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Abstract: HomeRobot (noun): An affordable compliant robot that navigates1

homes and manipulates a wide range of objects in order to complete everyday tasks.2

Open-Vocabulary Mobile Manipulation (OVMM) is the problem of picking any3

object in any unseen environment, and placing it in a commanded location. This is4

a foundational challenge for robots to be useful assistants in human environments,5

because it involves tackling sub-problems from across robotics: perception,6

language understanding, navigation, and manipulation are all essential to OVMM.7

In addition, integration of the solutions to these sub-problems poses its own8

substantial challenges. To drive research in this area, we introduce the HomeRobot9

OVMM benchmark, where an agent navigates household environments to10

grasp novel objects and place them on target receptacles. HomeRobot has two11

components: a simulation component, which uses a large and diverse curated12

object set in new, high-quality multi-room home environments; and a real-world13

component, providing a software stack for the low-cost Hello Robot Stretch to14

encourage replication of real-world experiments across labs. We implement both15

reinforcement learning and heuristic (model-based) baselines and show evidence16

of sim-to-real transfer. Our baselines achieve a 20% success rate in the real world;17

our experiments identify ways future research work improve performance. See18

videos on our website: https://home-robot-ovmm.github.io/.19

Keywords: Sim-to-real, benchmarking robot learning, mobile manipulation20

1 Introduction21

The aspiration to develop household robotic assistants has served as a north star for roboticists since22

the beginning of the field. The pursuit of this vision has spawned multiple areas of research within23

robotics from vision to manipulation, and has led to increasingly complex tasks and benchmarks.24

A useful household assistant requires creating a capable mobile manipulator that understands a wide25

variety of objects, how to interact with the environment, and how to intelligently explore a world26

with limited sensing. This has separately motivated research in diverse areas like navigation [1, 2],27

service robotics [3–5], language understanding [6, 7] and task and motion planning [8]. We refer28

to this guiding problem as Open-Vocabulary Mobile Manipulation (OVMM): a useful robot will29

be able to find and move arbitrary objects from place to place in an arbitrary home.30

Prior work does not tackle mobile manipulation in large, continuous, real-world environments. Instead,31

it generally simplifies the setting significantly, e.g. by using discrete action spaces, limited object32

sets, or small, single-room environments that are easily explored. However, recent developments33

tying language and vision have enabled robots to generalize beyond specific categories [9–13],34

often through multi-modal models such as CLIP [14]. Further, comparison across methods has35

remained difficult and reproduction of results across labs impossible, since many aspects of the36

settings (environments, and robots) have not been standardized. This is especially important now, as37

a new wave of research projects have begun to show promising results in complex, open-vocabulary38
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Figure 1: Open-Vocabulary Mobile Manipulation requires agents to search for a previously unseen
object at a particular location, and move it to the correct receptacle.

navigation [9, 15, 11, 12, 16] and manipulation [17, 10, 18] – again on a wide range of robots and39

settings, and still limited to single-room environments. Clearly, now is the time when we need a40

common platform and benchmarks to drive the field forward.41

In this work, we define Open-Vocabulary Mobile Manipulation as a key task for in-home robotics and42

provide benchmarks and infrastructure, both in simulation and the real world, to build and evaluate43

full-stack integrated mobile manipulation systems, in a wide variety of human-centric environments,44

with open object sets. Our benchmark will further reproducible research in this setting, and the fact45

that we support arbitrary objects will enable the results to be deployed in a variety of real-world46

environments.47

OVMM: We propose the first reproducible mobile-manipulation benchmark for the real world,48

with an associated simulation component. In simulation, we use a dataset of 200 human-authored49

interactive 3D scenes [19] instantiated in the AI Habitat simulator [20, 21] to create a large number50

of challenging, multi-room OVMM problems with a wide variety of objects curated from a variety of51

sources. Some of these objects’ categories have been seen during training; others have not. In the52

real world, we create an equivalent benchmark, also with a mix of seen and unseen object categories,53

in a controlled apartment environment. We use the Hello Robot Stretch [22]: an affordable and54

compliant platform for household and social robotics that is already in use at over 40 universities55

and industry research labs. Fig. 1 shows instantiations of our OVMM task in both the real-world56

benchmark and in simulation. We have a controlled real-world test environment, and plan to run the57

real world benchmark yearly to assess progress on this challenging problem.58

HomeRobot: We also propose HomeRobot,1 a software framework to facilitate extensive bench-59

marking in both simulated and physical environments. It comprises identical APIs that are imple-60

mented across both settings, enabling researchers to conduct experiments that can be replicated in both61

simulated and real-world environments. Table 1 compares OVMM+HomeRobot to the literature.62

In this paper, we use HomeRobot to compare two families of approaches: a heuristic solution, using63

a motion planner shown to work for real-world object search [2], and a reinforcement learning (RL)64

solution, which learns how to navigate to objects given depth and predicted object segmentation. We65

use the open-vocabulary object detector DETIC [23] to provide object segmentation for both the66

heuristic and RL policies. We observe that while the RL methods moved to the object more efficiently67

if an object was visible, the heuristic planner was better at long-horizon exploration. We also see68

1Code will be released at the time of final submission.
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Object Continuous Robotics Open
Scenes Cats Inst. Actions Sim2Real Stack Licensing Manipulation

Room Rearrangement [24] 120 118 118 ✖ ✖ ✖ ✔ ✖
Habitat ObjectNav Challenge[25] 216 6 7,599 ✔ ✖ ✖ ✔ ✖
TDW-Transport [26] 15 50 112 ✖ ✖ ✖ ✓ ✓
VirtualHome [27] 6 308 1,066 ✖ ✖ ✖ ✔ ✓
ALFRED [6] 120 84 84 ✖ ✖ ✖ ✔ ✓
Habitat 2.0 HAB [21] 105 20 20 ✔ ✖ ✖ ✔ ✔
ProcTHOR [28] 10,000 108 1,633 ✖ ✖ ✖ ✔ ✔

RoboTHOR [29] 75 43 731 ✖ ✔ ✖ ✔ ✖
Behavior-1K [30] 50 1,265 5,215 ✔ ✔ ✖ ✖ ✓
ManiSkill-2 [31] 1 2,000 2,000 ✔ ✓ ✖ ✓ ✔

OVMM + HomeRobot 200 150 7,892 ✔ ✔ ✔ ✔ ✔

Table 1: Comparisons of our proposed benchmark with prior work. We provide a large number of
environments with a continuous action space, and uniquely provide a real-world robotics stack with
demonstrated sim-to-real capabilities, allowing others to reproduce and deploy their own solutions.
Additional nuances in footnote3. ✓Partial availability ✖Not available ✔Capability available

a substantial drop in performance in switching from from ground-truth segmentation to DETIC69

segmentation. This highlights the importance of the OVMM challenge, as only through viewing the70

problem holistically - integrating perception, planning, and action - can we build general-purpose71

home assistants.72

To summarize, in this paper, we define Open-Vocabulary Mobile Manipulation as a new, crucial73

task for the robotics community in Sec. 3. We provide a new simulation environment, with multiple,74

multi-room interactive environments and a wide range of objects. We implement a robotics library75

called HomeRobot which provides baseline policies implementing this in both the simulation and the76

real world. We describe a real-world benchmark in a controlled environment, and show how current77

baselines perform in simulation and in the real world under different conditions.78

2 Related Work79

We discuss work related to challenges and reproducibility of robotics research in more detail, but80

continue the discussion of datasets and simulators in Appendix A.81

Challenges. There have been several challenges aiming to benchmark robotic systems at different82

tasks. These challenges provided a great testbed for ranking different systems. However, in most83

of the challenges (e.g., [32–35, 3]), the participants create their own robotic platform making a fair84

comparison of the algorithms difficult. There are also challenges where the organizers provide the85

robotic platform to the participants (e.g., [36]). However, changing the task during the periodic86

evaluations made it difficult to track progress over time. Our aim is to have a real world benchmark87

using a standard hardware that is sustainable at least for a few years.88

Reproducibility of robotics research. Standardized robotics benchmarks have been pursued for a89

long time, often by open-sourcing robot designs or introducing low-cost robots [37–45]. However, the90

environments in which these robots are used vary dramatically, leading to evaluation of components91

