
Under review as a conference paper at ICLR 2021

Appendix A presents several basic probability tools. Appendix B states some applications
of concentration inequalities. Appendix C states some anti-contraction result and its gen-
eralization. Appendix D discusses about sensitivity. Appendix E finally proves our main
result. Appendix F show several more experimental results.

A Probability tools

In this section we present a number of classical probability tools used in the proof. Lemma
A.1 (Cherno↵), A.2 (Hoe↵ding) and A.3 (Bernstein) are about tail bounds for random scalar
variables. Lemma A.5 and Lemma A.4 state two standard results for random Gaussian
variable. Lemma A.6 is a probability for Chi-square distribution. Finally, Lemma A.7 is a
concentration result on random matrices.

We state the classical Cherno↵ bound which is named after Herman Cherno↵ but due to
Herman Rubin. It gives exponentially decreasing bounds on tail distributions of sums of
independent random variables.

Lemma A.1 (Cherno↵ bound Cherno↵ (1952)). Let X =
Pn

i=1 Xi, where Xi = 1 with

probability pi and Xi = 0 with probability 1 � pi, and all Xi are independent. Let µ =
E[X] =

Pn
i=1 pi. Then

1. Pr[X � (1 + �)µ]  exp(��2µ/3), 8� > 0 ;

2. Pr[X  (1� �)µ]  exp(��2µ/2), 80 < � < 1.

We state the Hoe↵ding bound:

Lemma A.2 (Hoe↵ding bound Hoe↵ding (1963)). Let X1, · · · , Xn denote n independent

bounded variables in [ai, bi]. Let X =
Pn

i=1 Xi, then we have

Pr[|X � E[X]| � t]  2 exp

✓
� 2t2Pn

i=1(bi � ai)2

◆
.

We state the Bernstein inequality:

Lemma A.3 (Bernstein inequality Bernstein (1924)). Let X1, · · · , Xn be independent zero-

mean random variables. Suppose that |Xi|  M almost surely, for all i. Then, for all

positive t,

Pr

"
nX

i=1

Xi > t

#
 exp

� t

2
/2Pn

j=1 E[X2
j] +Mt/3

!
.

We state two bounds for Gaussian random variable:

Lemma A.4 (folklore). Let X ⇠ N (0,�2), then for all t � 0, we have

Pr[X � t]  exp(�t2/2�2).

Lemma A.5 (folklore). Let X ⇠ N (0,�2), that is, the probability density function of X is

given by �(x) = 1p
2⇡�2

e
� x2

2�2 . Then

Pr[|X|  t]  4

5

t

�
.

We state a tool for Chi-square distribution:

Lemma A.6 (Lemma 1 on page 1325 of Laurent and Massart Laurent & Massart (2000)).
Let X ⇠ X 2

k be a chi-squared distributed random variable with k degrees of freedom. Each

one has zero mean and �
2
variance. Then

Pr[X � k�
2 � (2

p
kt+ 2t)�2]  exp(�t),

Pr[k�2 �X � 2
p
kt�

2]  exp(�t).

13

Under review as a conference paper at ICLR 2021

Matrix concentration inequalities have a large number of applications, for more details, we
refer the readers to a survey by Tropp Tropp (2015). Recently, there are several non-trivial
generalizations, e.g., Expander walk Garg et al. (2018); Naor et al. (2019), Strongly Rayleigh
distributions Kyng & Song (2018), and matrix Poincare inequality Aoun et al. (2019). Here,
we state matrix Bernstein inequality, which can be thought of as a matrix generalization of
Lemma A.3.

Lemma A.7 (Matrix Bernstein, Theorem 6.1.1 in Tropp (2015)). Consider a set of m i.i.d.

matrices {X1, · · · , Xm} ⇢ Rn1⇥n2 . Assume that

E[Xi] = 0, 8i 2 [m] and kXik M, 8i 2 [m].

Let X =
Pm

i=1 Xi. Let Var[X] be the matrix variance statistic of sum:

Var[X] = max

(���
mX

i=1

E[XiX
>
i]
���,
���

mX

i=1

E[X>
i Xi]

���

)
.

Then

E[kXk]  (2Var[X] · log(n1 + n2))
1/2 +M · log(n1 + n2)/3.

Furthermore, for all t � 0,

Pr[kXk � t]  (n1 + n2) · exp
✓
� t

2
/2

Var[X] +Mt/3

◆
.

14

Under review as a conference paper at ICLR 2021

B Application of concentration inequality

B.1 Application of concentration inequality, truncated Gaussian

Lemma B.1 (Inner product between two vectors). Let a > 0. Let u1, · · · , ud denote i.i.d.

random variables satisfying 8i 2 [d] ui = yi · zi where yi ⇠ N (0,�2) and

zi =

⇢
1, |yi|  a;
0, |yi| > a.

Then, for any fixed vector x 2 Rd
, for any failure probability � 2 (0, 1/10), we have

Pr
u
[|hu, xi| � 10kxk2a(

p
a/� + 1) log(1/�)]  �.

