
Supplementary File for
Finding Discriminative Filters for Specific
Degradations in Blind Super-Resolution

Liangbin Xie∗1,2,3 Xintao Wang∗3 Chao Dong1,4 Zhongang Qi3 Ying Shan3

1Shenzhen Key Lab of Computer Vision and Pattern Recognition,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences

2University of Chinese Academy of Sciences
3ARC Lab, Tencent PCG

4Shanghai AI Laboratory, Shanghai, China
{lb.xie, chao.dong}@siat.ac.cn

{xintaowang, zhongangqi, yingsshan}@tencent.com

Abstract

In this supplementary file, we first show the details about the comparison between
one-branch and two-branch blind SR networks in Section 1. More experiments and
analyses of masking discovered filters in SRCNN-style and SRResNet networks are
provided in Section 2 and Section 3, respectively. The impact of choosing different
baseline models in FAIG is discussed in Section 4. We provide more results of
degradation prediction in Section 5. Finally, we present a controllable adjustment
of restoration strength with the discovered degradation-specific filters in Section 6.
Furthermore, we include the core codes of FAIG in this supplementary file. The
codes are available at https://github.com/TencentARC/FAIG.

1 Details about the comparison between two-branch and one-branch blind
SR networks

DAN [3] and DASR [5] are two state-of-the-art methods in blind SR. The FLOPs and parameters of
these two models are listed in Tab. 1. For a fair comparison, we adjust the number of residual blocks
in SRResNet to match a similar computation budget to these methods. There are two alternatives
for measuring computation budgets - FLOPs and the total number of parameters. We can adjust
the number of residual blocks to have similar FLOPs or have a similar number of parameters. And
we choose the smaller network between these two alternatives for a more convincing conclusion.
Specifically, the one-branch SRResNet for DAN keeps nearly the same parameters as that of DAN,
while the one-branch SRResNet for DASR keeps nearly the same FLOPs as that of DASR.

We use the officially released codes for DAN 2 and DASR 3. The experiment settings remain un-
changed except the network structures (shown in Tab. 1). Note that DASR first trains the degradation
representation with MOCO for 100 epochs, and then trains the whole network (degradation represen-
tation and conditional restoration) for 500 epochs. For a fair comparison, we train the corresponding
one-branch SRResNet for 500 epochs.

We compare their performance on the blur and blur+noise settings. We adopt the same evaluation
settings as those in their papers. Specifically, for the blur setting, we sample 8 kernels from the range

∗Equal contributions. Liangbin Xie is an intern in ARC Lab, Tencent PCG.
2https://github.com/greatlog/DAN
3https://github.com/LongguangWang/DASR

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/TencentARC/FAIG

[1.8, 3.2] for DAN, while choosing blur kernel width σ = 1.2 for DASR. The blur+noise setting
adopted in our experiments is the same as that in DAN and DASR.

Our runs with the officially released training codes can reach the performance as reported in their
paper. In the blur setting on ×4 blind SR tested on the BSD100 dataset, 1) the DAN result of our
runs in Y channel is 27.52dB, which is very close to the reported performance in the DAN paper
(27.51dB in Table 1.). 2) the DASR result of our runs is 27.52dB, which is the same as the reported
performance in the DASR paper (27.52dB in Table 2.)

The comparison results are shown in Tab. 2. The official two-branch and one-branch SRResNet
networks are trained three times with different random seeds. For both blur and blur+noise settings,
we can observe that the one-branch SRResNet network achieves comparable results with their
corresponding two-branch networks under similar computation budgets.

Table 1: FLOPs, parameters and training details of DAN, DASR and their corresponding one-branch SRResNet
networks with similar computation budgets.

Methods FLOPs Parameters Scale Batch size Initial learning rate Total iterations (epochs)
DAN official 275.36G 4.33M ×4 64 2× 10−4 4× 105 iterations

SRResNet one-branch 77.03G 4.32M ×4 64 2× 10−4 4× 105 iterations
DASR official 48.27G 7.25M ×4 64 1× 10−3 600 epochs

SRResNet one-branch 48.32G 2.33M ×4 64 1× 10−3 500 epochs

Table 2: PSNR (on RGB channels) comparisons between two-branch and one-branch networks on blind SR.

