
Published as a conference paper at ICLR 2025

DEEPGATE4: EFFICIENT AND EFFECTIVE REPRESEN-
TATION LEARNING FOR CIRCUIT DESIGN AT SCALE

Ziyang Zheng1,5 Shan Huang2,5 Jianyuan Zhong1,5 Zhengyuan Shi1,5 Guohao Dai2,3,4
Ningyi Xu2 Qiang Xu1,5

1The Chinese University of Hong Kong 2Shanghai Jiao Tong University 3Infinigence-AI
4Shanghai Innovation Institute 5National Technology Innovation Center for EDA∗

{zyzheng23,jyzhong,zyzshi21,qxu}@cse.cuhk.edu.hk
{ironheart,daiguohao,xuningyi}@sjtu.edu.cn

ABSTRACT

Circuit representation learning has become pivotal in electronic design automa-
tion, enabling critical tasks such as testability analysis, logic reasoning, power es-
timation, and SAT solving. However, existing models face significant challenges
in scaling to large circuits due to limitations like over-squashing in graph neural
networks and the quadratic complexity of transformer-based models. To address
these issues, we introduce DeepGate4, a scalable and efficient graph transformer
specifically designed for large-scale circuits. DeepGate4 incorporates several key
innovations: (1) an update strategy tailored for circuit graphs, which reduce mem-
ory complexity to sub-linear and is adaptable to any graph transformer; (2) a GAT-
based sparse transformer with global and local structural encodings for AIGs; and
(3) an inference acceleration CUDA kernel that fully exploit the unique sparsity
patterns of AIGs. Our extensive experiments on the ITC99 and EPFL benchmarks
show that DeepGate4 significantly surpasses state-of-the-art methods, achieving
15.5% and 31.1% performance improvements over the next-best models. Further-
more, the Fused-DeepGate4 variant reduces runtime by 35.1% and memory usage
by 46.8%, making it highly efficient for large-scale circuit analysis. These re-
sults demonstrate the potential of DeepGate4 to handle complex EDA tasks while
offering superior scalability and efficiency.

1 INTRODUCTION

Circuit representation learning has emerged as a crucial area in electronic design automation
(EDA), reflecting the broader trend in AI of learning general representations for diverse downstream
tasks (Chen et al., 2024), such as testability analysis (Shi et al., 2022), logic reasoning (Deng et al.,
2024; Wu et al., 2023), power estimation (Khan et al., 2023), and SAT solving (Li et al., 2023; Shi
et al., 2024a). In this domain, the DeepGate family (Li et al., 2022; Shi et al., 2023) emerges as
pioneering approaches, formulating circuit netlists into graphs and utilizing graph neural networks
(GNNs) to learn gate-level embeddings. DeepGate (Li et al., 2022) converts arbitrary circuit netlists
into And-Inverter Graphs (AIGs) and uses logic-1 probabilities from random simulations for model
supervision. Its successor, DeepGate2 (Shi et al., 2023), improves on this by learning disentangled
structural and functional embeddings. In addition to the DeepGate Family, Gamora (Wu et al., 2023)
extends reasoning capabilities by representing both logic gates and cones, while HOGA (Deng et al.,
2024) enhances the scalability and generalizability of GNNs through hop-wise aggregation.

Despite the success on tiny circuits, inherent limitations of the GNN-based framework persist when
it scales to large circuits, including difficulty in capturing long-range dependencies (Alon & Ya-
hav, 2020), susceptibility to over-smoothing (Akansha, 2023) and over-squashing (Rusch et al.,
2023), which results in poor performance on complex circuits. Consequently, DeepGate3 (Shi et al.,
2024b) draws inspiration from transformer-based graph learning models by tokenizing circuits into
sequences and employing graph transformers to capture global relationships within DAG-based
structures. While DeepGate3 introduces fine-tuning strategies for scaling from smaller to larger

∗This work has been partially undertaken when interning at National Technology Innovation Center for EDA.

1



Published as a conference paper at ICLR 2025

circuits, it still struggles to handle circuits with millions of gates due to the significant memory over-
head and computation redundancy of dense transformer blocks. Therefore, training an efficient and
effective circuit representation learning model still remains a challenge.

In general domain, previous research on improving model efficiency has shown great potential in
scaling GNNs and graph Transformers; however, significant challenges still remain in applying
these advancements to circuit representation learning. These models can be broadly categorized
into two types: linear graph transformers and sub-linear GNNs. On the one hand, the linear Graph
Transformers, such as GraphGPS (Rampášek et al., 2022), Exphormer (Shirzad et al., 2023), Node-
Former (Wu et al., 2022), DAGformer (Luo et al., 2024), and NAGphormer (Chen et al., 2022),
leverage graph sparsity to perform different sparse attention, reducing memory consumption from
quadratic to linear. Despite the advancement, training these models on practical circuit designs
with millions or billions of gates still suffer from Out-Of-Memory(OOM) error. On the other hand,
the sub-linear GNNs, such as GNNAutoScale (Fey et al., 2021), SketchGNN (Ding et al., 2022),
and GraphFM (Yu et al., 2022), achieve sub-linear memory complexity by employing historical
embeddings during training, with randomly sampled sub-graphs. However, these methods are pri-
marily tailored for undirected graphs and pose challenges when applied to Directed Acyclic Graphs
(DAGs). Specifically, sub-linear GNNs with random sampling strategies (Fey et al., 2021; Yu et al.,
2022; Ding et al., 2022) disregard the causal relationships between sub-graphs by applying com-
pletely random sampling, resulting in suboptimal performance on function-related tasks.

In response to these challenges, we propose DeepGate4, an efficient and effective graph transformer
specifically designed to scale to large circuits. Building on the architecture of DeepGate3 as illus-
trated in Figure 1, DeepGate4 utilizes GNN-based tokenizer to encode circuit function and structure.
These embeddings are then processed by a transformer for global aggregation. Our approach intro-
duces several key innovations:
• An updating strategy tailored for DAGs based on partitioned graph, ensuring that gate embed-

dings are computed in logical level order, with each gate being processed only once, thus elim-
inating redundant computations. While DeepGate3 is limited to fine-tuning graphs with up to
50k nodes, the proposed updating strategy, which is adaptable to any graph transformer, achieve
sub-linear memory complexity and thus enable efficient training on graphs with millions of nodes.

