 1 if d1 = · · · = dN+1 and δ(N+1)
d1,...,dN+1

= 01524

otherwise, for all d1, . . . , dN+1 ∈ [D]. Then, for any x(1), . . . ,x(N) ∈ RD it holds that1525

δ(N+1) ∗i∈[N] x
(i) = �i∈[N]x

(i) ∈ RD.1526

Proof. By the definition of tensor contraction (Definition 7), for all d ∈ [D] we have that:1527 (
δ(N+1) ∗i∈[N] x

(i)
)
d

=
∑D

d1,...,dN=1
δ

(N+1)
d1,...,dN ,d

·
∏

i∈[N]
x

(i)
di

=
∏

i∈[N]
x

(i)
d =

(
�i∈[N]x

(i)
)
d

.

1528

45

	Introduction
	Preliminaries
	Notation
	Separation Rank: A Measure of Modeled Interaction

	Graph Neural Networks
	Theoretical Analysis: The Effect of Input Graph Structure and Neural Network Architecture on Modeled Interactions
	Overview and Implications
	Empirical Demonstration

	Practical Application: Expressivity Preserving Edge Sparsification
	Walk Index Sparsification (WIS)
	Empirical Evaluation

	Summary
	Formal Analysis: Quantifying the Ability of Graph Neural Networks to Model Interactions
	Related Work
	Tightness of Upper Bounds for Separation Rank
	Extension of Analysis to Directed Graphs With Multiple Edge Types
	Representing Graph Neural Networks With Product Aggregation as Tensor Networks
	Primer on Tensor Analysis
	Tensor Networks
	Tensor Networks Corresponding to Graph Neural Networks With Product Aggregation
	Explicit Tensor Network Definitions

	General Walk Index Sparsification
	Efficient Implementation of 1-Walk Index Sparsification
	Further Experiments and Implementation Details
	Further Experiments
	Further Implementation Details
	Empirical Demonstration of Theoretical Analysis (tab:lowvshighwalkindex)
	Edge Sparsification (fig:sparsegcn,fig:sparsegin)

	Deferred Proofs
	Additional Notation
	Proof of thm:seprankupperbound
	Upper Bounding Separation Rank via Multiplicative Cut Weight in Tensor Network
	Cut in Tensor Network for Graph Prediction (Proof of eq:seprankupperboundgraphpred)
	Cut in Tensor Network for Vertex Prediction (Proof of eq:seprankupperboundvertexpred)
	Technical Lemma

	Proof of thm:sepranklowerbound
	Weights and Template Vectors Assignment for Graph Prediction (Proof of eq:sepranklowerboundgraphpred)
	Weights and Template Vectors Assignment for Vertex Prediction (Proof of eq:sepranklowerboundvertexpred)
	Technical Lemmas

	Proof of thm:directedseprankupperbound
	Proof of thm:directedsepranklowerbound
	Proof of prop:tnconstructions
	Technical Lemma