PSNR (dB) DAN [3] DASR [5]
blur blur+noise blur blur+noise

Official two-branch 26.168±0.009 27.341±0.072 27.518±0.034 25.116±0.012
SRResNet one-branch 26.182±0.011 27.288±0.027 27.573±0.010 25.143±0.013

2 Mask discovered filters in SRCNN-style network

We present the result of masking discovered filers in the SRCNN-style network in this section.
SRCNN-style [1] network has nine convolutional layers and the upsampling is operated at the end of
the network. Fig. 1 shows the results of masking discovered filters in SRCNN-style with different
properties. We can also observe the same observations as those of SRResNet (Fig. 3 in the main
paper): 1) When we mask FAIG-discovered filters for deblurring (even a very small portion), the
performance for deblurring drops drastically (①) while the function of denoising is maintained (②) at
small portions and then has a slow decline for large proportions. It is also similar to mask filters for
denoising (③ and ④). 2) If we randomly select a portion of filters to mask, the network shows similar
performance drops, implying that the randomly selected filters are non-discriminative. 3) For the
small proportion (e.g., 1%), the randomly selected filters could not have a large impact on network
function alteration, obviously shown in the illustrative images.

Therefore, the discriminative filters exist in both the representative networks: plain SRCNN-style
networks and SRResNet networks. Our FAIG can be applied to analyze networks with different
structures.

Comparison with other methods. We compare our FAIG with other methods: modified IG (i.e.,
IntInf [2]), absolute values of filter changes (|θ − θ̄|), and random selection. We measure the MSE
error of image gradients as described in Sec. 5.2.1 (in the main paper). A large error/difference
represents a large performance drop caused by the replacement of discovered filters.

2

M
as

k
 d

eb
lu

rr
in

g
 f

il
te

rs
M

as
k

 d
en

o
is

in
g

 f
il

te
rs

p
er

fo
rm

an
ce

 d
ro

p
(M

S
E

o
f

im
ag

e
g

ra
d

.)

p
er

fo
rm

an
ce

 d
ro

p
(M

S
E

o
f

im
ag

e
g

ra
d

.)

Proportion of masked filters Proportion of masked filters

p
er

fo
rm

an
ce

 d
ro

p
(M

SE
 o

f
im

ag
e

g
ra

d
.)

Proportion of masked filters

p
er

fo
rm

an
ce

 d
ro

p
(M

SE
 o

f
im

ag
e

g
ra

d
..)

Proportion of masked filters

Blurry input Noisy input

Noisy input Blurry input

1 2

3 4

× 10−3 × 10−3

× 10−3 × 10−3

%

%

%

FAIG

Random

%

FAIG

Random

FAIG

Random

FAIG

Random

Figure 1: Results of masking discovered filters (by FAIG and random selection) with different
proportions (on SRCNN-style network. The shown images are produced by 1% mask). Zoom in for
best view.

The comparisons on Set14 [6] and BSD100 [4] are represented in Tab. 3 and Tab. 4, respectively.
In both two datasets, our FAIG is able to discover filters that result in larger performance drop, i.e.,
discover more important filters for corresponding degradations.

Table 3: We compare the performance drop with other methods. For blurry (noisy) inputs, we mask the
corresponding debluring (denoising) filters. Larger values indicates a large performance drop, indicating
discovering more important/discriminative filters for corresponding degradations. Test on SRCNN-style
networks and Set14.

(10−3) mask 1% discovered filters mask 5% discovered filters
Input FAIG (ours) IG |θ − θ̄| Random FAIG (ours) IG |θ − θ̄| Random

Blurry image 6.42±0.30 0.86±0.41 0.91±0.70 0.07±0.03 7.18±0.18 3.05±1.02 2.81±0.33 0.50±0.02
Noisy image 1.78±0.05 0.45±0.32 0.63±0.31 0.04±0.02 5.35±0.52 1.14±1.21 2.08±0.13 0.11±0.01

Table 4: We compare the performance drop with other methods. For blurry (noisy) inputs, we mask the
corresponding debluring (denoising) filters. Larger values indicates a large performance drop, indicating
discovering more important/discriminative filters for corresponding degradations. Test on SRCNN-style
networks and BSD100.