• A GAT-based sparse transformer with global virtual edges, reducing both time and memory
complexity to linear in a mini-batch. We further introduce structural encodings for transformers
on AIGs by incorporating global and local structural encodings in initialized embedding.

• An inference acceleration kernel, Fused-DeepGate4, designed to optimize the inference process
of tokenizer and GAT components with well-designed CUDA kernels that fully exploit the unique
sparsity patterns of AIGs.

Experimental results on the ITC99 and EPFL benchmarks demonstrate that DeepGate4 significantly
outperforms state-of-the-art methods, with improvements of 15.5% and 31.1% respectively over
the second-best method. Furthermore, our Fused-DeepGate4 model, with inference acceleration
optimizations, achieves a 41.3% reduction in runtime and 51.3% reduction in memory usage on
ITC99 benchmark, and a 28.2% reduction in runtime and 32.5% reduction in memory usage on
EPFL benchmark. We also evaluate the generalizability of DeepGate4 across circuits of varying
scales. DeepGate4 exhibits strong generalizability, delivering outstanding performance on circuits
with 400K gates, despite being trained on circuits averaging just 15K gates. Moreover, when infer-
ence on circuits ranging from 400K gates to 1.6M gates, while GNNs exhibit linear memory growth,
our models maintain constant memory usage. These results suggest that DeepGate4 has potential to
scale both effectively and efficiently to circuits with millions, even billions of gates.

2 RELATED WORK
Circuit Representation Learning Circuit representation learning has become a pivotal area in
electronic design automation (EDA), reflecting the broader trend in AI of learning general represen-
tations for diverse downstream tasks. In this domain, the DeepGate family (Li et al., 2022; Shi et al.,
2023) emerges as pioneering approachs, exploring GNNs to encode AIGs and enabling support for
a variety of EDA tasks such as testability analysis (Shi et al., 2022), power estimation (Khan et al.,
2023), and SAT solving (Li et al., 2023; Shi et al., 2024a). The Gamora (Wu et al., 2023) and
HOGA (Deng et al., 2024) further extend reasoning capabilities by representing both logic gates
and cones. PolarGate (Liu et al., 2024) seeks to overcome functionality representation bottlenecks
by leveraging ambipolar state principles.

2



Published as a conference paper at ICLR 2025

Gate-Level 
Pretrain Tasks

Graph-Level 
Pretrain Tasks

DAG-based GNN Model

ℎ𝑠!

… …

ℎ𝑠"

ℎ𝑠#

… …

ℎ𝑓!

ℎ𝑓"

ℎ𝑓#

EmbeddingsDeepGate2

A
B
C

A

B

C

R
efine

Transform
er

Connective Pattern

Pooling
Transform

er

DeepGate3

: Edge
: Message Passing

Figure 1: The overview of DeepGate2 and DeepGate3

Considering the inherent limitation of GNNs, e.g. over-squashing or over-smoothing, recent work
DeepGate3 (Shi et al., 2024b), as illustrated in Figure 1, utilizes DeepGate2 as a tokenizer and then
leverages the global aggregation mechanism of transformers with a connective mask to enhance
circuit representation. However, new challenges arise when scaling to large AIGs: transformer-
based models suffer from quadratic complexity, making training on large AIGs impractical.

Advances and Challenges in Graph Transformers and Sub-Linear GNNs for Large-Scale Cir-
cuits Graph transformer models typically operate on fully-connected graphs, where every pair
of nodes is connected, regardless of the original graph’s structure. SAN (Kreuzer et al., 2021),
Graphormer (Ying et al., 2021), GraphiT (Mialon et al., 2021), and GraphGPS (Rampášek et al.,
2022) apply dense attention mechanisms with various positional and structural encodings. While
these methods deliver outstanding performance, the quadratic complexity makes them impractical
for large graphs. Recent approaches, such as Exphormer (Shirzad et al., 2023), Nodeformer (Wu
et al., 2022), NAGformer (Chen et al., 2022), and DAGformer (Luo et al., 2024), leverage the sparse
patterns of graphs to employ sparse transformers, reducing complexity to linear. However, even with
these improvements, applying them to circuits with millions of gates remains challenging.

Sub-linear GNNs, such as GNNAutoScale (Fey et al., 2021) and SketchGNN (Ding et al., 2022)
tackle this issue by incorporating historical embeddings during training, reducing memory complex-
ity by reusing embeddings from prior iterations. This allows for constant GPU memory consumption
relative to graph size. GraphFM (Yu et al., 2022) improves the historical embeddings updating by
introducing feature momentum. However, applying them to AIGs remains challenging since they
disregard the causal relationships between sub-graphs by applying completely random sampling.
Specifically, when modeling circuit functionality as a computational graph, it is essential to follow
a strict topological order, reasoning from primary inputs (PIs) to primary outputs (POs) based on
logic levels (Li et al., 2022).
The Necessity of System-Level GNN Optimizations for Circuit Processing System-level op-
timization of GNNs aims to reduce memory consumption and accelerate inference and training
time, thereby improving the efficiency of GNN execution. Single GPU systems primarily opti-
mize through operator reorganization, operator fusion, and data flow optimization. FuseGNN (Chen
et al., 2020) accelerates the computation process by fusing any two edge-centric operators and stor-
ing intermediate data from the forward pass. However, it still consumes a large amount of memory.
Fused-GAT (Zhang et al., 2022), recognized as the state-of-the-art approach, reduces redundant
computations by postponing the propagation operator. It has been widely adopted in PyTorch Geo-
metric (PyG) (PyG, 2024) implementations of the GAT network (e.g., GATConv, FuseGATConv),
and its fused operators and recomputation strategy significantly reduce the memory required for
execution. However, existing GNN acceleration techniques, such as Fused-GAT, were primarily de-
signed for social network and citation network datasets, where the node degree follows a power-law
distribution (Eikmeier & Gleich, 2017). In contrast, AIGs exhibit a uniform node degree distribution
and have significantly fewer edges (1 or 2 edges per node). Consequently, these methods perform
suboptimally on AIG graphs due to imbalanced workload and substantial synchronization overhead.