(e.g., object navigation, SLAM) in isolation, instead of as components of a larger system that92

may not benefit from those changes. The HomeRobot stack enables end-to-end benchmarking of93

individual components by providing a full robotics stack, with multiple implementations of different94

sub-modules. The simplicity helps move beyond standardized sets of objects (e.g., [46–48]) to a95

common set of robots, objects, and environments.96

Real-World Benchmarks. RoboTHOR [29] provides a common set of scenes and objects for97

benchmarking navigation. RB2 [49] ranks different manipulation algorithms in a local setting.98

TOTO [50] takes a step further by providing a training dataset and running the experiments for99

3ALFRED uses object masks for interaction. ObjectNav uses scans, not full object meshes. ProcThor scenes
are procedurally generated, this has the benefit that the potential number of environments is unbounded.
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Figure 2: A low-cost home robot performing tasks in both a simulated and a real-world environment.
We provide both (1) challenging simulated tasks, wherein a mobile manipulator robot must find and
grasp multiple seen and unseen objects, and (2) a corresponding real-world robotics stack to allow
others to reproduce this research and evaluation to produce useful home robot assistants.

the users. However, training and testing happen in the same environments and are limited to100

tabletop manipulation. Finally, the NIST Task Board [51] is a successful challenge for fine-grained101

manipulation skills [52], also limited to a tabletop context. Kadian et al. [53] propose the Habitat-102

PyRobot bridge (HaPy) to allow real-world testing on the locobot robot; their framework is limited103

to navigation, and doesn’t provide a generally-useful robotics stack with visualizations, debugging,104

motion planners, tooling, etc.105

3 Open-Vocabulary Mobile Manipulation106

Formally, our task is set up as instructions of the form: “Move (object) from the107

(start_receptacle) to the (goal_receptacle).” The object is a small and manipulable108

household object (e.g., a cup, stuffed toy, or box). By contrast, start_receptacle and109

goal_receptacle are large pieces of furniture, which have surfaces upon which objects can be110

placed. The robot is placed in an unknown single-floor home environment - such as an apartment - and111

must, given the language names of start_receptacle, object, and goal_receptacle, pick up112

an object that is known to be on a start_receptacle and move it to any valid goal_receptacle.113

start_receptacle is always available, to help agents know where to look for the object.114

The agent is successful if the specified object is indeed moved from a start_receptacle on115

which it began the episode, to any valid goal_receptacle. We give partial credit for each step116

the robot accomplishes: finding the start_receptacle with the object, picking up the object,117

finding the goal_receptacle, and placing the object on the goal_receptacle. There can be118

multiple valid objects that satisfy each query.119

Crucially, we need and develop both (1) a simulation version of this OVMM problem, for120

reproducibility, training, and fast iteration, and (2) a real-robot stack with a corresponding real-world121

benchmark. We compare the two in Fig. 2. Our simulated environments allow for varied, long-horizon122

task experimentation; our real-world HomeRobot stack allows for experimenting with real data, and123

we design a set of real-world tests to evaluate the performance of our learned and heuristic baselines.124

The Robot. We use the Hello Robot Stretch [22] with DexWrist as the mobile manipulation platform,125

because it (1) is relatively affordable at $25, 000 USD, (2) offers 6 DoF manipulation, and (3) is126

human safe and human-sized, making it safe to test in labs [54, 11] and homes [2], and can reach127

most places a human would expect a robot to go. For a breakdown on hardware choices, see Sec. G.1.128

Objects. These are split into seen vs. unseen categories and instances. In particular, at test time we129

look at unseen instances of seen or unseen categories; i.e. no seen manipulable object from training130

appears during evaluation. Agents must pick and place any requested object.131
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Receptacles. We include common household receptables (e.g. tables, chairs, sofas) in our dataset;132

unlike with manipulable objects, all possible receptacle categories are seen during training.133

Scenes. We have both a simulated scene dataset, and a fixed set of real-world scenes with specific134

furniture arrangements and objects. In both simulated and real scenes, we use a mixture of objects135

from previously-seen categories, and objects from unseen categories as the goal object for our136

Open-Vocabulary Mobile Manipulation task. We hold out validation and test scenes, which do not137

appear in the training data; while some receptacles may re-appear, they will be at previously-unseen138

locations, and target object instances will be unseen.139

Scoring. We compute success for each stage: finding object on start_receptacle, successfully140

picking up object, finding goal_receptacle, and placing object on the goal. Overall success141

is true if all four stages were accomplished. We also compute a single partial success metric as142

a tie-breaker, in which agents receive 1 point for each successive stage accomplished per episode,143

normalized by the number of stages. More details in Appendix B.144

3.1 Simulation Dataset145

The Habitat Synthetic Scenes Dataset (HSSD) [19] consists of 200+ human authored 3D home scenes146

containing over 18k individual models of real-world objects. Like most real houses, these scenes are147

cluttered with furniture and other objects placed into realistic architectural layouts, making navigation148

and manipulation similarly difficult to the real world. We used a subset of HSSD [19] consisting149

of 60 scenes (e.g. Fig. 3) for which additional metadata and simulation structures were authored to150

support rearrangement 4. For our experiments these are divided into train, validation, and test splits151

of 38, 12, and 10 scenes each, following the splits in the original HSSD paper [19].152

Figure 3: Example (object free)
top-down view from HSSD [19].
See App. Figs. 7 & 9 for naviga-
tion and viewpoints.

Objects and Receptacles. We aggregate objects from AI2-153

Thor [55], Amazon-Berkeley Objects [56], Google Scanned Ob-154

jects [57] and the HSSD [19] dataset to create a large and diverse155

dataset of real-world robot problems. In total, we annotated 2,535156

objects from 129 total categories.We identified 21 different cate-157

gories of receptacle which appear in the HSSD dataset [19].158

We construct our final set of furniture receptacle objects by first159

automatically labeling stable areas on top of receptacles, then man-160

ually refining and processing these in order to remove invalid or161

inaccessible receptacles. In addition, collision proxy meshes were162

automatically generated and in many cases manually corrected to163

support physically accurate procedural placement of object arrangements.164

SC, SI SC, UI UC, UI Total

Cats 85 64 44 129
Insts 1,363 748 424 2,535

Table 2: # of objects in each split:
(S)een, (U)nseen, (I)nstance, and
(C)ategory in simulation.

Episode Generation. We generate episodes consisting of165

varying object arrangements and particular values for object,166

start_receptacle, and goal_receptacle, which allow167

our agent to successfully move about and interact with the168

world. In the case of Open-Vocabulary Mobile Manipulation,169

this task is particularly challenging because we have to place170

objects in locations which are navigable, meaning that the robot171

can get to them, reachable, meaning its arm can make it to these locations, and from which we can172

navigate to a navigable, reachable goal receptacle. For full episode generation details see App. C.2.173

Training and Validation Split. Training episodes consist of objects from the large pool of seen174

instances of seen categories (SC,SI). In contrast, we use unseen instances of seen object categories175

(SC,UI) and unseen instances of unseen categories (UC,UI) for validation and test episodes. Two-176

thirds of the categories were randomly designated as seen, and two-thirds of the objects in the seen177

category were randomly marked as seen instances. Split sizes are in Table 2 and the distribution of178

objects across categories is in App. Fig. 5.179

4All 200+ scenes with rearrangement support will be released at the time of final submission.
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Figure 4: HomeRobot is a simple, easy-to-set-up library which works in multiple environments
and requires only relatively affordable hardware. Computationally intensive operations are performed
on a desktop PC with a GPU, and a dedicated consumer-grade router provides a network interface to
a robot running low-level control and SLAM.