(10−3) mask 1% discovered filters mask 5% discovered filters
Input FAIG (ours) IG |θ − θ̄| Random FAIG (ours) IG |θ − θ̄| Random

Blurry image 5.02±0.36 0.74±0.42 0.63±0.65 0.05±0.02 5.74±0.29 2.53±1.02 2.18±0.25 0.45±0.07
Noisy image 1.40±0.37 0.28±0.11 0.63±0.35 0.02±0.00 4.86±0.90 0.93±1.05 2.01±0.12 0.11±0.01

More qualitative results of masking discovered filters with three different proportions (i.e., 1%, 5%,
10%) are shown in Fig. 2, Fig. 3 (on Set14), and Fig. 4, Fig. 5 (on BSD100).

When we mask the deblurring filters, the corresponding network function of deblurring is eliminated
(②) while the function of denoising is maintained (③). Similarly, when we mask the denoising filters,
the corresponding network function of denoising is eliminated (④) while the function of deblurring
is maintained (⑤). Moreover, the performance drop is larger when more discriminative filters are
masked. In a word, benefiting from our FAIG, the discovered filters maintain the discriminative
property for different degradations.

3

Mask deblurring filters Mask denoising filters

GT image Blurry input Noisy input Noisy input Blurry input

1 2 3 4 5

1 2 3 4 5

M
as

k
1%

fil
te

rs

Mask deblurring filters Mask denoising filters

GT image Blurry input Noisy input Noisy input Blurry input

M
as

k
5%

fil
te

rs
M

as
k

10
%

fil
te

rs

Mask deblurring filters Mask denoising filters

GT image Blurry input Noisy input Noisy input Blurry input

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Figure 2: Qualitative results of masking different proportion (from top to bottom: 1%, 5%, and
10%) of discovered filters (by FAIG) in SRCNN-style network. Test on Set14. When we mask
the deblurring filters, the corresponding network function of deblurring is eliminated (②) while
the function of denoising is maintained (③). Similarly, when we mask the denoising filters, the
corresponding network function of denoising is eliminated (④) while the function of deblurring is
maintained (⑤). Moreover, performance drop is larger when more discriminative filters are masked.
Zoom in for best view.

4

Mask deblurring filters Mask denoising filters

GT image Blurry input Noisy input Noisy input Blurry input

1 2 3 4 5

1 2 3 4 5

M
as

k
1%

fil
te

rs

Mask deblurring filters Mask denoising filters

GT image Blurry input Noisy input Noisy input Blurry input

1 2 3 4 5

1 2 3 4 5

M
as

k
5%

fil
te

rs

Mask deblurring filters Mask denoising filters

GT image Blurry input Noisy input Noisy input Blurry input

1 2 3 4 5

1 2 3 4 5

M
as

k
10

%
fil

te
rs

Figure 3: Qualitative results of masking different proportion (from top to bottom: 1%, 5%, and
10%) of discovered filters (by FAIG) in SRCNN-style network. Test on Set14. When we mask
the deblurring filters, the corresponding network function of deblurring is eliminated (②) while
the function of denoising is maintained (③). Similarly, when we mask the denoising filters, the
corresponding network function of denoising is eliminated (④) while the function of deblurring
is maintained (⑤). Moreover, the performance drop is larger when more discriminative filters are
masked. Zoom in for best view.

5

Mask deblurring filters Mask denoising filters

GT image Blurry input Noisy input Noisy input Blurry input

1 2 3 4 5

1 2 3 4 5

M
as

k
1%

fil
te

rs

Mask deblurring filters Mask denoising filters

GT image Blurry input Noisy input Noisy input Blurry input

M
as

k
5%

fil
te

rs
M

as
k

10
%

fil
te

rs

Mask deblurring filters Mask denoising filters

GT image Blurry input Noisy input Noisy input Blurry input

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Figure 4: Qualitative results of masking different proportion (from top to bottom: 1%, 5%, and
10%) of discovered filters (by FAIG) in SRCNN-style network. Test on BSD100. When we mask
the deblurring filters, the corresponding network function of deblurring is eliminated (②) while
the function of denoising is maintained (③). Similarly, when we mask the denoising filters, the
corresponding network function of denoising is eliminated (④) while the function of deblurring
is maintained (⑤). Moreover, the performance drop is larger when more discriminative filters are
masked. Zoom in for best view.