3 METHOD

3.1 OVERVIEW

The overall pipeline of our method is illustrated in Figure 2. The core idea of our method is to
partition a large graph into small cones and encode these cones level by level, enabling the training

3



Published as a conference paper at ICLR 2025

𝑐𝑜𝑛𝑒𝑠!

…
 …

 
…

 …
 

PI PO

Level𝑘 𝑘 + 𝛿 … 0

cone

𝑐𝑜𝑛𝑒𝑠!"#

Graph Partition

𝑐𝑜𝑛𝑒$ …
Offline Node Embedding(CPU)

: Push
: Pull

Online Node 
Embedding (GPU)…

mini-batch GNN+
Transformer

Task
Head

𝑐𝑜𝑛𝑒$

𝑐𝑜𝑛𝑒%

𝑐𝑜𝑛𝑒&

Training 
Pipeline Architecture&Loss

DeepGate2

GAT-based
Sparse Transformer

Node Embedding

Construct 
Virtual Edge

Loss Balancer

Structure Encoding

Overall Loss

Graph-Level
Loss

Gate-Level
Loss

GNN+
Transformer

Task
Head

Online Node 
Embedding (GPU)…

mini-batch

𝑐𝑜𝑛𝑒!"#

𝑐𝑜𝑛𝑒!"$

𝑐𝑜𝑛𝑒$!

𝑐𝑜𝑛𝑒% 𝑐𝑜𝑛𝑒'

Figure 2: The overall pipeline of our method. In our training pipeline, the embedding exchanging
is implemented through the following two operations: Push(GPU to CPU): After encoding a mini-
batch, the online node embeddings are saved in offline historical embedding. Pull(CPU to GPU):
Before encoding a mini-batch, the offline historical embeddings are used to initialize the online node
embeddings in the overlap region.

of a graph transformer with sub-linear memory complexity. Section 3.2 details the graph partitioning
process. Section 3.3 discusses our observations on overlap regions, and based on these observations,
we propose the updating strategy in Section 3.4. In Section 3.5, we show the model architecture and
structural encoding of our sparse transformer. Section 3.6 introduces our training objectives and a
multi-task loss balancer that adjusts the weight of each component. Finally, Section 3.7 introduces
inference optimization techniques to further reduce the inference runtime and memory usage.

3.2 GRAPH PARTITION

Given an AIG G = (V,E), with node set V , and edge set E ⊆ V × V , the AIG contains three
type of nodes: primary input(PI), AND gate and NOT gate. The gate type can be easily identified
by its in-degree: the in-degree of a PI is 0, the in-degree of an AND gate is 2, and the in-degree of
a NOT gate is 1. We first compute the logic level of each gate in topological order according to the
following equation:

level(v) =

{
0 if v is a PI
1 + max

(u,v)∈E
level(u) otherwise (1)

For an AIG, we define a partial order ≼k that u ≼k v if there exists a path from u to v with length
less than or equal to k. Given a node v ∈ V , based on the partial order ≼k, we define a cone by
conek(v) = {u ∈ V : u ≼k v}. Since the maximum in-degree of any node in an AIG is 2, the
maximum size of conek(v) is 2k+1 − 1.

As illustrated in Figure 2, given an AIG G = (V,E), with cone depth k and stride δ < k, we define
the graph partition by Algorithm 1. Initially, we focus on gathering all the coneki that terminate
at logic level k. Moving forward with stride δ, we continue collecting with output gates situated at
level k+δ. Note that the chosen value of δ is smaller than k in order to guarantee an overlap between
cones in different level. The aforementioned process is repeated iteratively until the partitioned areas
cover the entire circuit.

3.3 OBSERVATION AND MOTIVATION

For Intra-Level overlap, i.e. coneli ∩ conelj , as shown in Figure 3a, note
that if a gate v is in the overlap region, then all the fan-in nodes of v
must be in the overlap region. Specifically, if v ∈ coneli ∩ conelj , then
∀u ∈ {u ∈ conesl : u ≼k v}, we have u ∈ coneli ∩ conelj , since v

share the same fan-in region in both coneli and conelj . This implies that
when computing the embedding of a gate within the overlap region from
scratch, the receptive field remains unchanged. When inference, since
both the initialization method and model parameters are consistent, the
embedding of these gates will be identical across different mini-batches.

: on training
: updated
: receptive 
fields

(a)

(b) (c)
Figure 3: Observation.

4



Published as a conference paper at ICLR 2025

For Inter-Level overlap, i.e. conesl−δ ∩ conesl, as illustrated in Figure 3b and Figure 3c, assume
that we v ∈ conesl−δ ∩ conesl, we can define the receptive fields at different levels as follows:
Rl−δ(v) = {u ∈ conesl−δ : u ≼k v} and Rl(v) = {u ∈ conesl : u ≼k v}. According to
the definition of ≼k, we observe that Rl(v) ⊆ Rl−δ(v), in other words, Rl(v) can be regarded as
Rl−δ(v) restricted by conesl. This ensures that using historical embedding of nodes in conesl−δ

introduce a larger receptive filed. In contrast, computing the embedding of gate v in conesl from
scratch will restrict the receptive field to the current level, preventing it from capturing long-range
dependencies from PIs. The receptive field affects the computations of the GNN tokenizer and sparse
transformer, as they aggregate embeddings within the receptive field for node v. Therefore, this
limitation on the receptive field will lead to significant estimation errors when performing function-
related tasks (Deng et al., 2024; Liu et al., 2024).

Algorithm 1 Graph Partition

Input: AIG G = (V,E), cone depth k, stride
δ < k

1: L← max
v∈V

level(v), l← k

2: while l ≤ L do
3: conesl ← list(), i← 0
4: for v in {v ∈ V : level(v) = l} do
5: Get sub-graph coneli ← conek(v)
6: Add coneli to conesl, i← i+ 1
7: end for
8: l← l + δ
9: end while

10: for v in {v ∈ V : out-degree(v) = 0} do
11: Get sub-graph g ← conek(v)
12: Add g to coneslevel(v)

13: end for
14: return cones list [conesk, conesk+δ, ...]