3.2 Real-World Benchmark180

Real-world experiments are performed in a controlled 3-room apartment environment, with a sofa,181

kitchen table, counter with bar, and TV stand, among other features. We documented the positioning182

of various objects and the robot start position, in order to ensure reproducibility across trials. Images183

of various layouts of the test apartment are included in Fig. 2, and task execution is shown in Fig. 13.184

During real-world testing, we selected a pool of object instances that did not appear during simulation185

training, but split between classes that did and did not appear in training. We used eight different186

categories, of which five were seen during training (Cup, Bowl, Stuffed Toy, Medicine Bottle, and Toy187

Animal), and three were not (Rubik’s cube, Toy Drill, and Lemon). We performed 20 experiments on188

the Stretch robot for each of our two different baselines and with seven different receptacle classes:189

Cabinet, Chair, Couch, Counter, Sink, Stool, Table.190

4 The HomeRobot Library191

To facilitate research on these challenging problems, we open-source the HomeRobot library, which192

implements navigation and manipulation capabilities supporting Hello Robot’s Stretch [22]. In our193

setup, it is assumed that users have access to a mobile manipulator and a NVIDIA GPU powered194

workstation. The mobile manipulator runs the low-level controller and the localization module, while195

the desktop runs the high-level perception and planning stack(Fig. 4). The robot and desktop are196

connected using an off-the-shelf router5. HomeRobot is designed as a user-friendly software stack,197

enabling quick setup of the robot for immediate testing. The key features of our stack include:198

Transferability: Unified state and action spaces between simulation & real-world settings for each199

task, providing an easy way to control a robot with either high-level action spaces (e.g., pre-made200

grasping policies) or low-level continuous joint control.201

Modularity: Perception and action components to support high-level states (e.g. semantic maps,202

segmented point clouds) and high-level actions (e.g. go to goal position, pick up target object).203

Baseline Agents: Policies that use these capabilities to provide basic functionality for OVMM.204

4.1 Baseline Agent Implementation205

Crucially, we provide baselines and tools that enable researchers to effectively explore the Open-206

Vocabulary Mobile Manipulation task. We include two types of baselines in HomeRobot: a heuristic207

baseline, in which we use a well known motion planning technique [2] and simple rules to execute208

grasping and manipulation actions; and a reinforcement learning baseline, where we learn exploration209

5Our experiments used a NetGear Nighthawk router.
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Simulation Results Skill Partial Success Rates Overall
Success Rate

Partial
Success MetricPerception Navigation Gaze Place FindObj Pick FindRec

Ground Truth Heuristic None Heuristic 46.2 39.5 18.6 6.9 27.3
Heuristic RL RL 47.2 41.7 27.1 19.7 32.5

RL None Heuristic 55.1 41.9 26.4 6.5 32.2
RL RL RL 55.7 50.2 35.2 21.0 39.8

DETIC [23] Heuristic None Heuristic 23.3 11.5 3.0 0.3 9.5
Heuristic RL RL 24.8 9.5 5.0 0.7 10.0

RL None Heuristic 19.9 10.2 4.4 0.8 8.8
RL RL RL 19.8 11.8 6.3 1.5 9.8

Table 3: We observe that one of the main causes of failures for our baseline systems was perception
failures; ground-truth performance is notably higher. We also see that both RL and heuristic skills
struggled navigating tightly constrained multi-room environments and successfully placing objects.

and manipulation skills using an off-the-self policy learning algorithm, DDPPO [58]. Due to the210

challenging, long-horizon nature of the task, we implement a high-level policy called OVMMAgent211

which calls a sequence of skills to accomplish a task. We breakdown our agents into four skills:212

FindObj/FindRec: Locate an object on a start_receptacle; or find a goal_receptacle.213

Gaze: Move close enough to an object to grasp it, and orient head to get a good view of the object.214

The goal of the gaze action is to improve the success rate of grasping.215

Grasp: Pick up the object. We provide a high-level action for this, since we do not simulate the216

gripper interaction in Habitat. However, our library is compatible with a range of learned grasping217

skills and supports learning policies for grasping.218

Place: Move to a location in the environment and place the object on top of the goal_receptacle.219

Heuristic. We implement a version using only off-the-shelf learned models and heuristics, noting220

that previous work in mobile manipulation has used these models to great effect (e.g. [59]). Here,221

DETIC [60] provides masks for an open-vocabulary set of objects as appropriate for each skill.222

The start_receptacle, object,goal_receptacle for each episode is given. Fig. 13 shows an223

example of the heuristic navigation and place policy being executed in the real world (App. D).224

RL. We train the four skills in our modified version of Habitat [21] as policies which predict actions225

given depth, ground truth semantic segmentation and priopreceptive sensors (i.e. joints, gripper state),226

using DDPPO [58]. While RGB is available in our simulation, our baseline policies do not directly227

utilize it; instead, they rely on predicted segmentation from Detic [23] at test time.228

5 Results229

We first evaluate the two baselines in our simulated benchmark, followed by evaluation in a real-230

world, held-out test apartment. These results highlight the significance of OVMM as a challenging231

new benchmark, encompassing numerous essential challenges that arise when deploying robots in232

real-world environments.233

We break down the results by sub-task in addition to reporting the overall performance in Tables 3234

and 4. The columns FindObj, Pick and FindRec refer to the first 3 phases of the task mentioned in235

the scoring section (Sec. 3), and succeeding in the final Place phase leads to a successful episode.236

Simulation. We evaluate the baselines on held-out scenes, with objects from unseen instances of237

seen classes, and unseen instances of unseen classes, as described in Sec. 3.1. We show results with238

two different perception systems: Ground Truth segmentation, where we use the segmentation239

input directly from the simulator, and DETIC segmentation [23], where the RGB images from the240

simulator are passed through DETIC, an open-vocabulary object detector.241

We report results in Table 3 broken down by skill. The results show that RL policies outperformed242

heuristic methods for both navigation and placement tasks. However, all policies experienced a243

decline in performance when the perception is changed from ground truth to DETIC. Notably,244

heuristic policies exhibited less degradation in performance compared to RL policies under DETIC245
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Real World FindObj Pick FindRec Overall Success

Heuristic Only 0.70 0.35 0.30 0.15
RL Only 0.70 0.45 0.30 0.20

Table 4: Results for heuristic and RL baseline in the real world on the OVMM task. In both cases,
the grasping action is executed as described in Sec. 4; but initial conditions of the robot such as its
position relative to the object or to other obstacles may cause various failures.

perception. With DETIC perception, the heuristic FindObj policy outperforms RL. We attribute this246

to the heuristic policy’s ability to incorporate noisy predictions by constructing a 2D semantic map,247

which proves advantageous in handling small objects that are prone to misclassification. Furthermore,248

we observed that the learned gaze policy generally led to improved pick performance, except when249

used in combination with the Heuristic nav with DETIC perception. For additional information,250

example simulation trajectories can be found in Appendix Figure 15, and results comparing seen251

versus unseen categories are discussed in Appendix F.2.252

Real-World. Finally, we conducted a series of experiments in a real-world held-out apartment setting.253

We performed a total of 20 episodes, utilizing a combination of seen and unseen object classes as our254

target objects. The results of these experiments are presented in Table 4. RL performed slightly better255

than the Heuristic baseline, successfully completing 1 extra episode and achieving a success rate of256

20%. This difference primarily stemmed from the pick and place sub-tasks. In the pick task, the RL257

Gaze skill plays a crucial role in achieving better alignment between the agent and the target object,258

which led to more successful grasping. Similarly, the RL place skill demonstrated more precision,259

ensuring that the object stayed closer to the surface of the receptacle.260

Both simulation and real-world results show the baselines are promising, but insufficient, for Open-261

Vocabulary Mobile Manipulation. DETIC [23] caused many failures due to misclassification, both in262

simulation and the real world. Further, RL navigation was on par or better than heuristic policies in263

both sim and real. Although our RL place policy performed better in sim than heuristic place, it needs264

further improvement in the real world. Gaining the advantages of webscale pretrained vision-language265

models like DETIC, but tuned to our agents may be crucial for improving performance.266