6

Mask deblurring filters Mask denoising filters

GT image Blurry input Noisy input Noisy input Blurry input

1 2 3 4 5

1 2 3 4 5

M
as

k
1%

fil
te

rs

Mask deblurring filters Mask denoising filters

GT image Blurry input Noisy input Noisy input Blurry input

1 2 3 4 5

1 2 3 4 5

M
as

k
5%

fil
te

rs

Mask deblurring filters Mask denoising filters

GT image Blurry input Noisy input Noisy input Blurry input

1 2 3 4 5

1 2 3 4 5

M
as

k
10

%
fil

te
rs

Figure 5: Qualitative results of masking different proportion (from top to bottom: 1%, 5%, and
10%) of discovered filters (by FAIG) in SRCNN-style network. Test on BSD100. When we mask
the deblurring filters, the corresponding network function of deblurring is eliminated (②) while
the function of denoising is maintained (③). Similarly, when we mask the denoising filters, the
corresponding network function of denoising is eliminated (④) while the function of deblurring
is maintained (⑤). Moreover, the performance drop is larger when more discriminative filters are
masked. Zoom in for best view.

7

3 Mask discovered filters in SRResNet

In the main paper (Fig. 3), we have shown the results of masking discovered filters in SRResNet
with different properties. In this supplementary file, we provide more comparison results with other
methods: modified IG (i.e., IntInf [2]), absolute values of filter changes (|θ−θ̄|), and random selection.
We measure the MSE error of image gradients as described in Sec. 5.2.1 (in the main paper). A large
error/difference represents a large performance drop caused by the replacement of discovered filters.

The comparisons on Set14 [6] and BSD100 [4] are represented in Tab. 5 and Tab. 6, respectively.
In both two datasets, our FAIG is able to discover filters that result in larger performance drop, i.e.,
discover more important filters for corresponding degradations.

Table 5: We compare the performance drop with other methods. For blurry (noisy) inputs, we mask the
corresponding debluring (denoising) filters. Larger values indicates a large performance drop, indicating
discovering more important/discriminative filters for corresponding degradations. Test on SRResNet networks
and Set14.

(10−3) mask 1% discovered filters mask 5% discovered filters
Input FAIG (ours) IG |θ − θ̄| Random FAIG (ours) IG |θ − θ̄| Random

Blurry image 6.68±0.63 4.31±1.54 0.18±0.13 0.07±0.01 7.53±0.24 6.41±0.88 2.16±0.61 0.55±0.32
Noisy image 6.62±0.54 4.22±0.44 0.49±0.10 0.04±0.01 16.28±3.84 8.01±1.04 3.25±1.85 0.19±0.05

Table 6: We compare the performance drop with other methods. For blurry (noisy) inputs, we mask the
corresponding debluring (denoising) filters. Larger values indicates a large performance drop, indicating
discovering more important/discriminative filters for corresponding degradations. Test on SRResNet networks
and BSD100.

(10−3) mask 1% discovered filters mask 5% discovered filters
Input FAIG (ours) IG |θ − θ̄| Random FAIG (ours) IG |θ − θ̄| Random

Blurry image 5.35±0.42 2.43±0.79 0.17±0.12 0.04±0.01 5.98±0.12 4.86±0.73 1.60±0.55 0.32±0.01
Noisy image 5.91±0.92 3.82±0.40 0.40±0.09 0.05±0.01 14.06±2.28 7.92±1.17 3.01±2.08 0.47±0.39

More qualitative results of masking discovered filters with three different proportions (i.e., 1%, 5%,
10%) are shown in Fig. 6 (on Set14), Fig. 7 (on BSD100).

