
Under review as a conference paper at ICLR 2023

A IMPLEMENTATION OF OUR 3D METHOD

2D encoder. We use ResNet18 as the encoder.

3D encoder consists of two 3D transposed convolutions activated by Leaky ReLU function.

3D decoder first reshapes the deep voxel (C/D)×D×H ×W back to C ×H ×W , and consists
of one 2D 1× 1 convolution and three transposed convolutions to reconstruct the RGB images.

PoseNet concatenates two images as the input and reduces the dimension to 6 for predicting Euler
angles [α, β, γ]⊤ and the translation [x, y, z]⊤, by seven 2D convolutions.

3D transformation. We warp the grid such that the voxel at location p = [i, j, k]⊤ will be warped
to p̂, which is computed as

p̂ = Rp+ t (4)

where R, t is the 3 × 3 rotation matrix and translation vector corresponding to the camera pose.
In our implementation, the warp is performed inversely and the value at fractional grid location is
trilinearly sampled. In addition, since there exists misaligned voxels during the sampling procedure
caused by the coarse deep voxel representation, we apply two 3D convolutions to refine and correct
these mismatches.

3D pretraining. We randomly select 20 classes in CO3D and sample Isrc and Itgt with a bounded
interval b = 9. We train ∼ 250k iterations with batch size 32.

3D finetuning. In the finetuning phase, we apply a less frequent update when doing the 3D task,
i.e., performing λup 3D update every 1 RL update. In practice, we set λft = 10−2, lrRL = 10−3, and
λup = 0.5. In addition, we only apply the reconstruction loss.

B BASELINES

From scratch, also called vanilla SAC, does not use any pretrained model and utilizes a 2D encoder
with fourteen 2D convolutions activated by ReLU function. Our implementation generally follows
DrQ (Kostrikov et al., 2020). The actor consists of fully connected layers activated by Tanh function.
The critic applys fully connected layers activated by ReLU function and predicts double action value
funtions Q with a shared encoder and two different heads. We apply the same data augmentation as
in (Jangir et al., 2022) for better sim-to-real transferring, including random shift and color jitter.

ImageNet. We replace the 2D encoder in vanilla SAC with ResNet18 pretrained with supervised
learning on ImageNet, to gain a stronger 2D representation.

MoCo. We replace the 2D encoder in vanilla SAC with ResNet18 which is trained by MoCo (v2)
(Chen et al., 2020) on ImageNet under the setting where the batch size is 256, the number of epochs
is 100, and the initial learning rate is 0.03.

Remove ImageNet normalization for usage. Our baseline methods MoCo and ImageNet are both
pretrained with ImageNet and all input images are preprocessed with the normalization of Ima-
geNet, i.e, with the mean (0.485, 0.456, 0406) and the standard deviation (0.229, 0.224, 0.225). A
natural way to apply such pretrained networks in RL is using the same normalization to maintain the
representation ability of the pretrained networks. However, by empirical experiments we find that
normalizing the images directly into [0, 1]d achieves a much better performance, as shown in Figure
9a. Thus we adopt a stronger version as our baseline.

C DESIGN OF CAMERAS

Design of the static view. The static view is generally used for all baselines and our algorithm, for
both the training phase and the inference phase. Thus the inner requirement is that the static view
should contain the majority of useful information for the robotic task, to gain a strong baseline. In
practise we carefully select a unified static view for all tasks.

Design of the dynamic view. The dynamic camera that shots Itgt is essential, which largely decides
whether the image reconstruction could work. Based on the priori that our task is object-centric and

15



Under review as a conference paper at ICLR 2023

the intuition that interaction between the robot and the object is our focus, we move the dynamic
view in a object-centric manner, i.e., moving along a circle around the center of the scene, starting
from the static view as a initial position. The center of the scene is designed to cover the necessary
objects and the main scene information. For example, in the peg in box task, where the robot is
required to move the peg into the box on the table, the box is essential to understand and solve this
task, and thus the box could be seen as the center of the scene.

Formally, let [xs, ys, zs]
⊤ denote the position of the static view, [xd, yd, zd]

⊤ denote the position
of the dynamic view, [xc, yc, zc]

⊤ denote the center of the scene, r denote the radius of the circle,
ϕs denote the rotation angle of the static view, and ϕd denote the rotation angle of the dynamic
view from the static view. We also introduce ϕ, which denotes the range of the rotation of the
dynamic view. Then the translation of the cameras is given in Equation 5 and 6. The rotation angle
is automatically computed by making the camera point to the center of the scene with the z-axis in
the plane perpendicular to the ground.

[xs, ys, zs]
⊤ = [xc, yc, zc]

⊤ + r · [sinϕs, cosϕs, 0]
⊤, where ϕs is predefined. (5)

[xd, yd, zd]
⊤ = [xc, yc, zc]

⊤ + r · [sin(ϕs + ϕd), cos(ϕs + ϕd), 0]
⊤, where ϕd ∈ [0, ϕ] . (6)

D NOVEL VIEW SYNTHESIS IN REAL

Videos consisting of synthesised views are displayed in our project website https://3d4rl.
github.io/. In this section we describe details of how we generate the synthesised views for
the real world.