6 Limitations267

Our benchmark has a few key limitations: (1) Due to simulation limitations, we don’t physically268

simulate grasping in the first version, which is why we provide a separate policy for this in the269

real world. Grasping is a well-studied problem [61–63], but simulations that train useful real-world270

grasp systems require special consideration. (2) We consider full natural language queries out-of-271

scope. Finally, (3) we do not implement many motion planners in HomeRobot (see Sec. D.2), or272

task-and-motion-planning with replanning, as would be ideal [64].273

7 Conclusions and Future Work274

We proposed a combined simulation and real-world benchmark to enable progress on the important275

problem of Open-Vocabulary Mobile Manipulation. We ran extensive experiments showing promising276

simulation and real-world results from two baselines: a heuristic baseline based on a state-of-the-art277

motion planner [2] and a reinforcement learning baseline trained with DDPPO [58]. In the future, we278

hope to improve the complexity of the problem space, adding more complex natural language and279

multi-step commands instead of pick-and-place, and provide end-to-end baselines instead of modular280

policies. Various proposed solutions for open-vocabulary navigation [9, 11, 12] and manipulation of281

unknown objects [10, 13, 18, 17] suggest possible ways of improving performance.282
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A Extended Related Work568

It is difficult to do justice to the rich embodied AI, natural language, computer vision, machine569

learning, and robotics communities that have addressed aspects of the work presented here. The570

following extends some of the discussion from the main manuscript about important advances that571

the community has made.572

Benchmarks have helped the community focus their efforts and fairly compare system performance.573

For example, the YCB objects [46] allowed for direct comparison of results across manipulators and574

models. While benchmarks and leaderboards are comparatively rare in robotics [45, 51, 29, 49, 60,575

3, 35], they have been hugely influential in machine learning (e.g. ImageNet [65], GLUE [66], and576

various language benchmarks [67–70], COCO [71], and SQuAD [72]). In robotics, competitions577

such as RoboCup@Home [3], the Amazon Picking Challenge [35], and the NIST task board [51] are578

prevalent and influential as an alternative, but generally systems aren’t reproducible across teams.579
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Datasets. In addition to the environments referenced in Table 1, offline datasets including robot580

interactions with scenes have been used widely to train models. These datasets are typically obtained581

using robots alone (e.g., [73, 74]), by teleoperation (e.g., [75, 76]) or human-robot demonstration582

(e.g., [77]). Previous work such as [78] aim to collect large-scale datasets while works such as [79]583

consider scaling across multiple embodiments. [80] take a step further by collecting robot data584

in unstructured environments. Unlike these works, we do not limit our users to a specific dataset.585

Instead, we provide a simulator with various scenes that can generate large-scale consistent data for586

training. Also, note that we test the models in unseen environments, while most of the mentioned587

works use the same environment for training and testing.588

Simulation benchmarks. The embodied AI community has provided various benchmarks in589

simulation platforms for tasks such as navigation [1, 81–84], object manipulation [85, 31, 86, 87],590

instruction following [6, 88–90], room rearrangement [24, 91], grasping [92] and SLAM [93].591

While these benchmarks ensure reproducibility and fair comparison of different methods, there is592

always a gap between simulation and reality since it is infeasible to model all details of the real593

world in simulation. Our benchmark, in contrast, enables fair comparison of different methods and594

reproducibility of the results in the real world. Additionally, previous benchmarks often operate in a595

simplified discrete action space [20, 6], even forcing that structure on the real world [2].596

Robotics benchmarking. Robotics benchmarks must contend with the diversity of hardware,597

morphology, and resources across labs. One solution is simulation [87, 55, 31, 20, 21, 83, 86, 6],598

which can provide reproducible and fair evaluations. However, the sim-to-real gap means simulation599

results may not be indicative of progress in the real world [2]. Another proposed solution is robotic600

competitions such as RoboCup@Home [3], the Amazon Picking Challenge [35], and the NIST task601

board [51]. However, participants typically use their own hardware, making it difficult to conduct fair602

comparisons of the different underlying methods, and means results are not transferable to different603

labs or settings. This is also a large barrier to entry to these competitions.604

B Metrics605

We informally defined our scoring metrics in Sec. 3. Here, we provide formal definitions of our606

partial success metrics.607

B.1 Simulation Success Metrics608

Success in simulation is defined per stage as:609

• FindObj: Successful if the agent reaches within 0.1m of a viewpoint of the target object on610

start_receptacle, and at least 0.1% of the pixels in its camera frame belong to an object611

instance.612

• Pick: Successful if FindObj succeeded, the agent enables the gripper at an instant where an613

object instance is visible and its end-effector reaches within 0.8m of a target object. We magically614

snap the object to the agent’s gripper in simulation.615

• FindRec: Successful if Pick succeeded, and the agent reaches within 0.1m of a viewpoint of a616

goal_receptacle, and at least 0.1% of the pixels in its camera frame belong to the object containing617

a valid receptacle.618

• Place: Successful if FindRec succeeded, the agent releases the object and subsequently the619

object stays in contact with the goal_receptacle with linear and angular velocities below a620

threshold of 1e− 3 m/s and 1e− 3 rad/s respectively for 50 contiguous steps.621

An episode is considered to have succeeded if it succeeds in all 4 stages within 1250 steps.622

B.2 Real World Success Metrics623

Success in real world is defined per stage as:624
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Seen Category
Seen Intances
Unseen Intances

Single seen instance categories:
watch, toy swing, toy pineapple,
toy food, toy fire truck, toy cactus,
sushi mat, stuffed toy, spoon, spec-
tacles, spatula, soap dish, screw-
driver, scissors, ramekin, pitcher,
mouse pad, monitor stand, milk
frother cup, lunch box, laptop
cover, lamp, ladle, keychain, hat,
handbag, hammer, fork, folder,
file sorter, carrying case, candy
bar, candle holder, cake pan, c-
clamp, butter dish, bundt pan, bath
towel, basketball
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Unseen Categories

Single instance categories: wa-
tering can, video game cartridge,
utensil holder cup, toy table, toy
sofa, toy sink, toy refrigerator, toy
lamp, toy fruits, toy construction
set, toy bee, tissue box, squeezer,
soap, helmet, electronic cable,
doll, dish, can opener, battery
charger, backpack

Figure 5: Number of objects across different splits, for both seen categories and unseen categories.
We divide objects between categories which appear in training data – seen categories – and those that
do not – unseen categories. The goal of Open-Vocabulary Mobile Manipulation is to be able to find
and manipulate objects specified by language.

• FindObj: Successful if the agent reaches within 1m of the target object on start_receptacle625

and the object is visible in the RGB image from the camera.626

• Pick: Successful if FindObj succeeded and the agent successfully picks up the object from the627

start_receptacle.628

• FindRec: Successful if Pick succeeded, and the agent reaches within 1m of a goal_receptacle,629

and the goal_receptacle is visible in the RGB image from the camera.630

• Place: Successful if FindRec succeeded and the agent places object on a goal_receptacle631

and the object settles down on the goal_receptacle stably.632

Given that the scene we use in the real world is much smaller than the apartments in simulation,633

we allow the agent to act in the environment for 300 timesteps. The episode is considered to have634

succeeded if it succeeds in all 4 stages.635

C Simulation Details636

C.1 Object Categories Appearing in the Scene Dataset637

action_figure, android_figure, apple, backpack, baseballbat, basket, basketball,638

bath_towel, battery_charger, board_game, book, bottle, bowl, box, bread, bundt_pan,639

butter_dish, c-clamp, cake_pan, can, can_opener, candle, candle_holder, candy_bar,640

canister, carrying_case, casserole, cellphone, clock, cloth, credit_card, cup,641

cushion, dish, doll, dumbbell, egg, electric_kettle, electronic_cable, file_sorter,642

folder, fork, gaming_console, glass, hammer, hand_towel, handbag, hard_drive, hat,643

helmet, jar, jug, kettle, keychain, knife, ladle, lamp, laptop, laptop_cover,644

laptop_stand, lettuce, lunch_box, milk_frother_cup, monitor_stand, mouse_pad,645

multiport_hub, newspaper, pan, pen, pencil_case, phone_stand, picture_frame,646

pitcher, plant_container, plant_saucer, plate, plunger, pot, potato, ramekin,647
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cushion

cup

pan

vase

plate

plant saucer

Figure 6: Example objects in our object dataset across 6 categories. The cushion, cup, and pan
categories are in the train split, and the vase, plate, and plant saucer are in the validation and test sets.