When we mask the deblurring filters, the corresponding network function of deblurring is eliminated
(②) while the function of denoising is maintained (③). Similarly, when we mask the denoising filters,
the corresponding network function of denoising is eliminated (④) while the function of deblurring is
maintained (⑤). Moreover, performance drop is larger when more discriminative filters are masked.
In a word, benefiting from our FAIG, the discovered filters maintain the discriminative property for
different degradations.

8

Mask deblurring filters Mask denoising filters

GT image Blurry input Noisy input Noisy input Blurry input

1 2 3 4 5

1 2 3 4 5

M
as

k
1%

fil
te

rs

Mask deblurring filters Mask denoising filters

GT image Blurry input Noisy input Noisy input Blurry input

1 2 3 4 5

1 2 3 4 5

M
as

k
5%

fil
te

rs

Mask deblurring filters Mask denoising filters

GT image Blurry input Noisy input Noisy input Blurry input

1 2 3 4 5

1 2 3 4 5

M
as

k
10

%
fil

te
rs

Figure 6: Qualitative results of masking different proportion (from top to bottom: 1%, 5%, and 10%)
of discovered filters (by FAIG) in SRResNet network. Test on Set14. When we mask the deblurring
filters, the corresponding network function of deblurring is eliminated (②) while the function of
denoising is maintained (③). Similarly, when we mask the denoising filters, the corresponding
network function of denoising is eliminated (④) while the function of deblurring is maintained (⑤).
Moreover, the performance drop is larger when more discriminative filters are masked. Zoom in for
best view.

9

Mask deblurring filters Mask denoising filters

GT image Blurry input Noisy input Noisy input Blurry input

1 2 3 4 5

1 2 3 4 5

M
as

k
1%

fil
te

rs

Mask deblurring filters Mask denoising filters

GT image Blurry input Noisy input Noisy input Blurry input

1 2 3 4 5

1 2 3 4 5

M
as

k
5%

fil
te

rs

Mask deblurring filters Mask denoising filters

GT image Blurry input Noisy input Noisy input Blurry input

1 2 3 4 5

1 2 3 4 5

M
as

k
10

%
fil

te
rs

Figure 7: Qualitative results of masking different proportion (from top to bottom: 1%, 5%, and
10%) of discovered filters (by FAIG) in SRResNet network. Test on BSD100. When we mask
the deblurring filters, the corresponding network function of deblurring is eliminated (②) while
the function of denoising is maintained (③). Similarly, when we mask the denoising filters, the
corresponding network function of denoising is eliminated (④) while the function of deblurring
is maintained (⑤). Moreover, the performance drop is larger when more discriminative filters are
masked. Zoom in for best view.

10

4 Impact of different baseline model

As mentioned in the main paper, we propose a fine-tuning strategy to construct baseline models
in FAIG. Specifically, we first train a common SR model for bilinear downsampling kernel as the
baseline model F (θ̄bilinear) and then fine-tune it to obtain F (θ) for bilinear kernel, blur and noise
together, as the target model.

The choice of baseline models will affect the final attribution results. We compare our baseline
models (denoted as F (θ̄bilinear)) with other two alternative baseline models: randomly initialized
baseline model F (θ̄random) and all-zero baseline model F (θ̄zero). We conduct the evaluation of
masking discovered filters. We mask 1% discriminative filters for corresponding degradations in
SRCNN-style network. For a complete comparison, we replace the weights of discovered filters
with those filters (at the same location) in F (θ̄bilinear) or their corresponding baseline models, i.e.,
F (θ̄random) or F (θ̄zero).

The results are shown in Fig. 8. It is observed that: 1) among different baseline models in FAIG (②,
③, ④), our proposed baseline model F (θ̄bilinear) could discovered the most discriminative filters.
After masking the corresponding discovered filters, the results of ② (ours) could effectively eliminate
the network function of degradation removal. We also show the MSE error of image gradients and
our a higher MSE error indicates more important filters we found. 2) If we replace the discovered
filters with those filters in F (θ̄random) or F (θ̄zero), the outputs will suffer from severe brightness
issues, as the drastic changes of filters badly affect the network outputs. Therefore, our proposed
fine-tuning strategy for baseline models is more effective in finding discriminative filters for specific
degradations.