Algorithm 2 Training Pipeline

Input:
cone depth k, stride δ,
partitioned cones [conesk, conesk+δ, ...],
mini-batch size B

1: for l in [k, k + δ, ...] do
2: if l ̸= k then
3: Inter-Level Updating on

[conesk, conesk+δ, ..., conesl]
4: end if
5: m← len(conesl)/B
6: for i in range(0,m) do
7: sample mini-batch batchl

i in conesl

8: Intra-Level Updating on batchi

9: end for
10: end for

3.4 UPDATING STRATEGY

After partition, we get cones with level in [k, k + δ, ...]. As outlined in Algorithm 2, we encode the
cones starting from the smaller levels and progressing to the larger ones. Based on the observation
in the Section 3.3, we propose Intra-Level Updating for cones at the same level and Inter-Level
Updating for cones at different levels. Figure 4 illustrates the detailed updating process when the
mini-batch size is 1.

Intra-Level Updating Given a cone list at the same level
conesl = [conel1, cone

l
2, ..., cone

l
n], we divide them into

mini-batches [batchl
1, batch

l
2, ..., batch

l
m]. When encoding

batchl
i, we first check if the gates in batchl

i have already
been updated in the previous stage. If so, we retrieve their
embeddings from the historical embeddings and remove all
the in-edges of these gates, ensuring that their embedding
will not be updated further in subsequent stages. We then
send batchl

i to the model to compute the embedding of other
gates, after which we will store these embedding in histori-
cal embedding and mark all the gates in batchl

i as updated
in the following stage.

Iter 0 Iter 2

Iter 0 Iter 1 Iter 2

Inter-Level Update

Intra-Level Update

Iter 1

: on training

: to be updated

: updated

: push

: pull

Figure 4: The updating process when
the mini-batch size is 1.

Inter-Level Updating Given two lists of cones at different level conesl−δ and conesl, we ensure
that conesl−δ ∩ conesl ̸= ∅ due to the condition δ < k in the Algorithm 1. This mechanism allows
the message from the previous level to propagate to the current level and ensures that a gate v can
acquire the context information from PIs to the current gate, i.e. a gate v can aggregate information
from {u : u ≼∞ v}, which is consistent with the information propagation flow in AIGs. The
updating method is similar with Intra-Level Updating: given a cone list conesl, for the gates in
conesl−δ ∩ conesl, we will retrieve their embedding from historical embedding and remove all

5



Published as a conference paper at ICLR 2025

the in-edges. For the updating of remaining gates, we leave them for Intra-Level Updating with
conesl = [conel1, cone

l
2, ..., cone

l
n].

3.5 GAT-BASED SPARSE TRANSFORMER

GAT-based Sparse Attention DAGformer (Luo et al., 2024) and
DeepGate3 (Shi et al., 2024b) propose to use connective pat-
terns as masks in transformers to effectively restrict attention in
DAGs. Inspired by these approaches, we replace the Multi-head
Attention module in the Transformer with a GAT module to en-
sure global aggregation while preserving the original transformer
structure, as illustrated in Figure 5. Given a node v ∈ coneli, it
should aggregate information from {u ∈ coneli : u ≼k v}. To
achieve this, we construct virtual edges Ē defined as {(u, v) :
u ≼k v, u ∈ coneli}, which has similar function to the attention
masks in DAGformer and DeepGate3. The original graph, aug-
mented with these virtual edges, i.e. Ḡ = (V,E ∪ Ē), is then
passed to the GAT-based sparse transformer to compute the em-
bedding of each node.

M
ulti-Head

Attention

Add &
 N

orm

Feed
Forw

ard

Add &
 N

orm

MASK
G

AT
Conv

Add &
 N

orm

Feed
Forw

ard

Add &
 N

orm

Dense Transformer in DeepGate3

Sparse Transformer in DeepGate4

Sequential
Node 

Embedding

Graph with 
Virtual Edge

Figure 5: Transformer Architec-
ture

Structural Encoding In a circuit, the structure of a gate is determined by its logic level and connec-
tion pattern. Based on the aggregation mechanism of the tokenizer and sparse transformer, a gate
can only acquire information from its fan-in region. However, this overlooks the out-edge pattern
of a node, which is crucial for timing properties. To enhance the model’s ability to capture struc-
tural information, we encode the logic level and out-degree of a gate as part of the initial structural
embedding. Specifically, for a given node v, the structural encoding is computed by:

SE(v) = Embl(level(v)) + Emband(OutAND(v)) + Embnot(OutNOT (v)), (2)

where Emb(·) represents a linear layer, and OutAND(·) and OutNOT (·) denote the number of
AND gates and NOT gates in {u : v ≼1 u, u ̸= v} respectively.

3.6 TRAINING OBJECTIVE

Multi-Task Training During the training phase of DeepGate4, we incorporate both gate-level and
graph-level tasks, following the setup in DeepGate3 (Shi et al., 2024b). To separate the functional
and structural embeddings, we employ training tasks with distinct labels to supervise each compo-
nent:

Lfunc = Lprob
gate + Ltt pair

gate + Ltt
graph + Ltt pair

graph (3)

Lstru = Lcon
gate + Lsize

graph + Ldepth
graph + Lged pair

graph + Lin (4)

Lall = Lfunc + Lstru (5)
For a detailed explanation of each component, please refer to Section A.2.

Multi-Task Loss Balance To stabilize the training process and balance the weights of each loss,
inspired by previous works (Défossez et al., 2022; Chen et al., 2018), we introduce a loss balancer
based on the gradient of the final layer of the sparse transformer. Given the last layer’s weight
w and a loss li, we compute the gradient gi = ∂li

∂w . The gradient norm ∥gi∥β2 is computed by
exponential moving average of gi with decay β. The balanced loss of li is computed l̃i =

li
∥gi∥β

2

and
all components are summed to form the overall loss for training.