Proof. First, we can compute can E[ui]

E[ui] = E[ui] = 0.

Second, we can upper bound E[(ui)2] using Lemma A.5

E[(ui)
2] = E[u2

i]

 a
2 · Pr[|ui|  a]

 a
2 · 4

5

a

�

 a
3
/�.

Third, we can upper bound |uixi| by a · kxk1.

Using Bernstein inequality, we have

Pr[|hu, xi| � t]  exp
⇣
� t

2
/2

kxk22 E[u2
i] + akxk1t/3

⌘

 exp
⇣
� t

2
/2

kxk22a3/� + akxk1t/3

⌘
.

Choosing

t = 5kxk2a1.5��0.5
p
log(1/�) + 5kxk1a log(1/�)

gives us

Pr[|hu, xi| � 10kxk2a(
p
a/� + 1) log(1/�)]  �.

Lemma B.2 (Matrix vector multiplication). Let a > 0. Let Ai,j denote i.i.d. random

variables satisfying 8i 2 [m], j 2 [d]. Ai,j = yi,j · zi,j where yi,j ⇠ N (0,�2) and

zi,j =

⇢
1, |yi,j |  a;
0, |yi,j | > a.

Then, for any fixed vector x 2 Rd
, for any failure probability � 2 (0, 1/10), we have

Pr
A

h
|kAxk22 � E[kAxk22]| � 1000mkxk22(�2 + a

2) log3(m/�)
i
 �.

Further, if m = ⌦(✏�2kxk22(1 + a
2
/�

2) log3(m/�)),

Pr
A

h 1
m

��kAxk22 � E[kAxk22]
�� � ✏

2kxk22�2
i
 �.

15

Under review as a conference paper at ICLR 2021

Proof. We define random variable bi = (Ax)2i . We can upper bound E[bi]

E[bi] = E[(Ax)2i]  kxk22 · a3/�.
Similarly,

E[bi] = E[(Ax)2i] � 0.1kxk22 · a3/�.

Next, we want to upper bound E[b2i], for simplicity, let u denote the i-th row of matrix A,

E[b2i]� (E[bi])2 = E[hu, xi4]� (E[hu, xi2])2

= E
h
(

dX

i=1

uixi)
4
i
�
⇣
E
h
(

dX

i=1

uixi)
2
i⌘2

.

For the first term, we have

E
h
(

dX

i=1

uixi)
4
i
= E

h dX

i=1

u
4
ix

4
i

i
+ 3E

h dX

i=1

X

j2[d]\{i}

u
2
ix

2
iu

2
jx

2
j

i

 E[u4
i] · kxk44 + 3(E[u2

i])
2 · kxk42

 4E[u4
i] · kxk42.

For the second term, we have

⇣
E
h
(

dX

i=1

uixi)
2
i⌘2

=
⇣ dX

i=1

E[u2
i]x

2
i

⌘2
= (E[u2

i])
2 · kxk42.

Thus, we have

E[b2i]� (E[bi])2  4E[u4
i] · kxk42  64�4kxk42.

We also need to upper bound |bi|. Apply Lemma B.1, we have, for a fixed i 2 [m],

|bi|  (10kxk2a(
p

a/� + 1) log(m/�))2 := bmax

holds with probability at least 1� �/m.

Taking a union bound over m coordinates, with probability 1� �, we have : for all i 2 [m],
|bi|  bmax.

Applying Bernstein inequality (Lemma A.3) on
Pm

i=1 bi again

Pr
h���

mX

i=1

(bi � E[bi])
��� � t

i
 exp

⇣
� t

2
/2Pm

i=1 Var[bi] + bmaxt/3

⌘

 exp
⇣
� t

2
/2

64m�4kxk42 + bmaxt/3

⌘
.

Choosing t = 50m�
2kxk22 log(1/�) + 50mbmax log(1/�), we complete the proof.

B.2 Application of concentration inequalities, classical random Gaussian

Lemma B.3 (Inner product between a random guassian vector and a fixed vector). Let

a > 0. Let u1, · · · , ud denote i.i.d. random guassian variables where ui ⇠ N (0,�2
1).

Then, for any fixed vector e 2 Rd
, for any failure probability � 2 (0, 1/10), we have

Pr
u

h
|hu, ei| � 2�1kek2

p
log(d/�) + �1kek1 log1.5(d/�)

i
 �.

Proof. First, we can compute E[ui]

E[ui] = E[ui] = 0.

16

Under review as a conference paper at ICLR 2021

Second, we can compute E[(ui)2]

E[(ui)
2] = E[u2

i] = �
2
1 .

Third, we can upper bound |ui| and |uiei|.

Pr
u
[|ui � E[ui]| � t1]  exp

⇣
� t

2
1

2�2
1

⌘
.

Take t1 =
p
2 log(d/�)�1, then for each fixed i 2 [d], we have, |ui| 

p
2 log(d/�)�1 holds

with probability 1� �/d.