Let Ireal denote the image shot in the real world from the same static view as in simulation.
The deep voxel representation is thus generated as gθ(fθ(Ireal))). Since we only have one static
camera in the real world (we could have other cameras in real, but it is not necessary for our
method), we use the simulation images Isrc, Itgt (the same notation as before) to predict the rel-
ative transformation by PoseNet and get transformation R, t. Then the reconstructed image is
Îrecon = hθ(TR,t(gθ(fθ(Ireal)))), which should be in the same view as Itgt, but different in the scene
content.

To generate videos, we do interpolation on the generated transformations and apply these new trans-
formations to get interpolated views,. The output of PoseNet is [α, β, γ, x, y, z]⊤, and let λ ∈ [0, 1]
denote the interpolation factor. Then the interpolated transformations are

(1− λ)[0, 0, 0, 0, 0, 0]⊤ + λ[α, β, γ, x, y, z]⊤ = [λα, λβ, λγ, λx, λy, λz]⊤ , (7)

from which we could trivially gain R, t.

E ADDITIONAL RESULTS

E.1 DYNAMIC CAMERA MOVING RANGE ϕ

The moving range of the dynamic camera affects the performance of our 3D algorithm. Specifically,
a larger ϕ may impede the learning process and hurt the performance. We use lift task as an example
to illustrate the effect of ϕ, as shown in Figure 9b. We find that with a relatively small range, i.e.,
30◦, 3D could be more stable.

E.2 IMAGENET NORMALIZATION IN BASELINES

When the visual representation is frozen, the ImageNet normalization is generally used across all
pretrain methods (Xiao et al., 2022; Nair et al., 2022; Parisi et al., 2022). However, we find that
when we could train the policy and the visual representation end-to-end, it would be better to not
apply the ImageNet normalization, as shown in Figure 9a. We thus adopt the stronger baseline.

E.3 POSE ESTIMATION

Our 3D method trains a PoseNet that could estimate the relative pose between two frames and we
evaluate our pose estimation results quantitatively in this section. For a whole trajectory generated

16



Under review as a conference paper at ICLR 2023

0.0 0.2 0.4
Environment Steps (×106)

0.0

0.2

0.4

0.6

0.8

S
uc

ce
ss

 R
at

e

Push

ImageNet
ImageNet (Norm)
MoCo
MoCo (Norm)

(a)

0.0 0.2 0.4
Environment Steps (×106)

0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

 R
at

e

Lift

30
60
90

(b)
Figure 9: (a) Compare baselines with and without ImageNet Normalization. (b) Success rate of our
method with different camera moving range ϕ on lift.

Table 4: Quality of pose estimation for peg in box task. Each table shows the root mean square
error (RMSE) and the maximal error (MaxE) of different dynamic camera angle ϕd given certain
finetuning scale λft. We only train with ϕd = 30◦. We could observe that the finetuning leads to
consistent smaller errors.

Pretrain

ϕd RMSE↓ MaxE↓
15 0.041 0.093
30 0.066 0.142
45 0.120 0.246
60 0.174 0.334
avg 0.100 0.204

λft = 0.01

ϕd RMSE↓ MaxE↓
15 0.041 0.089
30 0.059 0.122
45 0.064 0.150
60 0.130 0.393
avg 0.073 0.189

λft = 0.10

ϕd RMSE↓ MaxE↓
15 0.040 0.091
30 0.033 0.097
45 0.046 0.102
60 0.132 0.382
avg 0.063 0.168

λft = 1.00

ϕd RMSE↓ MaxE↓
15 0.046 0.126
30 0.041 0.124
45 0.044 0.120
60 0.133 0.365
avg 0.066 0.184

by the interaction between our agent and the environment, we estimate the relative pose between the
dynamic camera and the static camera for each timestep. Since the estimated transformation is in
the coordinate space of deep voxels, Umeyama alignment (Umeyama, 1991) is applied to align the
predicted trajectory with the ground truth trajectory provided by our simulation environment. We
set diverse dynamic camera angles to test both in-domain (15◦, 30◦) and out-of-domain (45◦, 60◦)
pose estimation under various finetuning scales. Results in Table 4 show that our method reduces
the pose estimation error compared to the network that is only pretrained with CO3D dataset. Our
method could also generalize to 45 degrees with a small error equal to 0.064, nearly half of the one
with only pretraining. In addition, we find that larger finetuing scales generally reduce the error, and
even finetuning with a very small scale could result in a gap compared to the pretrain model.

E.4 COMPARE WITH OTHER 3D PRETRAIN METHODS

0.0 0.2 0.4
Environment Steps (×106)

0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

 R
at

e

Peg in Box

0.0 0.2 0.4
Environment Steps (×106)

0.0

0.2

0.4

0.6

0.8
Lift

3D (ours) CSPN

Figure 10: Success rate of different frozen visual represen-
tations. We compare our 3D visual representation with CSPN
(Cheng et al., 2018b) on peg in box and lift.