3.7 INFERENCE ACCELERATION

Although the graph partitioning method provides the ability to train and infer on arbitrarily large
graphs, as the number of nodes increases, the number of partitions also grows, significantly increas-
ing the total computation time. Fused-GAT (Zhang et al., 2022) has already demonstrated excellent
results by storing intermediate variables at the node level rather than the edge level, making it par-
ticularly effective for graphs with numerous edges. However, applying it directly to our tokenizer,
i.e. DeepGate2, presents certain challenges: (1) the GNN component of DeepGate2 uses an ag-
gregation mechanism similar to GAT; however, since the maximum in-degree for each node is 2,
applying the Fused-GAT strategy would result in severe thread waste ((32 - 2) / 32 = 93.75%). (2)

6



Published as a conference paper at ICLR 2025

Fused-GAT kernel Fused-DG2 kernel

	𝑤

𝛼 ≔ 1
…

𝑤!"# ≔ 𝑤

in-degree=1 in-degree=2

warp ……
>93.75% waste

sync overhead

	𝑤

𝑤!"# ≔ 𝑤

𝑒("#"!"#)

𝑠 ≔ 𝑒("#"!"#)

𝛼 ≔ 𝑒("#"!"#) 𝑠⁄

:node feature :thread warp ……

×	𝛼%

×	𝛼&

×	𝛼%

×	𝛼&

No sync 
overhead

× 32 thread × 32 thread

aggregation aggregation

Figure 6: Comparison between Fused-GAT and our Fused-DG2 kernel. Left: Fused-GAT suffers
from thread waste, unnecessary softmax computation when in-degree is 1, and synchronization over-
head for softmax intermediate results between threads; Right: Fused-DG2 reallocates thread work-
loads, with each thread within a warp handling a portion of feature dimensions, avoiding thread
waste and eliminating synchronization by independently computing attention scores, significantly
reducing computation time. Furthermore, we skip the softmax computations in certain cases.

Fused-GAT calculates the softmax across many edges using the warp-level primitive shfl xor sync to
synchronize the computed sum and max values, introducing substantial synchronization overhead.

Efficient workload balance and skip computation. We reassigned the thread computation tasks as
Figure 6 shows, where each thread is responsible for the aggregation of each node, calculating all α
values for incoming edges and performing the multiplication and accumulation, thereby avoiding the
high softmax overhead, additionally, due to the characteristics of AIG graphs, where the number of
edges is less than twice of nodes, storing intermediate variables at the node level is less efficient than
directly storing edge information. Therefore, we switched to performing computations directly on
the edges. Finally, we observed that when the in-degree is 1, we can skip the computation entirely,
as the softmax result is straightforward, i.e. α = 1. By applying these methods, we reduced both
the model’s inference time and memory consumption.

4 EXPERIMENT

4.1 EXPERIMENT SETTING

Dataset We collect the circuits from various sources, including benchmark netlists in ITC99 (David-
son, 1999) and EPFL (Amarú et al., 2015). All designs are transformed into AIGs by ABC
tool (Brayton & Mishchenko, 2010). The statistical details of datasets can be found in Section A.1.

Implementation Details We partition the large circuits into small cones. In Algorithm 1, we set
k to 8 and δ to 6. The dimensions of both the structural and functional embedding are set to 128.
The depth of Sparse Transformer is 12 and the depth of Pooling Transformer is 2. All training task
heads are 3-layer multilayer perceptrons (MLPs). We train all models for 200 epochs to ensure
convergence. The training is performed with a batch size of 1 and mini-batch size of 128 on one
Nvidia A800 GPU. We utilize the Adam optimizer with a learning rate of 10−4. We report the
average performance and standard deviation of the last 5 epochs, and losses without balanced weight.

4.2 MAIN RESULT

We compare the performance of our model with other methods on both the ITC99 and EPFL bench-
marks. Table 1 presents a detailed comparison of the ITC99 benchmark across various training tasks.
GNNs, such as GCN (Kipf & Welling, 2016), GraphSAGE (Hamilton et al., 2017), GAT (Veličković
et al., 2017), PNA (Corso et al., 2020), DeepGate2 (Shi et al., 2023), and PolarGate (Liu et al., 2024),
consume approximately 30-40 GB of GPU memory when training on ITC99, which has a maximum
graph size of 140K gates. This suggests that training GNNs on circuits with more than 500K gates is
impractical due to memory constraints. Sparse transformer models, such as GraphGPS (Rampášek
et al., 2022), Exphormer (Shirzad et al., 2023), and DAGformer (Luo et al., 2024), also encounter
OOM errors when attempting to train on ITC99, despite their linear complexity. However, with our
graph partitioning and updating strategy, even dense transformer models like DeepGate3 (Shi et al.,
2024b) can be successfully trained on ITC99.

7



Published as a conference paper at ICLR 2025

Table 1: Detailed comparison experiment on ITC99 benchmark. †We use our graph partition and
updating strategy instead of full-batch training.

Model Training Gate-level Graph-level
Lall

Param. Mem. Lprob
gate Ltt pair

gate Lcon
gate P con Ltt

graph P tt Ltt pair
graph Lged pair

graph Lsize
graph Ldepth

graph Lin P in

GCN 0.76M 31.38G 0.177 0.114 0.616 66.34% 0.589 0.325 0.1596 0.215 2.65 1.0622 1.065 47.93% 6.65
GraphSAGE 0.89M 31.78G 0.115 0.079 0.600 68.33% 0.548 0.290 0.1595 0.203 2.30 0.9628 0.884 51.04% 5.85

GAT 0.76M 34.10G 0.270 0.136 0.605 66.82% 0.588 0.323 0.1601 0.396 5.32 0.8464 0.995 47.94% 9.32
PNA 2.75M 41.99G 0.091 0.079 0.601 68.19% 0.518 0.266 0.1593 0.181 3.50 1.0114 0.810 56.27% 6.95

GraphGPS 6.71M OOM - - - - - - - - - - - - -
Exphormer 0.74M OOM - - - - - - - - - - - - -
DAGformer 1.90M OOM - - - - - - - - - - - - -

DeepGate2 1.28M 32.87G 0.049 0.068 0.594 68.77% 0.513 0.274 0.1570 0.238 3.08 0.6772 0.902 48.62% 6.28
DeepGate3 8.17M OOM - - - - - - - - - - - - -
PolarGate 0.88M 35.95G 0.226 0.100 0.699 65.92% 0.588 0.326 0.1593 0.237 2.62 0.3705 0.688 52.42% 5.69
HOGA-5 0.78M 42.48G 0.204 0.117 0.609 68.74% 0.493 0.254 0.1624 0.141 3.56 1.1378 0.571 68.99% 6.99