Taking a union bound over d coordinates, with probability 1 � �, we have : for all i 2 [d],
|ui| 

p
2 log(d/�)�1.

Let E1 denote the event that, maxi2[d] |uiei| is upper bounded by
p

2 log(d/�)�1kek1.
Pr[E1] � 1� �.

Using Bernstein inequality, we have

Pr
u
[|hu, ei| � t]  exp

⇣
� t

2
/2

kek22 E[u2
i] + maxi2[d] |uiei| · t/3

⌘

 exp
⇣
� t

2
/2

kek22�2
1 +

p
2 log(d/�)�1kek1 · t/3

⌘

 �,

where the second step follows from Pr[E1] � 1� � and E[u2
i] = �

2
1 , and the last step follows

from choice of t:

t = 2�1kek2
p
log(d/�) + �1kek1 log1.5(d/�).

Taking a union with event E1, we have

Pr[|hu, ei| � t]  2�.

Rescaling � completes the proof.

Lemma B.4 (Inner product between two random guassian vectors). Let a > 0. Let

u1, · · · , ud denote i.i.d. random Gaussian variables where ui ⇠ N (0,�2
1) and e1, · · · , ed

denote i.i.d. random Gaussian variables where ei ⇠ N (0,�2
2)

Then, for any failure probability � 2 (0, 1/10), we have

Pr
u,e

h
|hu, ei| � 104�1�2

p
d log2(d/�)

i
 �.

Proof. First, using Lemma A.6, we compute the upper bound for kek22

Pr
e
[kek22 � d�

2
2 � (2

p
dt+ 2t)�2

2]  exp(�t).

Take t = log(1/�), then with probability 1� �,

kek22  (d+ 3
p
d log(1/�) + 2 log(1/�))�2

2  4d log(1/�)�2
2 .

Thus

Pr
e
[kek2  4

p
d log(1/�)�2] � 1� �.

Second, we compute the upper bound for kek1 (the proof is similar to Lemma B.3)

Pr
e
[|kek1 

p
log(d/�)�2] � 1� �.

17

Under review as a conference paper at ICLR 2021

We define t and t
0 as follows

t = 4 · (�1kek2
p
log(d/�) + �1kek1 log1.5(d/�))

t
0 = 8 · (�1�2

p
d log(d/�) + �1�2 log

2(d/�)).

From the above calculations, we can show

Pr
e
[t0 � t] � 1� 2�.

By Lemma B.3, for fixed e, we have

Pr
u
[|hu, ei| � t]  �.

Overall, we have

Pr
e,u

[|hu, ei| � t
0]  3�.

Rescaling � completes the proof.

Lemma B.5 (Concentration of folded Gaussian). Let matrix A 2 Rm⇥d
be defined as each

entry is i.i.d. random variables satisfying 8i 2 [m], j 2 [d]. Ai,j = yi,j where yi,j ⇠
N (0,�2

A). Let A 2 Rm⇥d
be defined as, 8i 2 [m], j 2 [d], Ai,j = yi,j · zi,j where

zi,j =

⇢
1, if 0  yi,j  a;
0, otherwise .

Let x 2 Rd
+ denote a non-negative vector where

Pd
i=1 xi = 1.

1) For any failure possibility � 2 (0, 1/10), we have

Pr
⇥
8i 2 [m], (Āx)i � �A · C

⇤
> 1� �,

where

C :=
a
2

6�2
A

� (
2a3

9�3
A

)1/2 ·
p

log(m/�)� 2a

3�A
· log(m/�).

2) For any failure possibility � 2 (0, 1/10), if a/�A � 20 log(m/�), then

Pr
⇥
8i 2 [m], (Āx)i � �A · 0.02 · (a2/�2

A)
⇤
> 1� �.

Proof. For a fixed i 2 [m], for each j 2 [d], we define

bj = Āi,jxj .

We first calculate E[bj], E[b2j] and Var[bj].

We provide a lower bound for E[bj],

E[bj] = E[Ai,j]xj

= xj

Z a

0

1

�A

p
2⇡

exp(�x/�2
A)xdx

� a
2
xj

2�A

p
2⇡

� a
2
xj

6�A
.

18

Under review as a conference paper at ICLR 2021

We give an upper bound for E[b2j],

E[b2j] = E[A2
i,j]x

2
j

= x
2
j

Z a

0

1

�A

p
2⇡

exp(�x/�2
A)x

2dx


a
3
x
2
j

3�A

p
2⇡


a
3
x
2
j

9�A
.

We can upper bound Var[bj],

Var[bj] =E[b2j]� E[bj]2  E[b2j] 
a
3
x
2
j

9�A
.

Then, we can lower bound
Pd

j=1 E[bj]
dX

j=1

E[bj] �
a
2

6�A

dX

j=1

xj =
a
2

6�A
,

where the last step follows from
Pd

j=1 xj = 1.