B
lu

rr
y
 i

n
p

u
t

N
o

is
y
 i

n
p

u
t

𝐹 ҧ𝜃𝑏𝑖𝑙𝑖𝑛𝑒𝑎𝑟 output
Found by 𝐹 ҧ𝜃𝑏𝑖𝑙𝑖𝑛𝑒𝑎𝑟

Replaced by 𝐹 ҧ𝜃b𝑖𝑙𝑖𝑛𝑒𝑎𝑟

9.754 9.129 0.630 2.138

3.333 1.243 0.468 0.567

1 2 3 4 5 6

Found by 𝐹 ҧ𝜃𝑟𝑎𝑛𝑑𝑜𝑚
Replaced by 𝐹 ҧ𝜃𝑏𝑖𝑙𝑖𝑛𝑒𝑎𝑟

Found by 𝐹 ҧ𝜃𝑧𝑒𝑟𝑜
Replaced by 𝐹 ҧ𝜃𝑏𝑖𝑙𝑖𝑛𝑒𝑎𝑟

Found by 𝐹 ҧ𝜃𝑟𝑎𝑛𝑑𝑜𝑚
Replaced by 𝐹 ҧ𝜃𝑟𝑎𝑛𝑑𝑜𝑚

Found by 𝐹 ҧ𝜃𝑧𝑒𝑟𝑜
Replaced by 𝐹 ҧ𝜃𝑧𝑒𝑟𝑜

Figure 8: Comparison of masking discovered filters (by FAIG) with different baseline models. We
mask 1% discriminative filters for corresponding degradation in SRCNN-style network. “Found by
F (θ̄random)” means that we discover the important filter with the baseline model of F (θ̄random),
while “Replace by F (θ̄random)” means that we replace these filters in target model F (θ) with the
filters (at the same locations) in the F (θ̄random) model.

5 Degradation prediction

We adopt Set14 to discover filters for a specific degradation D. The thresholds are then calculated on
the BSD100 dataset. Finally, the degradation prediction is performed on the DIV2K dataset. We set
Tnoise and Tblur to 0.6 and 0.5, and the prediction accuracy can reach 98% and 96%, respectively. In
addition to setting a specific threshold, we also plot the curve of classification accuracy with different
threshold values, as shown in Fig. 9. If we set a suitable threshold, we can achieve a high degradation
prediction accuracy without any supervision about degradation distinctions.

6 Controllable restoration based on the discovered discriminative filters

Based on the discovered discriminative filters for different degradations with our method FAIG,
we are able to achieve controllable restoration. Specially, we could interpolate the corresponding

11

Figure 9: Results of accuracy with different thresholds. Based on the discovered filters, we can
predict the degradation of input images by comparing our proposed overlap score (OS) with the
threshold.

parameters (at the same location) of discovered filters between the baseline model F (θ̄) and the target
model F (θ) to derive a new interpolated model F (θinterp), whose parameters are:

θinterp = (1− λ)θ̄ + λθ, (1)

where λ is the interpolation coefficient. As shown in Fig. 10 and Fig. 11, by smoothly adjusting λ,
we can achieve a controllable adjustment of restoration strength without introducing extra parameters.
Note that the adjustments of denoising and deburring effects can be realized in one network, by
controlling corresponding discriminative filters.

grass

sky

0.0 0.2 0.4 0.6 0.7 0.8 0.9 1.0𝜆

Figure 10: We can adjust the coefficient λ for denoising filters to obtain continuous denoising effect.
Zoom in for best view.

clothes

ship

0.4 0.6 0.8 0.9 1.0 1.1 1.2 1.3𝜆

Figure 11: We can adjust the coefficient λ for deblurring filters to obtain continuous deburring effect.
Zoom in for best view.