remote, salt_and_pepper_shaker, scissors, screwdriver, shoe, soap, soap_dish,648

soap_dispenser, spatula, spectacles, spicemill, sponge, spoon, spray_bottle,649

squeezer, statue, stuffed_toy, sushi_mat, tape, teapot, tennis_racquet,650

tissue_box, toiletry, tomato, toy_airplane, toy_animal, toy_bee, toy_cactus,651

toy_construction_set, toy_fire_truck, toy_food, toy_fruits, toy_lamp, toy_pineapple,652

toy_rattle, toy_refrigerator, toy_sink, toy_sofa, toy_swing, toy_table, toy_vehicle,653

tray, utensil_holder_cup, vase, video_game_cartridge, watch, watering_can,654

wine_bottle655

In Fig. 6 we show some of the examples of a selection of these categories from the training and656

validation/test splits.657

C.2 Episode Generation Details658

When generating episodes, we find the largest indoor navigable area in each scene, and then filter659

the list of all receptacles from this scene that are too small for object placement. Fig. 7 shows the660

navigable islands in several of our scenes (top row), and corresponding top-down views of each scene661

in the bottom row. We then sample objects according to the current split (train, validation, or test).662

We run physics to ensure that objects are placed in stable locations. Then we select objects randomly663

from the appropriate set, as determined by the current split.664

Finally, we generate a set of candidate viewpoints, shown in Fig. 8, which represent navigable665

locations to which the robot can move for each receptacle. These are used for training specific skills,666

such as navigation to receptacles. Each viewpoint corresponds to a particular start_receptacle667

or goal_receptacle, and represents a nearby location where the robot can see the receptacle and is668

within 1.5 meters. Fig. 9 gives examples of where these viewpoints are created.669

Navmesh: We precompute a navigable scene geometry as done in [20] for faster collision checks of670

the agent with the scene. The “mesh” comprising this navigable geometry is referred to as a navmesh.671
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Figure 7: Visualization of the navigable geometry (top row) and top-down views of example scenes
from the Habitat Synthetic Scenes Dataset (HSSD) [19]. We use the computed navigable area to
efficiently generate a large number of episodes for the Open-Vocabulary Mobile Manipulation task.
Object placement positions are sampled to be near navigable areas of the map, atop one of a large
variety of different receptacles, such that the robot can reach them.

Figure 8: First-person view from different precomputed viewpoints in our episode dataset. These
viewpoints are used as goals for training navigation skills, and are used in the initialization of the
placement and gaze/grasping skills as well. The purple mesh indicates receptacle surface.

Number of objects: This is dynamically set per scene to 1.5-2× the total available receptacle area in672

m2. For example, if the total receptacle surface area for a scene is 10m2, then 15-20 objects will be673

placed. The exact number of objects will be randomly selected per episode to be in this range.674

The full set of included receptables in simulation is: bathtub, bed, bench, cabinet, chair,675

chest_of_drawers, couch, counter, filing_cabinet, hamper, serving cart,676

shelves, shoe_rack, sink, stand, stool, table, toilet, trunk, wardrobe, &677

washer_dryer.678

C.3 Improved scene visuals679

We rewrote and expanded the existing Physically-Based Rendering shader (PBR) and added Horizon-680

based Ambient Occlusion (HBAO) to the Habitat renderer, which led to notable improvements in681

viewing quality which were necessary for using the HSSD [19] dataset.682
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Figure 9: Viewpoints created for an object during episode generation. The gray area is the navigable
region of the scene. The big red dot and the black box are the object’s center and bounding box
respectively. The surrounding dots are viewpoint candidates: red dots were rejected because they
weren’t navigable, and blue dots were rejected because they were too far from the object. The green
dots are the final set of viewpoints.

Figure 10: Here we present the improvements in scene visuals with Horizon-based Ambient
Occlusion (HBAO) and expanded Physics-based Rendering (PBR) material support added to the
Habitat renderer. The top row shows images from the default renderer whereas the bottom row shows
the improved renderings.

• Rewrote PBR and Image Based Lighting (IBL) base calculations.683

• Added multi-layer material support covering KHR_materials_clearcoat,684

KHR_materials_specular, KHR_materials_ior, and KHR_materials_anisotropy685

for both direct and indirect (IBL) lighting.686

• Added tangent frame synthesis if precomputed tangents are not provided.687

• Added HDR Environment map support for IBL.688

We present comparisons between default Habitat visuals and improved renderings in Figure 10.689
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Figure 11: Minor drop in FPS with improved scene rendering: Here, we benchmark the training
speeds (through FPS numbers) of two ObjectNav training runs with and without the HBAO and
PBR-based improved scene visuals. We observe that the improved rendering leads to a very small
drop in FPS from around 340 to 330 (3 % drop).

We also benchmark the ObjectNav training speeds of a DDPPO-based RL agent with and without the690

improved rendering and present the results in 11. We see that the improvement in scene lighting and691

rendering comes at the cost of only a 3% dip in training FPS (decreasing from around 340 to around692

330).693

C.4 Action Space Implementation694

We look at two different choices of action space for our navigation agents, either making discrete or695

continuous predictions about where to move next. Our expectation from prior work might be that the696

discrete action space would be notably easier for agents to work with.697

Discrete. Previous benchmarks often operate in a fully discrete action space [20, 6], even in the real698

world [2]. We implement a set of discrete actions, with fixed in-place rotation left and right, and699

translation of steps 0.25m forward.700

Continuous. Our continuous action space is implemented as a teleporting agent, where the robot701

needs to move around by predicting a local waypoint. Our robot’s low level controllers are expected702

to be able to get the robot to this location, in lieu of simulating full physics for the agent.703

In simulation, this is implemented as a check against the navmesh - we use the navmesh to determine704

if the robot will go into collision with any objects if moved towards the new location, and move it to705

the closest valid location instead.706

D HomeRobot Implementation Details707

Here, we describe more specifics for how we implemented the heuristic policies provided as a baseline708

to accelerate home assistant robot research.709

Although there exists a considerable body of prior research looking at learning specific grasping [94,710

62, 63, 61] or placement [95, 17] skills, we found that it was easiest to implement heuristic policies711

with low CPU/GPU requirements and high interpretability. Other recent works have similarly used712

heuristic grasping and placement policies to great affect (e.g. TidyBot [59]).713

There are three different repositories within the open-source HomeRobot library:714

• home_robot: Shared components such as Environment interfaces, controllers, detection715

and segmentation modules.716

• home_robot_sim: Simulation stack with Environments based on Habitat.717

• home_robot_hw: Hardware stack with server processes that runs on the robot, client API718

that runs on the GPU workstation, and Environments built using the client API.719
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Most policies are implemented in the core home_robot library. Within HomeRobot, we also divide720

functionality between Agents and Environments, similar to how many reinforcement learning721

benchmarks are set up [20].722

• Agents contain all of the necessary code to execute policies. We implement agents which use723

a mixture of heuristic policies and policies learned on our scene dataset via reinforcement724

learning.725

• Environments provide common logic; they provide Observations to the Agent, and a726

function which allows them to apply their action to the (real or simulated) environment.727

D.1 Pose Information728

We get the global robot pose from Hector SLAM [96] on the Hello Robot Stretch [22], which is used729

when creating 2d semantic maps for our model-based navigation policies.730

D.2 Low-Level Control for Navigation731

The Hello Stretch software provides a native interface for controlling the linear and angular velocities732

of the differential-drive robot base. While we do expose an interface for users to control these733

velocities directly, it is desireable to have desired short-term goals as a more intuitive action space for734

policies, and to make them update-able at any instant to allow for replanning.735

Thus, we implemented a velocity controller that produces continuous velocity commands that moves736

the robot to an input goal pose. The controller operates in a heuristic manner: by rotating the737

robot so that it faces the goal position at all times while moving towards the goal position, and then738

rotating to reach the goal orientation once goal position is reached. The velocities to induce these739

motions are inferred with a trapezoidal velocity profile and some conditional checks to prevent it740

from overshooting the goal.741

Limitations The Fast Marching Method-based motion planning from prior work [2] that we742

describe in Sec. D.2. It assumes the agent is a cylinder, and therefore is much more limited in where743

it can navigate than, e.g., a sampling based motion planner like RRT-connect [97] which can take744

orientation into account. In addition, our semantic mapping requires a list of classes for use with745

DETIC [23]; instead, it would be good to use a fully open-vocabulary scene representation like746

CLIP-Fields [11], ConceptFusion [15], or USA-Net [12], which would also improve our motion747

planning significantly.748

D.3 Heuristic Grasping Policy749

Figure 12: Grasping tests in various lab environments. To provide a strong baseline, we tuned the
grasp policy to be highly reliable given the Stretch’s viewpoint, on a variety of objects.
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Figure 13: An example of the robot navigating to a goal_receptacle (sofa) and using the heuristic
place policy to put down the object (stuffed animal). Heuristic policies provide an interpretable and
easily extended baseline.