Next, we can upper bound bj and
Pd

j=1 Var[bj]

M := max
j2[d]

bj  max
j2[d]

xja  a.

dX

j=1

Var[bj] 
dX

j=1

a
3
x
2
j

9�A


dX

j=1

a
3
xj

9�A
=

a
3

9�A
.

Applying Bernstein inequality (Lemma A.3) on
Pd

j=1(bj � E[bj])

Pr
h dX

j=1

(bj � E[bj])  �t
i
 exp

⇣
� t

2
/2

Pd
j=1 Var[bj] +Mt/3

⌘

 exp
⇣
� t

2
/2

a3/9�A + at/3

⌘
.

Taking

t = �A · (
q
2a3/9�3

A · log(m/�) + 2a/3�A · log(m/�)),

then for any i 2 [m],

Pr
h dX

j=1

bj � a
2
/(6�A)� t

i
� Pr

h dX

j=1

bj �
dX

j=1

E[bj]� t

i

� 1� �,

where the first step holds because
Pd

j=1 E[bj] > a
2
/(6�A).

Since (Āx)i =
Pd

j=1 bj , we have for any i 2 [m],

Pr


(Āx)i � �A ·

⇣
a
2
/6�2

A �
q
(2a3/9�3

A) · log(m/�)� (2a/3�A) · log(m/�)
⌘�

> 1� �/m.

Taking a union bound over all i 2 [m] completes the proof.

19

Under review as a conference paper at ICLR 2021

C Anti-concentration

Given a number of independent random variables, the well-known Central Limit Theo-
rem (CLT) states that their sum has good concentration under certain conditions. Such
concentration results like the Cherno↵ bound Cherno↵ (1952) and Hoe↵ding’s inequality
Hoe↵ding (1963) are among the central tools in Theoretical Computer Science (TCS). From
the opposite perspective, we can also ask for anti-concentration results. For example, let x
be a Rademacher variable (choosing ±1 with probability 1/2) and let a denote a vector in
Rd. The celebrated Littlewood-O↵ord Lemma states that any d-variate degree-1 polynomial
p(x) =

Pd
i=1 aixi does not concentrate on any particular value.

Theorem C.1 (Littlewood and O↵ord Littlewood & O↵ord (1943)). Let C > 0 denote a

universal constant. For any linear form p satisfying |ai| � 1, 8i 2 [d], and any open interval

I of length 1, we have

Pr
x⇠{�1,+1}d

[p(x) 2 I]  C · log dp
d
.

Two years later, Erdös Erdös (1945) removed the log d factor in Theorem C.1. Recently,
Theorem C.1 has been generalized to higher degree polynomials by Costello et al. (2006);
Razborov & Viola (2013); Meka et al. (2017).

Instead of considering xi as {�1,+1} random variables, Carbery and Wright Carbery &
Wright (2001) showed the anti-concentration result for xi chosen as i.i.d. Gaussians.

Theorem C.2 (Carbery and Wright Carbery & Wright (2001)). Let p : Rd ! R denote a

degree-k polynomial with d variables. There is a universal constant C > 0 such that

Pr
x⇠N (0,Id)

h
|p(x)|  �

p
Var[p(x)]

i
 C · �1/k.

These are worst-case results in the sense that they hold for arbitrary polynomials. For
example, Theorem C.2 is tight for any polynomial that is a perfect k-th power.

We can generalize Theorem C.2 into the following3:

Lemma C.3 (An variation of Carbery & Wright (2001), Anti-concentration of sum of
truncated Gaussians). Let x1, · · · , xn be n i.i.d. zero-mean Gaussian random variables

N (0, 1). Let p : Rn ! R denote a degree-1 polynomial defined as

p(x1, · · · , xn) =
nX

i=1

↵ixi.

Let f denote a truncation function where f(x) = x if |x|  a, and f(x) = 0 if |x| > a. Then

we have

Pr
x⇠N (0,Id)

h
|p(f(x))|  min{a, 0.1} · � · k↵k2

i
� C · �.

Proof. Let µ : Rn ! R�0 be the truncated Gaussian distribution. We first argue that µ is
log-concave. Indeed, for any x, y 2 Rn and � 2 [0, 1], if µ(x) = 0 or µ(y) = 0, then we must
have

µ(�x+ (1� �)y) � 0 = (µ(x))� · (µ(y))1��
.

On the other hand, if µ(x) > 0 and µ(y) > 0, then we must have µ(�x + (1 � �)y) > 0,
because

k�x+ (1� �)yk2  �kxk2 + (1� �)kyk2,

3The generalization also has been observed in Song et al. (2020), for the completeness, we provide
the proof here.

20

Under review as a conference paper at ICLR 2021

hence µ would not truncate at �x+(1��)y. Notice that Gaussian distribution is log-concave.
Let µ0 : Rn ! R be the density function of Gaussian distribution, then µ(x) = C0 ·µ0(x) for
some universal constant C0 > 0 for all x that is not truncated. so in this case we still have

µ(�x+ (1� �)y) = C0 · µ0(�x+ (1� �)y)

� C0 · (µ0(x))� · (µ0(y))1��

= (C0µ
0(x))� · (C0µ

0(y))1��

= (µ(x))� · (µ(y))1��
.