12

7 The core codes for FAIG

The core codes of our method FAIGi(θ, x) are provided as follows.

import glob
import os

import cv2
import numpy as np
import torch
from basicsr.models.archs import interpret_arch as interpret_arch

def FAIG(img1, img2, gt_img, baseline_net_path, target_net_path, total_step,
conv_index):

""" Filter Attribution Integrated Gradients of a single image

When finding blurry filters, img1 is a blurry image,
while img2 is a noisy image.

When finding noisy filters, img1 is a noisy image,
while img2 is a blurry image.

Args:
img1 (tensor): with the shape (1, 3, H, W)
img2 (tensor): with the shape (1, 3, H, W)
gt_img (tensor): with the shape (1, 3, H, W)
baseline_net_path: path of baseline model
target_net_path: path of target model
total_step (int): total steps in the approximation of the integral
conv_index (list): index of conv layer in srcnn-style like network

Returns:
FAIG_img1: FAIG result of img1

"""
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

baseline_state_dict = torch.load(baseline_net_path)['params_ema']
target_state_dict = torch.load(target_net_path)['params_ema']

calculate the gradient of two images with different degradation
total_gradient_img1 = 0
total_gradient_img2 = 0

approximate the integral via 100 discrete points uniformly
sampled along the straight-line path
for step in range(0, total_step):

alpha = step / total_step
interpolate_net_state_dict = {}
for key, _ in baseline_state_dict.items():

a straight-line path between baseline model and target model
interpolate_net_state_dict[key] = alpha * baseline_state_dict[

key] + (1 - alpha) * target_state_dict[key]

interpolate_net = interpret_arch.srcnn_style(scale=2)
interpolate_net.eval()
interpolate_net = interpolate_net.to(device)
interpolate_net.load_state_dict(interpolate_net_state_dict)

for degradation 1

13

interpolate_net.zero_grad()
output1 = interpolate_net(img1)
measure the distance between the network output and the ground-truth
refer to the equation 3 in the main paper
criterion = torch.nn.MSELoss(reduction='sum')
loss1 = criterion(gt_img, output1)
calculate the gradient of F to each filter
loss1.backward()
grad_list_img1 = []
for idx in conv_index:

grad = interpolate_net.features[idx].weight.grad
grad = grad.reshape(-1, 3, 3)
grad_list_img1.append(grad)

grad_list_img1 = torch.cat(grad_list_img1, dim=0)
total_gradient_img1 += grad_list_img1

for degradation 2
interpolate_net.zero_grad()
output2 = interpolate_net(img2)
measure the distance between the network output and the ground-truth
refer to the equation 3 in the main paper
criterion = torch.nn.MSELoss(reduction='sum')
loss2 = criterion(gt_img, output2)
calculate the gradient of F to every filter
loss2.backward()
grad_list_img2 = []
for idx in conv_index:

grad = interpolate_net.features[idx].weight.grad
grad = grad.reshape(-1, 3, 3)
grad_list_img2.append(grad)

grad_list_img2 = torch.cat(grad_list_img2, dim=0)
total_gradient_img2 += grad_list_img2

calculate the diff of filters between the baseline model and target model
diff_list = []
baseline_net = interpret_arch.srcnn_style(scale=2)
baseline_net.eval()
baseline_net = baseline_net.to(device)
baseline_net.load_state_dict(baseline_state_dict)

target_net = interpret_arch.srcnn_style(scale=2)
target_net.eval()
target_net = target_net.to(device)
target_net.load_state_dict(target_state_dict)
for idx in conv_index:

variation = baseline_net.features[idx].weight.detach(
) - target_net.features[idx].weight.detach()
variation = variation.reshape(-1, 3, 3)
diff_list.append(variation)

diff_list = torch.cat(diff_list, dim=0)

multiple the cumulated gradients of img1 with the diff
refer to equation 6 in the main paper
Single_FAIG_img1 = total_gradient_img1 * diff_list / total_step
Single_FAIG_img1 = torch.sum(

torch.sum(abs(Single_FAIG_img1), dim=1), dim=1)

multiple the cumulated gradients of img2 with the diff
refer to equation 6 in the main paper

14

Single_FAIG_img2 = total_gradient_img2 * diff_list / total_step
Single_FAIG_img2 = torch.sum(

torch.sum(abs(Single_FAIG_img2), dim=1), dim=1)