Numerous powerful grasp generation models have been proposed in the literature, such as GraspNet-750

1Billion [63], 6-DOF GraspNet [62], and Contact-GraspNet [61]. However, for transparency, repro-751

ducibility, and ease of installation, we implement a simple, heuristic grasping policy, which assumes752

a parallel gripper performing top-down grasps. Heuristic grasp policies appear throughout robotics753

research (e.g. in TidyBot [59]). In our case, the heuristic policy voxelizes the point cloud, and chooses754

areas at the top of the object where points exist, surrounded by free space, in order to grasp. Fig. 12755

shows the simple grasp policy in action and additional details are presented in Sec. D.3. This policy756

works well on a wide variety of objects, and we saw comparable performance to the state-of-the-art757

open-source grasping models we tested [61, 63].758

The intuition is to identify areas where the gripper fingers can descend unobstructed into two sides of759

a physical part of the object, which we do through a simple voxelization scheme. We take the top760

10% of points in an object, voxelize at a fixed resolution of 0.5cm, and choose grasps with free voxels761

(where fingers can go) on either side of occupied voxels. In practice, this achieved a high success762

rates on a variety of real objects.763

The procedure is as follows:764

1. Given a target object point cloud, convert the point cloud into voxels of size 0.5 cm.765

2. Select top 10% occupied voxels with the highest Z coordinates.766

3. Project the selected voxels into a 2-D grid.767

4. Consider grasps centered around each occupied voxel, and identify three regions: two where768

the gripper fingers will be and one representing the space between the fingers.769

5. Score each grasp based on 1) how occupied the region between the fingers is, and 2) how770

empty the two surrounding regions are.771

6. Perform smoothing on the grasp scores to reject outliers (done by multiplying scores with772

adjacent scores).773

7. Output grasps with final scores above some threshold.774

We compared this policy to other methods like ContactGraspnet [61], 6-DoF Graspnet [62, 94], and775

Graspnet 1-Billion [63]. We saw more intermittent failures due to sensor noise using these pretrained776

methods, even after adapting the grasp offsets to fit to the Hello Robot Stretch’s gripper geometry. In777

the end, we leave training better grasp policies to future work.778

D.4 Heuristic Placement Policy779

As with grasping, a number of works on stable placement of objects have been proposed in the780

literature [95, 17]. To provide a reasonable baseline, we implement a heuristic placement strategy that781

assumes that the end-receptacle is at least barely visible when it takes over; projects the segmentation782
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mask onto the point cloud and chooses a voxel on the top of the object. Fig. 13 shows an example of783

the place policy being executed in the real world.784

Specifically, our heuristic policy is implemented as such:785

1. Detect the end-receptacle in egocentric RGB observations (using DETIC [23]), project786

predicted image segment to a 3D point cloud using depth, and transform point cloud to robot787

base coordinates using camera height and tilt.788

2. Estimate placement point: Randomly sample 50 points on the point cloud and choose one789

that is at the center of the biggest (point cloud) slab for placing objects. This is done by790

scoring each point based on the number of surrounding points in the X/Y plane (Z is up)791

within a 3 cm height threshold.792

3. Rotate robot for it to be facing the placement point, then move robot forward if it is more793

than 38.5 cm away (length of retracted arm + approximate length of the Stretch gripper).794

4. Re-estimate placement point from this new robot position.795

5. Accordingly, set arm’s extension and lift values to have the gripper be a few cm above796

placement position. Then, release the object to land on the receptacle.797

D.5 Navigation Planning798

Our heuristic baseline extends prior work [2], which was shown to work in a wide range of human799

environments. We tune it for navigating close to other objects and extended it to work in our800

continuous action space – challenging navigation aspects not present in the original paper. The801

baseline has three components:802

Semantic Mapping Module. The semantic map stores relevant objects, explored regions, and803

obstacles. To construct the map, we predict semantic categories and segmentation masks of objects804

from first-person observations. We use Detic [23] for object detection and instance segmentation and805

backproject first-person semantic segmentation into a point cloud using the perceived depth, bin it806

into a 3D semantic voxel map, and finally sum over the height to compute a 2D semantic map.807

We keep track of objects detected, obstacles, and explored areas in an explicit metric map of the808

environment from [98]. Concretely, it is a binary K x M x M matrix where M x M is the map size809

and K is the number of map channels. Each cell of this spatial map corresponds to 25 cm2 (5 cm x810

5 cm) in the physical world. Map channels K = C + 4 where C is the number of semantic object811

categories, and the remaining 4 channels represent the obstacles, the explored area, and the agent’s812

current and past locations. An entry in the map is one if the cell contains an object of a particular813

semantic category, an obstacle, or is explored, and zero otherwise. The map is initialized with all814

zeros at the beginning of an episode and the agent starts at the center of the map facing east.815

Frontier Exploration Policy. We explore the environment with a heuristic frontier-based exploration816

policy [99]. This heuristic selects as the goal the point closest to the robot in geodesic distance within817

the boundary between the explored and unexplored region of the map.818

Navigation Planner. Given a long-term goal output by the frontier exploration policy, we use the819

Fast Marching Method [100] as in [98] to plan a path and the first low-level action along this path820

deterministically. Although the semantic exploration policy acts at a coarse time scale, the planner821

acts at a fine time scale: every step we update the map and replan the path to the long-term goal. The822

robot attempts to plan to goals if they have been seen; if it cannot get within a certain distance of the823

goal objects, then it will instead plan to a point on the frontier.824

Navigating to objects on start_receptacle. Since small objects (e.g. action_figure, apple)825

can be hard to locate from a distance, we leverage the typically larger start_receptacle goals for826

finding objects. We make the following changes to the original planning policy [101]:827

1. If object and start_receptacle co-occur in at least one cell of the semantic map, plan to828

reach the object829
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Figure 14: Real-world examples (also see Fig 2). Our system is able to find held-out objects in an
unseen environment and navigate to receptacles in order to place them, all with no information about
the world at all, other than the relevant classes. However, we see this performance is highly dependent
on perception performance for now; many real-world examples also fail due to near-miss collisions.

2. If the object is not found but start_receptacle appears in the semantic map after exclud-830

ing the regions within 1m of the agent’s past locations, plan to reach the start_receptacle831

3. Otherwise, plan to reach the closest frontier832

In step 2, we exclude the regions that the agent has been close to, to prevent it from re-visiting already833

visited instances of start_receptacle.834

D.6 Navigation Limitations835

We implemented a navigation system that was previously used in extensive real-world experiments [2],836

but needed to tune it extensively for it to get close enough to objects to grasp and manipulate them.837

The original version by Gervet et al. [2] was focused on finding very large objects from a limited838

set of only six classes. Ours supports many more, but as a result, tuning it to both be able to grasp839

objects and avoid collisions in all cases is difficult.840

This is partly because the planner is a discrete planner based on the Fast Marching Method [100],841

which cannot take orientation into account and relies on a 5cm discretization of the world. ampling-842

based motion planners like RRT-Connect [97], or like that used in the Task and Motion Planning843

literature [64, 8], may offer better solutions. Alternately, we could explore optimization-based844

planners specifically designed for open-vocabulary navigation planning, as has recently been pro-845

posed [12].846

Our navigation policy relies on accurate pose information from Hector SLAM [96], and unfortunately847

does not handle dynamic obstacles. It also models the robot’s location as a cylinder; the Stretch’s848

center of rotation is slightly offset from the center of this cylinder, which is not currently accounted849

for. Again, sampling-based planners might be better here.850

E Reinforcement Learning Baseline851

We train four different RL policies: FindObject, FindReceptacle, GazeAtObject, and852