So we conclude that µ is log-concave.

Now we apply Theorem C.5 on µ and p. By setting q = 2 and d = 1, we have
⇣Z

x2Rn

|p(x)|2dµ
⌘1/2

· µ(|p(x)|  ↵)  C · ↵. (1)

Notice that
Z

x2Rn

|p(x)|2dµ = E
x⇠µ

h⇣ nX

i=1

↵ixi

⌘2i

=
nX

i=1

↵
2
i E
x⇠µ

[x2
i]

=
nX

i=1

↵
2
i Var
xi⇠µi

[xi],

where µi : R! R is the distribution on the i-th coordinate, 8i 2 [n]. Hence we can rewrite
Eq. (1) as

Pr
x⇠N (0,Id)

2

4
���

nX

i=1

↵if(xi)
���  �

nX

i=1

↵
2
i Var
xi⇠µi

[xi]

!1/2
3

5 � C · �.

By Claim C.4, we have

Pr
x⇠N (0,Id)

2

4|p(f(x))|  �

nX

i=1

↵
2
i ·

1�

r
2

⇡
· a · e�a2/2

erf(a/
p
2)

!!1/2
3

5 � C · �.

For 0  a⌧ 1,

1�
r

2

⇡
· a · e�a2/2

erf(a/
p
2)

=
5

6
a
2 + o(a3).

Hence,

Pr
x⇠N (0,Id)

h
|p(f(x))|  �ak↵k2

i
� C · �.

For a � 1,

1�
r

2

⇡
· a · e�a2/2

erf(a/
p
2)

= ⇥
⇣
1� ae

�a2

� e
�a2/2

/a

⌘
.

Hence,

Pr
x⇠N (0,Id)

h
|p(f(x))|  �(1� ae

�a2

� e
�a2/2

/a)1/2k↵k2
i
� C · �.

When a � 1, we have 0.025  (1 � ae
�a2 � e

�a2/2
/a)  1. So we can combine the above

two cases to get

Pr
x⇠N (0,Id)

h
|p(f(x))|  min{a, 0.1} · �k↵k2

i
� C · �.

21

Under review as a conference paper at ICLR 2021

Claim C.4. Let x 2 R be a standard Gaussian random variable N (0, 1). Let f denote a

truncation function where f(x) = x if |x|  a, and f(x) = 0 if |x| > a. Then, we have

Var[f(x)] = 1�
r

2

⇡
· a · e�a2/2

erf(a/
p
2)

,

where erf(x) = 2p
⇡

R x
0 e

�t2dt.

Theorem C.5 (Arutyunyan & Kosov (2018)). Let µ : Rn ! R be a log-concave measure

over Rn
. Let L

1(µ) =
R
x2Rn |µ(x)|dx. For any q > 0 and polynomial p : Rn ! R, define

the `q norm of p with respect to the measure µ as

kpkq =

✓Z
p
qdµ

◆1/q

.

Assume p has degree d. Then there exists constant C(d) > 0 that only depends on d so that

for all ↵ > 0 and all q > 0,
⇣Z

|p(x)|q/ddµ
⌘1/q

· µ(|p(x)|  ↵)  C(d) · ↵1/d
.

22

Under review as a conference paper at ICLR 2021

D Sensitivity

D.1 Concentration of folded Gaussian

Lemma D.1 (concentration of folded gaussian). Let matrix A 2 Rm⇥d
be defined as each

entry is i.i.d. random variables satisfying 8i 2 [m], j 2 [d]. Ai,j = yi,j where yi,j ⇠
N (0,�2

A). Let zi,j = |yi,j |, then 8j 2 [d],

Pr
h mX

i=1

zi,j � E[zi,j] > �Am+ 4�A
p
m log1.5(md/�)

i
 �.

Proof. For a fixed j, let bi = zi,j . First we calculate E[bi]

E[bi] =
Z 1

0

2p
2⇡�2

A

exp(�x2
/2�2

A)xdx

= �A

p
2/⇡.

Second, we calculate E[b2i]

E[b2i] = E[z2i,j] = E[y2i,j] = �
2
A.

According to Lemma A.4, we can upper bound zi,j

Pr[zi,j > t] = Pr[|yi,j | > t]  exp(�t/�22).

Taking t = �A

p
log(md/�1) := M , we have 8i 2 [m], j 2 [d]

Pr[max
i,j

zi,j > t]  �2.

Applying Bernstein inequality on
Pm

i=1 bi

Pr
h���

mX

i=1

(bi � E[bi])
��� � t

i
 exp

⇣
� t

2
/2Pm

i=1 Var[bi] + bmaxt/3

⌘

 exp
⇣
� t

2
/2

m�2
A + �At

p
log(md/�2)/3

⌘
.