Find discriminative filters for a specific degradation
refer to equation 7 in the main paper
FAIG_img1 = Single_FAIG_img1 - Single_FAIG_img2
return FAIG_img1.cpu().numpy()

def main():
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

baseline_model_path = 'model/baseline_model.pth'
target_model_path = 'model/target_model.pth'

gt_folder = 'datasets/gt_folder'
blur_folder = 'datasets/blur_folder'
noise_folder = 'datasets/noise_folder'
total_step = 100
conv_index = [0, 2, 4, 6, 8, 10, 12, 15, 17]

noise_img_list = sorted(glob.glob(os.path.join(noise_folder, '*')))
blur_img_list = sorted(glob.glob(os.path.join(blur_folder, '*')))

FAIG_average_noisy = 0
deal noisy imgs
average all the gradient difference in a whole dataset
for img_idx, path in enumerate(noise_img_list):

imgname = os.path.basename(path)
noisy_img = cv2.imread(path, cv2.IMREAD_COLOR).astype(

np.float32) / 255.
noisy_img = torch.from_numpy(

np.transpose(noisy_img[:, :, [2, 1, 0]], (2, 0, 1))).float()
noisy_img = noisy_img.unsqueeze(0).to(device)

blurry_img = cv2.imread(blur_img_list[img_idx],
cv2.IMREAD_COLOR).astype(np.float32) / 255.

blurry_img = torch.from_numpy(
np.transpose(blurry_img[:, :, [2, 1, 0]], (2, 0, 1))).float()

blurry_img = blurry_img.unsqueeze(0).to(device)

gt_img_path = os.path.join(gt_folder, imgname)
gt_img = cv2.imread(gt_img_path, cv2.IMREAD_COLOR).astype(

np.float32) / 255.
gt_img = torch.from_numpy(

np.transpose(gt_img[:, :, [2, 1, 0]], (2, 0, 1))).float()
gt_img = gt_img.unsqueeze(0).to(device)

use FAIG for a single image
FAIG_noisy = FAIG(noisy_img, blurry_img, gt_img, baseline_model_path,

target_model_path, total_step, conv_index)

FAIG_average_noisy += np.array(FAIG_noisy)

reverse = True
if reverse:

sorted_noisy_location = np.argsort(FAIG_average_noisy)[::-1]
else:

15

sorted_noisy_location = np.argsort(FAIG_average_noisy)

save_noisy_filter_txt = os.path.join('noise/FAIG_filter_index.txt')

save the filter index to txt file
np.savetxt(

save_noisy_filter_txt, sorted_noisy_location, delimiter=',', fmt='%d')

if __name__ == '__main__':
main()

16

References
[1] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image super-resolution using deep

convolutional networks. 38(2):295–307, 2016.
[2] Klas Leino, Shayak Sen, Anupam Datta, Matt Fredrikson, and Linyi Li. Influence-directed explanations for

deep convolutional networks. In 2018 IEEE International Test Conference, pages 1–8. IEEE, 2018.
[3] Zhengxiong Luo, Yan Huang, Shang Li, Liang Wang, and Tieniu Tan. Unfolding the alternating optimization

for blind super resolution. In NeurIPS, 2020.
[4] David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database of human segmented natural

images and its application to evaluating segmentation algorithms and measuring ecological statistics. In
ICCV, 2001.

[5] Longguang Wang, Yingqian Wang, Xiaoyu Dong, Qingyu Xu, Jungang Yang, Wei An, and Yulan Guo.
Unsupervised degradation representation learning for blind super-resolution. In CVPR, 2021.

[6] Roman Zeyde, Michael Elad, and Matan Protter. On single image scale-up using sparse-representations. In
International Conference on Curves and Surfaces. Springer, 2010.

17

	Details about the comparison between two-branch and one-branch blind SR networks
	Mask discovered filters in SRCNN-style network
	Mask discovered filters in SRResNet
	Impact of different baseline model
	Degradation prediction
	Controllable restoration based on the discovered discriminative filters
	The core codes for FAIG