GraphGPS† 6.71M 7.42G 0.109 0.090 0.632 66.11% 0.434 0.178 0.1612 0.195 3.43 0.0061 0.742 54.62% 5.77
Exphormer† 0.74M 6.64G 0.101 0.078 0.674 59.89% 0.349 0.143 0.1160 0.191 2.32 0.0024 0.692 59.09% 4.50
DAGformer† 1.90M 9.52G 0.204 0.116 0.660 67.53% 0.540 0.243 0.1749 0.217 4.04 0.3799 0.705 57.99% 7.01
DeepGate3† 8.17M 50.75G 0.055 0.061 0.597 68.93% 0.315 0.133 0.0780 0.125 1.93 0.0030 0.609 68.36% 3.76

DeepGate4 7.37M 7.53G 0.043 0.055 0.600 67.22% 0.315 0.136 0.0803 0.117 1.45 0.0591 0.461 79.50% 3.16

Comparison on Effectiveness In terms of effectiveness, DeepGate4 demonstrates superior results
across most training tasks. As shown in Table 3, DeepGate4 achieves state-of-the-art performance
on both functional and structural tasks across the ITC99 and EPFL datasets. Regarding overall
performance, DeepGate4 reduces the overall loss by 15.5% and 31.1%, respectively, compared to
the second-best method. Furthermore, with the proposed structural encoding, DeepGate4 achieves
a reduction of 16.4% and 34.9% in structural loss on the ITC99 and EPFL datasets, respectively.

Comparison on Efficiency In terms of efficiency, compared to DeepGate3†, DeepGate4 reduces
inference time and memory usage by 77.9% and 92.7% on ITC99, and by 87.8% and 95.2% on
EPFL. Furthermore, with our proposed inference optimization, Fused-DeepGate4 (Fused-DG4) re-
duces inference time and memory usage by 41.4% and 51.4% on ITC99, and by 28.2% and 30.0%
on EPFL, compared to DeepGate4.

4.3 PERFORMANCE OVER CIRCUIT OF DIFFERENT SCALE

In this section, we discuss our model’s performance across circuits of varying scales and its gen-
eralizability to Out-Of-Distribution (OOD) circuits. We trained our model on the ITC99 dataset,
following the split outlined in Table 7. During training, the average graph size is 15k, while for
evaluation, we used circuits of different scales, as shown in Table 2.

We extract 128 small circuits from ITC99 to ensure sta-
ble evaluation results. The average number of nodes
and edges are listed as SMALL (AVG.) in Table 2.
B12 OPT C and B14 OPT C are the original designs
collected from ITC99, while MEM CTRL is collected
from EPFL. Another IMAGE PROCESSING is the hand-
made design to implement multiple modes of image
transformations. We employ Synopsys Design Com-
piler 2019.12 with skywater 130nm technology library
to produce the netlist and subsequently convert it into
AIG by ABC (Brayton & Mishchenko, 2010).

Table 2: Validation dataset with differ-
ent scale circuits.

name #node #edge max level

small (avg.) 161.6 193.9 46
b12 opt C 1,861 2,724 29
b14 opt C 10,502 16,135 96
mem ctrl 84,742 130,550 198
Image Processing 402,193 506,340 27

We present the results for circuits of varying scales in Figure 7a and Figure 7b, from which we draw
three key observations. First, GNNs struggle to perform well across circuits of varying scales, while
transformer-based models, such as DeepGate3† and DeepGate4, exhibits superior performance on
both functional and structural tasks, which suggests that global aggregation mechanism is crucial in
circuit representation learning. Second, with our proposed partitioning method and updating strat-
egy, both DeepGate3† and DeepGate4 exhibit strong generalizability. Despite being trained on cir-
cuits averaging 15K gates, the performance on the IMAGE PROCESSING demonstrates DeepGate3†

and DeepGate4 maintain outstanding performance on OOD circuits. Last, DeepGate4 shows stable
performance across circuits of different scales, with a standard deviation of 0.46 on overall loss. In

8



Published as a conference paper at ICLR 2025

contrast, GNNs show unstable performance, particularly in structural loss with a standard deviation
of 4.38, as highlighted in Figure 7b.

Table 3: Comparison on ITC99 and EPFL Random Control Benchmark.

Method
ITC99 EPFL Random Control

Inference Stage Performance Inference Stage Performance

Time(s) Mem.(MB) Lfunc Lstru Lall Time(s) Mem.(MB) Lfunc Lstru Lall

GCN 0.297 415 1.04 ± 0.024 5.61 ± 0.478 6.65 ± 0.471 0.286 705 1.02 ± 0.028 21.16 ± 3.023 22.18 ± 3.002
GraphSAGE 0.020 415 0.90 ± 0.022 4.95 ± 0.403 5.85 ± 0.391 0.025 706 0.94 ± 0.014 5.94 ± 0.923 6.88 ± 0.937

GAT 0.029 415 1.15 ± 0.011 8.17 ± 1.111 9.32 ± 1.102 0.035 705 1.13 ± 0.020 14.46 ± 1.335 15.59 ± 1.351
PNA 0.042 423 0.85 ± 0.010 6.10 ± 2.062 6.95 ± 2.065 0.059 713 0.88 ± 0.010 10.10 ± 2.218 10.98 ± 2.213

DeepGate2 0.490 412 0.79 ± 0.002 5.49 ± 0.157 6.28 ± 0.158 0.470 694 0.90 ± 0.004 25.78 ± 1.546 26.69 ± 1.546
PolarGate 0.030 416 1.07 ± 0.014 4.62 ± 0.158 5.69 ± 0.162 0.033 707 1.06 ± 0.009 9.40 ± 2.863 10.45 ± 2.855
HOGA-5 0.290 1010 0.98 ± 0.002 6.02 ± 0.290 6.99 ± 0.291 0.648 2006 1.02 ± 0.004 6.33 ± 0.290 7.35 ± 0.293