Choosing t = �Am+ 4�A
p
m log1.5(md/�), we have

Pr
h mX

i=1

zi,j � E[zi,j] > t

i
 �.

D.2 `1-sensitivity functions of single layer neural network

Lemma D.2 (`1-norm sensitivity of single layer neural network). Let x 2 [0, 1]d, fully

connected matrix A 2 N (0,�A)m⇥d
, bias matrix b 2 Rm

, and � is the ReLU activation

function. Let f(x) = �(Ax + b) denote a single layer network, then for all neighboring

inputs x1, x2 2 Rd
that di↵er at most in one entry, we have

Pr
h
GS1(f)  �Am+ 4�A

p
m log1.5(md/�)

i
� 1� �.

23

Under review as a conference paper at ICLR 2021

Proof. Let k denote the index that x1 and x2 are di↵erent.

GS1(f) = sup
x1,x22Rd

kf(x1)� f(x2)k1

= sup
x1,x22Rd

k�(Ax1 + b)� �(Ax2 + b)k1

 sup
x1,x22Rd

k(Ax1 + b)� (Ax2 + b)k1

= sup
x1,x22Rd

k(A(x1 � x2)k1

= kA⇤,kk1
 �Am+ 4�A

p
m log1.5(md/�),

where the fourth step follows that x1 and x2 di↵er in the k-th entry, and the fifth step
follows Lemma D.1.

D.3 `2-sensitivity functions of single layer neural network

Lemma D.3 (`2-norm sensitivity of single layer neural network). Let x 2 [0, 1]d, fully

connected matrix A 2 N (0,�A)m⇥d
, bias matrix b 2 Rm

, and � is the ReLU activation

function. Let f(x) = �(Ax + b) denote a single layer network, then for all neighboring

inputs x1, x2 2 Rd
that di↵er at most in one entry, we have

Pr
h
GS2(f)  2(

p
md+

p
log(1/�))

i
� 1� �.

Proof. Let k denote the index that x1 and x2 are di↵erent.

GS2(f) = sup
x1,x22Rd

kf(x1)� f(x2)k2

= sup
x1,x22Rd

k�(Ax1 + b)� �(Ax2 + b)k2

 sup
x1,x22Rd

k(Ax1 + b)� (Ax2 + b)k2

= sup
x1,x22Rd

k(A(x1 � x2)k2

= kA⇤,kk2

 �A

⇣
2
p
md log(1/�) + 2 log(1/�) +md

⌘1/2

 �A

⇣
2
p
2md log(1/�) + 2 log(1/�) +md

⌘1/2

= �A(
p
md+

p
2 log 1/�),

where the fourth step follows that x1 and x2 di↵er in the k-th entry, and the fifth step
follows Lemma A.6.

24

Under review as a conference paper at ICLR 2021

Table 2: Summary of two results

Statement ✏dp Comment Pruning

Theorem E.1 GS1(f)/(��A) · (m/�dp) General x Magnitude
Theorem E.2 GS1(f)/(��A) · log(m/�dp) Nonnegative x Folded Magnitude

E Equivalence between pruning and differential privacy

E.1 Main results

Theorem E.1 (Main result I). For a single layer neural network f(x) = �(Ax+ b) where

fully connected matrix A 2 N (0,�2
A)

m⇥d
, vector b 2 Rm

, and � is the ReLU activation

function. We assume all the inputs x 2 Rd
satisfying that kxk2 = 1. If

m = ⌦(poly(✏�1
ap , log(1/�ap), log(1/�dp), a/�A,��A)),

then applying magnitude pruning with with truncation threshold a > 0 on A 2 Rm⇥d
is an

(✏ap, �ap)-approximation to applying (✏dp, �dp)-di↵erential privacy on x, where

✏dp = 2GS1(f)(m/�dp)/(��A).

Theorem E.2 (Main result II). For a single layer network f(x) = �(Ax + b) where fully

connected matrix A 2 N (0,�2
A)

m⇥d
, vector b 2 Rm

, and � is the ReLU activation function.

We assume all the inputs x 2 Rd
satisfying that kxk2 = 1 and x 2 Rd

+. If

m = ⌦(poly(✏�1
ap , log(1/�ap), log(1/�dp), a/�A,��A)),

then applying folded magnitude pruning with truncation threshold a > 0 on A 2 Rm⇥d
is an

(✏ap, �ap)-approximation to applying (✏dp, �dp)-di↵erential privacy on x 2 Rd
, where

✏dp = 2GS1(f) log(m/�dp)/(��A).

Remark E.3. Note that GS1(f) = ⇥(m�A).
1) if using folded Gaussian and assume x 2 R�0, ✏dp = 2GS1(f) · log(m/�dp)/(��A),
then we need to pick � = m, �A = ⇥(1/�) and a = ⇥(�A) .
2) if using Gaussian, ✏dp = 2GS1(f) · (m/�dp)/(��A),
then we need to pick � = m

2
, �A = ⇥(1/�) and a = ⇥(�A).

