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APPENDIX

A BROADER IMPACT

Our method, which employs diffusion for general few-shot dense tasks, offers significant advantages
beyond technical improvements. It substantially reduces labor costs associated with pixel-by-pixel
annotation of visual dense tasks, making model deployment more cost-effective and accessible,
especially for resource-limited projects. Additionally, the few-shot nature of our approach reduces
energy consumption, lowering the environmental impact by decreasing the need for extensive data
and computational resources. This aligns with broader goals of energy conservation and emission
reduction. By democratizing access to advanced machine learning technologies, our method enables
smaller entities and individuals to innovate and implement AI solutions, promoting more responsible
and ethical AI development.

B RESULTS ON FULLY TRAINING SET

We include the results of full training set in Table. 1. Although VPD’s performance in the few-shot
setting is not strong, with more training data, we can see that its performance improves significantly
because it fine-tunes more parameters. In contrast, we only fine-tune the concept embeddings with
a few hundred parameters. However, our method still outperforms VTM even after training on the
full training set, demonstrating the higher potential of the diffusion prior. We also reported the 95%
confidence interval, and it can be seen that our method, leveraging a very general prior, achieved
more stable results compared to VTM.

C RESULTS WITH DIFFERENT NUMBER OF TRAINING SAMPLES

In Fig 1, we illustrate the impact of using 10, 20, 50, and 100 training samples on our method and
VPD across all 12 tasks. It can be observed that our method consistently adapts better to new tasks
compared to VPD when fewer than 100 training examples are provided. Moreover, as the number of
training samples increases, the performance of both methods improves accordingly.
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Table 1: We present the results on 10 tasks from Taskonomy and 2 tasks from NYUv2. For Taskonomy
tasks, 10-shot training examples are used for each of them, and for NYU tasks, we use 20 examples.
To also evaluate the statistical robustness, we run each number for 100 times and report the 95%
confidence interval. Besides segmentation task, lower number indicates better performance. Our
method consistently outperforms VTM on all few-shot tasks, especially on out-of-domain tasks. And
our method better unleashes the power of diffusion prior for few-shot dense prediction compared to
VPD.

Few-shot Fully Supervised

VTM VPD Ours VTM VPD Ours

EucDepth
0.0812
±0.0065

0.1056
±0.0102

0.0776
±0.0072 0.0524 0.0456 0.0498

Z-depth
0.0347
±0.0035

0.0404
±0.0037

0.0308
±0.0038 0.0257 0.0210 0.0236

2DEdge
0.0818
±0.0021

0.0965
±0.0023

0.0625
±0.0022 0.0154 0.0131 0.0136

3DEdge
0.0917
±0.0028

0.1226
±0.0044

0.0812
±0.0040 0.0638 0.0564 0.0599

2DKeypoint
0.0671
±0.0038

0.0697
±0.0035

0.0626
±0.0040 0.0337 0.289 0.306

3DKeypoint
0.0512
±0.0018

0.0670
±0.0027

0.0389
±0.0014 0.0360 0.0298 0.0324

Reshading
0.1308
±0.0058

0.1609
±0.0044

0.1284
±0.0049 0.834 0.756 0.772

Curvature
0.0413
±0.0010

0.0498
±0.0019

0.0376
±0.0023 0.0345 0.0291 0.329

Normal
11.7850
±0.4580

14.4381
±0.3097

10.1346
±0.0361 6.2418 5.7963 5.9821

SemSeg
0.3980
±0.0350

0.3484
±0.0308

0.4178
±0.0361 0.4618 0.4905 0.4784

NYUDepth
0.73
±0.09

0.49
±0.11

0.43
±0.08 0.35 0.25 0.29

NYUNormal
26.1
±3.8

18.5
±1.7

16.4
±1.6 18.2 14.8 14.9
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Figure 1: We present the impact of using different numbers of training samples on our method and
VPD across all 12 tasks.
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