GraphGPS† 0.512 480 0.78 ± 0.020 4.99 ± 0.172 5.77 ± 0.174 0.650 906 1.44 ± 0.018 11.15 ± 0.553 12.58 ± 0.553
Exphormer† 0.441 337 0.64 ± 0.002 3.86 ± 0.207 4.50 ± 0.207 0.661 117 0.85 ± 0.027 5.59 ± 0.566 6.43 ± 0.577
DAGformer† 0.676 1324 1.02 ± 0.003 5.99 ± 0.223 7.01 ± 0.223 0.886 292 1.33 ± 0.019 7.11 ± 0.100 8.43 ± 0.091
DeepGate3† 11.322 6565 0.53 ± 0.026 3.21 ± 0.152 3.73 ± 0.148 18.349 2730 1.16 ± 0.092 6.97 ± 0.630 8.13 ± 0.697

DeepGate4 2.496 479 0.49 ± 0.002 2.68 ± 0.074 3.16 ± 0.076 2.263 130 0.79 ± 0.021 3.64 ± 0.583 4.43 ± 0.577Fused-DG4 1.463 233 1.624 91

(a) Functional Loss (b) Structural Loss
Figure 7: Performance over different scale circuits.

4.4 MEMORY&RUNTIME ANALYSIS

In this section, we discuss memory consumption and runtime when scaling to larger circuits. We
evaluate all models on the EPFL dataset, as detailed in Table 6. For circuits larger than 400K gates,
we extend the IMAGE PROCESSING dataset in Table 2 by duplicating it 2 and 4 times to create
circuits with 800K and 1.6M gates. During inference, we use a mini-batch size of 128, and drop all
task heads, i.e. we use each model solely to compute embeddings.

Inference Memory Usage As shown in Figure 8a, for GNNs, memory usage increases linearly with
graph size. For our models, memory consumption also scales linearly for small circuits. However,
for circuits exceeding a certain size, the memory usage of our models stabilizes. This is primarily
because, for smaller circuits, cones within the same level are smaller than the mini-batch size. These
results indicate that memory consumption of our model is sub-linear with respect to graph size.
Additionally, compared to DeepGate3†, DeepGate4 demonstrates a significant reduction in memory
usage, with an overall 58.4% reduction. Fused-DeepGate4 further reduces memory usage by 78.5%.

Inference Runtime As shown in Figure 8b, the time consumption of all models scales linearly
with graph size. Since our graph transformer models partition the original graph into cones and
encode them level by level, they are significantly slower than GNNs. To mitigate this, we intro-
duce inference optimization, as described in Section 3.7. With these optimizations, our proposed
Fused-DeepGate4 reduces time consumption by 90.5% and 18.5% compared to DeepGate3† and
DeepGate4, respectively.

4.5 ABLATION STUDY

In this section, we perform ablation studies on the primary components of DeepGate4 following the
metrics outlined in Section 3.6. All results are reported in Table 4.

9



Published as a conference paper at ICLR 2025

Table 4: Ablation Study on ITC99 and EPFL Random Control Benchmark

Method
ITC99 EPFL Random Control

Inference Stage Performance Inference Stage Performance

Time(s) Mem.(MB) Lfunc Lstru Lall Time(s) Mem.(MB) Lfunc Lstru Lall

w/o Mark 3.9223 1,060 0.48 ± 0.004 2.75 ± 0.041 3.23 ± 0.039 2.9906 182 0.90 ± 0.055 3.67 ± 0.689 4.58 ± 0.659
w/o Partition - OOM - - - - OOM - - -
w/o Balancer&SE 2.4591 479 0.50 ± 0.023 2.97 ± 0.060 3.47 ± 0.070 2.2085 130 0.82 ± 0.018 3.95 ± 0.847 4.77 ± 0.850
DeepGate3† 11.322 6565 0.53 ± 0.026 3.21 ± 0.152 3.73 ± 0.148 18.349 2730 1.16 ± 0.092 6.97 ± 0.630 8.13 ± 0.697

DeepGate4 2.496 479 0.49 ± 0.002 2.68 ± 0.074 3.16 ± 0.076 2.263 130 0.79 ± 0.021 3.64 ± 0.583 4.43 ± 0.577Fused-DeepGate4 1.463 233 1.624 91

(a) Memory Consumption (b) Time Consumption

Figure 8: Inference resource usage over different scale circuits.

Effect of Mark In the setting DeepGate4 without Mark (w/o Mark), not marking overlapping nodes
between cones resulted in redundant computations and gradient updates. This increased average
inference time and memory usage by 45.3% and 286.4%, respectively, compared to DeepGate4,
demonstrating that the marking process significantly improves efficiency and reduces memory con-
sumption without a large impact on the loss.

Effect of Partition Partitioning played a critical role, especially with large circuit datasets that
contain a large amount of nodes. In the setting DeepGate4 without partitioning (w/o Partition), the
model encounters OOM errors on both ITC99 and EPFL, highlighting the necessity of partitioning
for memory usage reduction.

Effect of Sparse Transformer After partitioning, the inherent connectivity and sparsity in each cone
allowed replacing the transformer in DeepGate3 with a sparse transformer. DeepGate4 significantly
improved speed and memory efficiency, reducing inference time by 84.0% on average and reducing
memory usage by 93.4% compared to the DeepGate3†.

Effect of Loss Balancer&Structural Encoding The introduction of the Loss Balancer and struc-
tural encoding has almost no impact on inference time and memory usage, while significantly reduc-
ing losses, particularly the structural loss. On the two benchmarks, DeepGate4 achieved reductions
of 3.38%, 8.75%, and 7.89% in functional, structural, and overall loss, respectively, compared to
DeepGate4 without Loss Balancer and Structural Encoding (w/o Balancer&SE).

Effect of Fused-DeepGate4 By introducing the SOTA GAT acceleration method, Fused-GAT, and
our customized Fused-DG2 tailored specifically for the characteristics of AIGs, we further reduced
both runtime and memory consumption. Compared to DeepGate4, Fused-DeepGate4 achieved an
average reduction of 35.1% in inference time, and 46.8% in memory usage.