E.2 Differential privacy

Definition E.4 (Di↵erential Privacy, Definition.1 in Dwork et al. (2006b)). Let A : Dn ! Y
be a randomized algorithm. Let D1, D2 2 Dn

be two databases that di↵er in at most one

entry (we call these databases neighbors). Let ✏ > 0. Define A to be ✏ -di↵erentially private

if for all neighboring databases D1, D2, and for all (measurable) subsets Y ⇢ Y, we have

Pr [A(D1) 2 Y]

Pr [A (D2) 2 Y]
 exp(✏).

Definition E.5 (Global Sensitivity, Definition 2 in Dwork et al. (2006b)). Let f : Dn ! Rd
,

define GSp(f), the `p global sensitivity of f , for all neighboring databases D1, D2 as

GSp(f) = sup
D1,D22Dn

kf(D1)� f(D2)kp.

Theorem E.6 (Laplace Mechanism Dwork et al. (2006b)). Let f be defined as before and

✏ > 0. Define randomized algorithm A as

A(D) = f(D) + (Lap(GS1(f)/✏))
d
,

where the one-dimensional (zero mean) Laplace distribution Lap(b) has density p(x; b) =
1
2b exp(�

|x|
b), and Lap(b)d = (l1, . . . , ld) 2 Rd

where each li i.i.d. is sampled from Lap(b).
Then A is ✏-di↵erentially private.

Theorem E.7 (Gaussian Mechanism Dwork & Roth (2014)). For c > 2
p

log(1/�), the

Gaussian Mechanism with parameter � � c ·GS2(f)/✏ is (✏, �)-di↵erentially private.

25

Under review as a conference paper at ICLR 2021

E.3 Function approximation

Definition E.8 ((✏, �)-approximation). For a pair of functions f(x) and g(x), we say f is

an (✏, �)-approximation of g if for any x

Pr[kf(x)� g(x)k2 > ✏]  �.

E.4 Proof of Theorem E.2

Proof. Sketch.

The proof can be splitted into two parts. We use eA 2 Rm⇥d to denote the weight matrix
after magnitude pruning, and Ā = eA�A 2 Rm⇥d. We define vector e 2 Rm as follows

e = Lap(1,�)m � (Āx).

1. Let B(x) = f(x) + e 2 Rm, then B(x) is (✏dp, �dp)-di↵erential privacy.

2. Pr[1p
m
ke� Āxk2 � ✏ap]  �ap, as long as m = ⌦(poly(✏�1

ap , log(1/�ap), a/�A,��A)).

Part 1.

Let y 2 Rm and x1, x2 be neighbouring inputs. It is su�cient to bound the ratio p(y�f(x1))
p(y�f(x2))

where p(·) denotes probability density, because once the densities are bounded, integrating
p(·) yields the requirement for di↵erential privacy as defined in E.2.

Since ei ⇠ Lap(1,�) · (Āx)i, then p(t : �) = 1
2� exp(�|t/(Āx)i � 1|/�)

p(y � f(x1))

p(y � f(x2))
=

Qm
i=1

1
2� exp(�|(yi � f(x1)i)/(Āx1)i � 1|/�)

Qm
i=1

1
2� exp(�|(yi � f(x2)i)/(Āx2)i � 1|/�)

=
exp(�

Pm
i=1 |(yi � f(x1)i)/(Āx1)i � 1|/�)

exp(�
Pm

i=1 |(yi � f(x2)i)/(Āx2)i � 1|/�)

= exp
⇣ 1
�

mX

i=1

���
yi � f(x1)i
(Āx1)i

� 1
����
���
yi � f(x2)i
(Āx2)i

� 1
���
⌘

 exp
⇣ 1
�

mX

i=1

���
yi � f(x1)i
(Āx1)i

� yi � f(x2)i
(Āx2)i

���
⌘

 exp
⇣
2

mX

i=1

1

�mini2[m]{|(Āx1)i|, |(Āx2)i|}
|f(x2)i � f(x1)i|

⌘

 exp
⇣
2GS1(f)/� min

i2[m]
{|(Āx1)i|, |(Āx2)i|}

⌘

 exp
⇣
2GS1(f)/�A�(1/6 · (a/�A)

2 � 1/5 · (a/�A)
1.5 log(m/�dp))

⌘

 exp
⇣
2(�Am+ 4�A

p
m log1.5(md/�))/�A�(1/6 · (a/�A)

2 � 1/5 · (a/�A)
1.5 log(m/�dp))

⌘

 exp
⇣
2(m+ 4

p
m log1.5(md/�))/�(1/6 · (a/�A)

2 � 1/5 · (a/�A)
1.5 log(m/�dp))

⌘

where the first equality is because the noise is independent for each coordinate, and the
first inequality is triangle inequality. The third inequality holds because of the definition of
GS1(f), and the fourth holds because of Lemma B.5. holds with probability 1� �dp

According to Lemma D.2,

Pr
h
GS1(f)  �Am+ 4�A

p
m log1.5(md/�)

i
� 1� �.