PlaceObject.853
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E.1 Action Space854

E.1.1 Navigation Skills855

FindObject and FindReceptacle are, collectively, navigation skills. For these two skills, we use856

the discrete action space, as mentioned in Sec. C.4. In our experiments, we found the discrete action857

space was better at exploration and easier to train.858

E.1.2 Manipulation Skills859

For our manipulation skills, we using a continuous action space to give the skills fine grained control.860

In the real world, low-level controllers have limits on the distance the robot can move in any particular861

step. Thus, in simulation, we limit our base action space by only allowing forward motions between862

10-25 cm, or turning by 5-30 degrees in a single step. The head tilt, pan and gripper’s yaw, roll and863

pitch can be changed by at most 0.02-0.1 radians in a single step. The arm’s extension and lift can be864

changed by at most 2-10cm in a single step. We learn by teleporting the base and arm to the target865

locations.866

E.2 Observation Space867

Policies have access to depth from the robot head camera, and semantic segmentation, as well as the868

robot’s pose relative to the starting pose (from SLAM in the real world), camera pose, and the robot’s869

joint states, including the gripper. RGB image is available to the agent but not used during training.870

E.3 Training Setup871

All skills are trained using a slack reward of -0.005 per step, incentivizing completion of task using872

minimum number of steps. For faster training, we learn our policies using images with a reduced873

resolution of 160x120 (compared to Stretch’s original resolution of 640x480).874

E.3.1 Navigation Skills875

We train FindObject and FindReceptacle policies for the agent to reach a candidate object or876

a candidate target receptacle respectively. The training procedure is the same for both skills. We877

pass in the CLIP [14] embedding corresponding with the goal object, as well as segmentation masks878

corresponding with the detected target objects. The agent is spawned arbitrarily, but at least 3 meters879

from the target, and must move until within 0.1 meters of a goal “viewpoint,” where the object is880

visible.881

Input observations: Robot head camera depth, ground-truth semantic segmentation for all receptacle882

categories (receptacle segmentation), robot’s pose relative to the starting pose, joint sensor giving883

states of camera and arm joints. We implement object-level dropout for the semantic segmentation884

mask, where each object has a probability of 0.5 of being left out of the mask. In addition, the input885

observation space includes the following:886

• Goal specification: For FindObject, we pass in the CLIP embedding of the target object887

and the start receptacle category. For FindReceptacle, we pass in the goal receptacle888

category.889

• Goal segmentation images: During training, the simulator provides ground truth goal890

object segmentation; on the real robot, these are predicted by DETIC [23]. For FindObject,891

we pass in two channels: one showing all instances of candidate objects, one showing all892

instances of candidate start receptacles. For FindReceptacle, we pass a single channel893

showing all instances of candidate goal receptacles. We implement a similar object-level894

dropout procedure here as we did for the receptacle segmentation.895

Initial state: The agent is spawned at least 3m away from candidate object or receptacle. It starts in896

“navigation mode,” with the robot’s head facing forward.897
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Actions: The policy predicts translation and rotation waypoints, as well as a discrete stop action.898

Success condition: The agent should call the discrete stop action when it reaches within 0.5m of a899

goal view point. The agent should be facing the target: the angle between agent’s heading direction900

and the ray from robot to center of the closest candidate object should be no more than 15 degrees.901

Reward: Assume at time step t, the geodesic distance to the closest goal is given by d(t), the
angle between agent’s heading direction and the ray from agent to closest goal is given by θ(t), and
did_collide(t) indicates if the action the agent took at time t− 1 resulted in a collision at time t. The
training reward is given by:

RFindX(t) = α[d(t− 1)− d(t)] + β1[d(t) ≤ Dclose][θ(t− 1)− θ(t)] + γ1[did_collide(t)]

with α = 1, β = 1, γ = 0.3 and Dclose = 3.902

903

E.3.2 GazeAtObject904

The GazeAtObject skill starts near the object, and provides some final refinement steps until the905

agent is close enough to call a grasp action, i.e. it is in arm’s length of the object and the object is906

centered and visible. The agent needs to move closer to the object and then adjust its head tilt until907

the candidate object is close and centered. It makes predictions to move and rotate the head, as well908

as to center the object and make sure it’s within arm’s length, so that the discrete grasping policy can909

execute.910

The GazeAtObject skill is supposed to start off from locations and help reach a location within911

arm’s length of a candidate object. This is trained by first initialising the agents close to candidate912

start receptacles. The agent is then tasked to reach close to the agent and adjust its head tilt such that913

the candidate object is close and centered in the agent’s camera view. We next provide details on the914

training setup.915

Input observations: Ground truth semantic segmentation of candidates objects, head depth sensor,916

joint sensor giving all head and arm joint states, sensor indicating if the agent is holding any object,917

clip embedding for the target object name.918

Initial state: The robot again starts in “navigation mode,” with its arm retracted, with the gripper919

facing downwards, and with the head/camera facing the base, base at an angle of 5 degrees of the920

center object and on one of the “viewpoint” locations pre-computed during episode generation. The921

object will therefore be assumed to be visible.922

Actions: This policy predicts base translation and rotation waypoints, camera tilt, as well as a discrete923

“grasp” action.924

Success condition: The center pixel on the camera should correspond to a valid candidate object and925

the agent’s base should be within 0.8m from the object.926

Reward: We train the gaze-policy mainly with a dense reward based on distance to goal. Specifically,927

assuming the distance of the end-effector to the closest candidate goal at time t is d(t) (in metres),928

the agent receives a reward proportional to d(t − 1) − d(t). Further, when the agent reaches with929

0.8m, we provide an additional reward for incentivizing the agent to look towards the object.930

Let θ(t) denote the angle (in radians) between the ray from agent’s camera to the object and camera’s931

normal. Then the reward is given as:932

RGaze(t) = α[d(t− 1)− d(t)] + β1[d(t) ≤ γ]cos(θ(t))

with α = 2, β = 1 and γ = 0.8 in our case.933

The agent receives an additional positive reward of 2 once the episode succeeds and receives a934

negative reward of −0.5 for centering its camera towards a wrong object.935
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Nav. Manip. Perception FindObj Gaze FindRec Place Total

Heuristic Heuristic Ground Truth 485.3 - 95.9 8.5 574.1
Heuristic RL Ground Truth 483.5 7.7 101.9 67.2 611.6
RL Heuristic Ground Truth 313.4 - 136.9 7.7 437.6
RL RL Ground Truth 327.6 9.1 130.0 47.8 433.6
Heuristic Heuristic DETIC [23] 405.9 - 48.9 6.8 459.0
Heuristic RL DETIC [23] 412.8 44.7 47.5 242.2 584.2
RL Heuristic DETIC [23] 504.3 - 128.4 7.3 586.2
RL RL DETIC [23] 496.3 45.9 139.0 156.4 583.3

Table 5: The number of steps that the agent takes performing each of the skills for different baselines.
Note that here we only consider the cases where the skill terminates. The last column gives the total
number of steps the agent takes on average for executing the four skills.