In our main sections we demon-
strate the advantage of our method
over 2D representations, and we
are now showing that our 3D self-
supervised representation is also bet-
ter than other straightforward pre-
train methods that contain 3D infor-
mation. Specifically, we consider the
ResNet50 model pretrained by the
depth estimation task using convo-
lutional spatial propagation network
(CSPN) (Cheng et al., 2018b). We
still freeze the visual representation
across methods. The results are

17



Under review as a conference paper at ICLR 2023

R
ea

ch
Pe

g
in

B
ox

Pu
sh

L
ift

Static (sim)
Input

Dynamic
(sim) 15◦

Synthesis
(sim) 15◦

Dynamic
(sim) 30◦

Synthesis
(sim) 30◦

Figure 11: Novel view synthesis in simulation. We display the reconstruction results for ϕd =
15◦, 30◦ in four tasks.

shown in Figure 10 under the same setting as Figure 6. We find that our 3D representation is consis-
tently better on peg in box and lift, while the CSPN model could also gain reasonable accuracy.

E.5 COMPUTATIONAL OVERHEAD

Although our 3D based algorithm is elegantly designed for better sample efficiency, the computa-
tional overhead of utilizing the auxiliary task for joint optimization is non-negligible. We measure
the computation time for one 3D update (0.038s) and one RL update (0.063s) averaged over 10
iterations on a NVIDIA GeForce RTX 3090. The large overhead is mainly because our method re-
constructs the image from the 3D scene latent, which is higher dimensional (O(n3)) than common
2D methods (O(n2)). How to make the utilization of 3D information more computational efficient
is interesting to explore in our future work.

E.6 NOVEL VIEW SYNTHESIS RESULTS IN SIM AND REAL

We provide qualitative results of our novel view synthesis both in simulation and in the real world. In
Figure 7 we show the synthesis using real world images and our model is only trained in simulation.
Figure 11 gives more results in simulation. We also compare the synthesis generated by the pre-
trained model and the finetuned model in Figure 12, where we find that the pretrained model could
grasp the main objects in the scene while the domain gap, e.g., color, could be clearly observed.

F VISUALIZATION OF OUR ENVIRONMENTS

We give more visualization of our environments, including four xArm environments: Lift, Push, Peg
in Box, and Reach, and four Meta-World environments: Basketball, Box Close, and Coffee Push, and
Hammer, shown in Figure 13. For one single xArm task, we are giving different initialization setting,
showing the randomization in our environments for generalization. For one single Meta-World task,
we show different views along the trajectory of the dynamic camera. We also visualize the perturbed

18



Under review as a conference paper at ICLR 2023

R
ea

ch
Pe

g
in

B
ox

Pu
sh

L
ift

GT 15◦ No FT 15◦ FT 15◦ GT 30◦ No FT 30◦ FT 30◦

Figure 12: The effect of 3D finetuning for novel view synthesis in simulation. GT represents
for ground truth and FT represents for finetuning. We display the reconstruction results for ϕd =
15◦, 30◦ in four tasks.

simulation environments as shown in Figure 14 and the examples of successful trajectories as shown
in Figure 15.

G HYPER-PARAMETERS

We provide all relevant hyper-parameters used in our experiments in Table 5, including both param-
eters that are discussed and not discussed in our paper.

19



Under review as a conference paper at ICLR 2023

R
ea

ch
Pe

g
in

B
ox

Pu
sh

L
ift

H
am

m
er

C
of

fe
e

Pu
sh

B
ox

C
lo

se
B

as
ke

tb
al

l

Figure 13: Visualizations. We visualize four xArm environments and selected four Meta-World
environments. Our xArm environments are shown across different initialization, where initial po-
sition of end-effector and objects are randomized. Meta-World environments are shown along the
trajectory of the dynamic camera.

20



Under review as a conference paper at ICLR 2023

R
ea

ch
Pe

g
in

B
ox

Pu
sh

L
ift

Figure 14: Visualizations of perturbed simulated environments. We visualize four xArm envi-
ronments. Our xArm environments are shown across different initialization, together with texture
randomization, lighting randomization, and camera perturbation.

time −→

R
ea

ch
Pe

g
in

B
ox

Pu
sh

L
ift

Figure 15: Visualizations of trajectories in simulated environments. We sample one successful
trajectory for each xArm environment.

21



Under review as a conference paper at ICLR 2023

Table 5: Hyper-parameters.

Variable Description Value

b the bounded interval of sampling training frames 9

lrRL learning rate of the RL agent 10−3

λup frequency of 3D update 0.5
λft finetuning scale 0.01
ϕ dynamic camera angle range 30◦

– observation shape 84× 84× 3
– episode length of xArm tasks 50
– episode length of MetaWorld tasks 200
– replay buffer capacity 500k
– batch size of replay buffer sampling 128
– training steps (xArm) 500k
– training steps (Meta-World) 1m
– discount factor 0.99
– initial random steps 1000
– initial temperature 0.1
– frequency of RL update 1
– random shift padding 4
– brightness of color jitter 0.4
– saturation of color jitter 0.4
– contrast of color jitter 0.4
– hue of color jitter 0.5

22