Part 2.

26

Under review as a conference paper at ICLR 2021

Let zi = (ei � Āxi)2, thus zi ⇠ Lap2(0, bi), where bi = �(Āx)i We first calculate E[z2i]

E[z2i] =
Z 1

�1

1

2bi
exp(�|x|/bi)x4dx

=

Z 1

0

1

bi
exp(�x/bi)x4dx

= b
4
i · (� exp(�x)x4 �

Z 1

0
�4 exp(�x)x3dx)

����
1

0

= b
4
i · (� exp(�x)x4 + 4(� exp(�x)x3 � 3(exp(�x)x2 � 2(� exp(�x)x� exp(�x)))))|10

= 24b4i

 24�4 · (10a(
p
a/�A + 1) log(m/�))4,

where both the third step and the fourth step follow integration by parts. The fifth step
follows by plugging in the limits of integration, and the last step follows by Lemma B.1.

Next, we want to bound max(zi), since zi = e
2
i ⇠ Lap2(0, bi)

Pr[zi � t
2] =Pr[|ei| � t] t > 0

=2 · 1
2
exp(�t/bi)

= exp(�t/bi),

where the second step follows by plugging the cumulative distribution function of Laplace
distribution.

Take t = bi log(m/�), then for each fixed i 2 [m], we have Pr[zi 
p
bi log(m/�)] = �/m.

Thus, with probability 1� �, we have for all i 2 [m],

zi  max
i2[m]

p
bi log(m/�) 

p
a3�/�A · log(m/�) := M,

where the second inequality follows by (Āx)i’s upper bound in Lemma B.2.

Using Bernstein inequality, we have

Pr

"���
mX

i=1

(zi � E[zi])
��� � t

#
 exp

⇣
� t

2
/2Pm

i=1 E[z2i] +Mt/3

⌘

 exp
⇣
� t

2
/2

24m�4 · (10a(
p

a/�A + 1) log(m/�))4 + a3�/�A · log(m/�)t/3

⌘
.

Since Mt/3 is dominated by
Pm

i=1 E[z2i], we choose

t = m✏
2
,

then as long as

m � ✏
�4 log(1/�)

⇣
48 · (10a/�A(

p
a/�A + 1) log(m/�))4

⌘
(�4

�
4
A + ��

2
A),

we have

Pr

"
1

m

���
mX

i=1

(zi � E[zi])
��� � ✏

2

#
 �.

which is

Pr


1p
m
ke� Āxk2 � ✏

�
 �.

Note that we need to pick � = m, then we need to pick �A = 1/m.

27

Under review as a conference paper at ICLR 2021

F Experiment details

F.1 Pruning algorithm

Algorithm 1 describes the full process of magnitude-based pruning.

Algorithm 1 Stochastic Gradient Descent with Magnitude-based Pruning

1: procedure SGDMagPrune({xi, yi}i2[n], a, ⌘)

2: . Loss function L : Rdo ⇥Rdo ! [0, 1]
3: Let W

(1) denote a random initialization of neural network’s weights, and f(W,x)
denotes the neural network.

4: Let D = {(x1, y1), · · · , (xn, yn)} ⇢ Rd⇥Rdo

5: for t = 1! Ttrain do . Training stage
6: Sample (x, y) ⇠ D uniformly at random

7: W
(t+1) W

(t) � ⌘ · @L(f(W,x),y)
@W |W=W (t)

8: end for

9: for t = Ttrain ! Ttrain + Tprune do . Pruning stage
10: Sample a data (x, y) from D uniformly at random

11: fW (t) ThresholdPrune(W (t)
, a

(t))

12: W
(t+1) = fW (t) � ⌘ · @L(f(W,x),y)

@W |W=fW (t)

13: end for

14: Tend Ttrain + Tprune

15: fW (Tend) ThPrune(W (Tend), a(Tend))
16: end procedure

17: procedure ThPrune(W,a)
18: for l 2 [L] do

19: for i, j do

20: (fWl)i,j
⇢
(Wl)i,j , if |(Wl)i,j | > a;
0, otherwise .

21: end for

22: end for

23: return fW
24: end procedure

28

	Introduction
	Related work
	Backgrounds
	Differential privacy
	Magnitude-based pruning

	Main result
	Experiments
	Experimental setup
	Test of privacy leakage as a model inversion attack
	Results

	Conclusions
	Probability tools
	Application of concentration inequality
	Application of concentration inequality, truncated Gaussian
	Application of concentration inequalities, classical random Gaussian

	Anti-concentration
	Sensitivity
	Concentration of folded Gaussian
	1-sensitivity functions of single layer neural network
	2-sensitivity functions of single layer neural network

	Equivalence between pruning and differential privacy
	Main results
	Differential privacy
	Function approximation
	Proof of Theorem E.2

	Experiment details
	Pruning algorithm