E.3.3 PlaceObject936

Finally, the robot must move its arm in order to place the object on a free spot in the world. In this937

case, it starts at a viewpoint near a goal_receptacle. It must move up to the object and open its938

gripper in order to place the object on this surface.939

Input observations: Ground truth segmentation of goal receptacles, head depth sensor, joint sensor,940

sensor indicating if the agent is holding any object, CLIP [14] embedding for the name of object941

being held.942

Initial configuration: Arm retracted, with gripper down and holding onto an object, head facing the943

base. The agent is spawned on a viewpoint with its base facing the object with an error of at most 15944

degrees.945

Actions: Base translation and rotation waypoints, all arm joints (arm extension, arm lift, gripper yaw,946

pitch and roll), a manipulation mode action that can be invoked only once in an episode to turn the947

agent’s head towards the arm and rotate the base left by 90 degrees. The agent is not allowed to move948

its base while in manipulation mode.949

Success condition: The episode succeeds if the agent releases the object and the object stays on the950

receptacle for 50 timesteps.951

Reward: The agent receives a positive sparse reward of 5 when it releases the object and the object952

comes in contact with a target receptacle. Additionaly, we provide a positive reward of 1 for each953

step the object stays in contact with the target receptacle. It receives a negative reward of −1 if the954

agent releases the object but the object does not come in contact with the receptacle.955

F Additional Analysis956

Here, we provide some additional analysis of the different skills we trained to complete the Open-957

Vocabulary Mobile Manipulation task.958

F.1 Number of steps taken in each stage by different baselines959

Table 5 shows the number of steps taken by each skill in our baseline. With DETIC perception, we960

observed that the RL skills explored less efficiently than our simple heuristic-based planner; this961

translates to far fewer steps taken in successful episodes, although because RL exploration essentially962

“gives up” if an object isn’t nearby, it can take lots of steps in many situations. In the real world, we963

saw similar behavior - sometimes, the RL policies would not explore enough to be able to find a goal964

at all.965

Next, we observe that the Gaze and Place policies, which were trained with ground truth perception,966

take significantly longer to terminate with DETIC perception.967
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 Pick a box from a stand and place it on a chair. 

Episode start Find object Find receptacle Place object

 Pick a multiport hub from a stool and place it on a table. 

 Pick a toy from a table and place it on a stool. 

Figure 15: We show multiple executions of the Open-Vocabulary Mobile Manipulation task in a
variety of simulated environments.

Nav. Manip. Perception FindObj Gaze Pick FindRec Place Place terminates

Heuristic Heuristic Ground Truth 100.0 - 55.2 55.2 48.9 48.8
Heuristic RL Ground Truth 100.0 54.7 53.7 53.7 46.7 36.3
RL Heuristic Ground Truth 100.0 - 80.6 80.6 71.2 71.1
RL RL Ground Truth 100.0 79.5 68.1 68.1 60.2 48.2
Heuristic Heuristic DETIC [23] 100.0 - 31.8 31.8 27.8 27.8
Heuristic RL DETIC [23] 100.0 32.3 17.6 17.6 15.5 4.3
RL Heuristic DETIC [23] 100.0 - 50.2 50.2 37.3 37.2
RL RL DETIC [23] 100.0 50.1 24.8 24.8 19.8 8.5

Table 6: We report the percentage of times each skill gets invoked for each of the different baselines.
The last column gives the percentage of times the agent finishes executing all skills.

Finally, in Table 6, we look at the percentage of times the agent attempts each of the different skills.968

We find that the RL trained FindObj skill terminates more often than the heuristic FindObj skill and969

episodes terminate less frequently with DETIC perception when compared to GT perception.970

F.2 Performance on Seen vs. Unseen Object Categories971

Table 7 shows results broken down by seen vs. unseen instances, and seen vs. unseen categories.972

Specifically we look at these two pools of objects from the validation set:973

• SC,UI: Seen category, unseen instance. An object of a class that appeared in the training974

data (e.g., “cup”), but not a specific “cup” that appeared in the training data.975
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FindObj Success. PickObj Success. FindRec Success Overall Success
Nav. Manip. Perception SC,UI UC,UI All SC,UI UC,UI Total SC,UI UC,UI All SC,UI UC,UI All

Heuristic Heuristic DETIC [23] 23.6 22.6 23.3 11.7 11.1 11.5 2.9 3.2 3.0 0.2 0.5 0.3
Heuristic Heuristic Ground Truth 47.9 42.3 46.2 40.3 38.0 39.5 18.2 19.7 18.6 7.3 5.9 6.9
RL Heuristic DETIC [23] 20.2 19.1 19.9 10.5 10.0 10.2 4.7 3.8 4.4 1.0 0.3 0.8
RL Heuristic Ground Truth 54.6 56.1 55.1 42.5 40.7 41.9 25.9 27.2 26.4 6.4 6.7 6.5
Heuristic RL DETIC [23] 25.5 22.9 24.8 10.0 8.4 9.5 5.4 4.3 5.0 0.6 0.8 0.7
Heuristic RL Ground Truth 47.9 45.3 47.2 42.0 41.0 41.7 26.5 28.6 27.1 19.7 19.7 19.7
RL RL DETIC [23] 20.0 19.1 19.8 12.2 11.1 11.8 7.1 4.9 6.3 1.7 1.1 1.5
RL RL Ground Truth 55.5 55.8 55.7 50.5 49.3 50.2 35.6 34.2 35.2 22.3 17.8 21.0

Table 7: Performance breakdown by seen and unseen categories, and compared to overall performance.
In our baselines, we relied heavily on a pretrained object detector for generalization, so we don’t see
a dramatic difference in performance between seen and unseen objects.

• UC,UI: Unseen instance of an unseen category; an object of a type that did not appear in976

the training data at all.977

In general, because we are relying on DETIC and not training our own semantic perception for this978

baseline, we do not see a large difference between the two categories of object.979

Figure 16: RL Gaze skill in action: The agent is allowed to move its base and change its camera tilt
to get closer to objectand bring objectat the center of its camera frame

F.2.1 Example DETIC [23] predictions980

In Table 5, we observe that Gaze policy takes significantly longer time to terminate with DETIC [23]981

perception. The gaze policy (see Fig. 16) tries to center the agent on the object of interest by allowing982

the agent to move its base and camera tilt. For this, it relies on DETIC’s ability to detect novel objects.983

Now, we visualize DETIC segmentations of agent’s egocentric observations by placing agent at the984

points where the Gaze skill is expected to start: the object’s viewpoints. We observe that while985

DETIC is able to detect a few objects present in the image, it fails at consistently detecting all the986

objects present in the egocentric frame.987
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Figure 17: Visualization of groundtruth and DETIC [23] segmentation masks for agent’s egocentric
RGB observations. Note that we use a DETIC vocabulary consisting of the fixed list of receptacle
categories and target objectname. We observed that DETIC often fails to accurately detect all the
objects present in the given frame.

Human Commercially Manipulation Approximate
Name Mobile Sized Safe Available DOF Cost

Boston Dynamics Spot ✔ ✖ ✖ ✔ 7 $200,000
Franka Emika Panda ✖ ✖ ✓ ✔ 7 $30,000
Locobot ✔ ✖ ✔ ✖ 5 $5,000
Fetch ✔ ✔ ✓ ✖ 7 $100,000
Hello Robot Stretch ✔ ✔ ✔ ✔ 4 $19,000
Stretch with DexWrist ✔ ✔ ✔ ✔ 6 $25,000

Table 8: Notes on platform selection. We chose the Stretch with DexWrist as a good compromise
between manipulation, navigation, and cost, while being human-safe and approximately human-sized.

G Hardware Setup988

Here, we will discuss choices related to the real-world hardware setup in extra detail along with989

information about the tools that we use for the visualization on the robot.990

G.1 Hardware Choice991

We describe some options for commercially-available robotics hardware in Tab. 8. While the Franka992

Emika Panda is not a mobile robot, we include it here because it’s a very commmonly used platform993

in both industrial research labs and at universities, making its price a fair comparison point for what994

is reasonable.995
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G.2 Visualizing The Robot996

Figure 18: Exploring a real-world apartment during testing. The robot uses Detic [23] to perceive
the world and update a 2D map (center) which captures where it’s seen relevant classes, and which
obstacles exist; detections aren’t always reliable, especially given a large and changing vocabulary of
objects that we care about. In the HomeRobot stack, we provide a variety of tools for visualizing and
implementing policies, including integration of RVIZ (right).

We use RVIZ, a part of ROS, to visualize results and progress. Fig. 18 shows three different outputs997

from our system: on the far left, an image from the test environment being processed by Detic; in the998

center, a top-down map generated by the navigation planner described in Sec. D.2; and on the right,999

an image from RVIZ with the point cloud from the robot’s head camera registered against the 2D1000

lidar map created by Hector SLAM.1001

One advantage of the HomeRobot stack is that it is designed to work with existing debugging tools -1002

especially ROS [102]. ROS is a widely-used framework for robotics software development which1003

comes with a lot of online resources, official support from Hello Robot, and a rich and thriving1004

open-source community with wide industry backing.1005

1006
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