5 CONCLUSION

In this paper, we propose DeepGate4, an efficient and scalable representation learning model capable
of handling large circuits with millions or even billions of gates. DeepGate4 introduces a novel parti-
tioning method and update strategy applicable to any graph transformers. Additionally, it leverages a
GAT-based sparse transformer with inference acceleration optimization, termed Fused-DeepGate4,
specifically tailored for AIGs. Our model further incorporates global and local structural encodings,
along with a loss balancer that automatically adjusts the weights of multitask losses. Experimental
results on the ITC99 and EPFL benchmarks demonstrate that DeepGate4 significantly outperforms
state-of-the-art methods. Moreover, the Fused-DeepGate4 variant achieves substantial reductions in
both runtime and memory usage, further enhancing efficiency.

10



Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENTS

This work was supported in part by the General Research Fund of the Hong Kong Research Grants
Council (RGC) under Grant No.14212422 and 14202824, and in part by National Technology Inno-
vation Center for EDA.

REFERENCES

Singh Akansha. Over-squashing in graph neural networks: A comprehensive survey. arXiv preprint
arXiv:2308.15568, 2023.

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
arXiv preprint arXiv:2006.05205, 2020.

Luca Amarú, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. The epfl combinational
benchmark suite. In IWLS, number CONF, 2015.

Robert Brayton and Alan Mishchenko. Abc: An academic industrial-strength verification tool. In
CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings 22, pp. 24–40. Springer, 2010.

Horst Bunke. On a relation between graph edit distance and maximum common subgraph. Pattern
recognition letters, 18(8):689–694, 1997.

Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. Nagphormer: A tokenized graph transformer
for node classification in large graphs. arXiv preprint arXiv:2206.04910, 2022.

Lei Chen, Yiqi Chen, Zhufei Chu, Wenji Fang, Tsung-Yi Ho, Ru Huang, Yu Huang, Sadaf Khan,
Min Li, Xingquan Li, et al. Large circuit models: opportunities and challenges. Science China
Information Sciences, 67(10):200402, 2024.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. In International conference
on machine learning, pp. 794–803. PMLR, 2018.

Zhaodong Chen, Mingyu Yan, Maohua Zhu, Lei Deng, Guoqi Li, Shuangchen Li, and Yuan Xie.
fusegnn: Accelerating graph convolutional neural network training on gpgpu. In Proceedings of
the 39th International Conference on Computer-Aided Design, pp. 1–9, 2020.

Animesh Basak Chowdhury, Benjamin Tan, Ramesh Karri, and Siddharth Garg. Openabc-d: A
large-scale dataset for machine learning guided integrated circuit synthesis, 2021.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. Advances in Neural Information Processing Systems,
33:13260–13271, 2020.

Scott Davidson. Characteristics of the itc’99 benchmark circuits. In ITSW, 1999.

Alexandre Défossez, Jade Copet, Gabriel Synnaeve, and Yossi Adi. High fidelity neural audio
compression. arXiv preprint arXiv:2210.13438, 2022.

Chenhui Deng, Zichao Yue, Cunxi Yu, Gokce Sarar, Ryan Carey, Rajeev Jain, and Zhiru Zhang.
Less is more: Hop-wise graph attention for scalable and generalizable learning on circuits. arXiv
preprint arXiv:2403.01317, 2024.

Mucong Ding, Tahseen Rabbani, Bang An, Evan Wang, and Furong Huang. Sketch-gnn: Scal-
able graph neural networks with sublinear training complexity. Advances in Neural Information
Processing Systems, 35:2930–2943, 2022.

Nicole Eikmeier and David F Gleich. Revisiting power-law distributions in spectra of real world
networks. In Proceedings of the 23rd ACM SIGKDD international conference on knowledge
discovery and data mining, pp. 817–826, 2017.

11



Published as a conference paper at ICLR 2025

Matthias Fey, Jan E Lenssen, Frank Weichert, and Jure Leskovec. Gnnautoscale: Scalable and ex-
pressive graph neural networks via historical embeddings. In International conference on machine
learning, pp. 3294–3304. PMLR, 2021.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Sadaf Khan, Zhengyuan Shi, Min Li, and Qiang Xu. Deepseq: Deep sequential circuit learning.
arXiv preprint arXiv:2302.13608, 2023.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou. Re-
thinking graph transformers with spectral attention. Advances in Neural Information Processing
Systems, 34:21618–21629, 2021.

Min Li, Sadaf Khan, Zhengyuan Shi, Naixing Wang, Huang Yu, and Qiang Xu. Deepgate: Learning
neural representations of logic gates. In Proceedings of the 59th ACM/IEEE Design Automation
Conference, pp. 667–672, 2022.

Min Li, Zhengyuan Shi, Qiuxia Lai, Sadaf Khan, Shaowei Cai, and Qiang Xu. On eda-driven
learning for sat solving. In 2023 60th ACM/IEEE Design Automation Conference (DAC). IEEE,
2023.

Jiawei Liu, Jianwang Zhai, Mingyu Zhao, Zhe Lin, Bei Yu, and Chuan Shi. Polargate: Breaking the
functionality representation bottleneck of and-inverter graph neural network. In 2024 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2024.

Yuankai Luo, Veronika Thost, and Lei Shi. Transformers over directed acyclic graphs. Advances in
Neural Information Processing Systems, 36, 2024.

Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. Graphit: Encoding graph
structure in transformers. arXiv preprint arXiv:2106.05667, 2021.

PyG. Pytorch geometric, 2024. https://www.pyg.org/.

SEPARATE DECISION QUEUE. Cadical at the sat race 2019. SAT RACE 2019, pp. 8, 2019.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022.

T Konstantin Rusch, Michael M Bronstein, and Siddhartha Mishra. A survey on oversmoothing in
graph neural networks. arXiv preprint arXiv:2303.10993, 2023.

Zhengyuan Shi, Min Li, Sadaf Khan, Liuzheng Wang, Naixing Wang, Yu Huang, and Qiang Xu.
Deeptpi: Test point insertion with deep reinforcement learning. In 2022 IEEE International Test
Conference (ITC), pp. 194–203. IEEE, 2022.

Zhengyuan Shi, Hongyang Pan, Sadaf Khan, Min Li, Yi Liu, Junhua Huang, Hui-Ling Zhen, Mingx-
uan Yuan, Zhufei Chu, and Qiang Xu. Deepgate2: Functionality-aware circuit representation
learning. In 2023 IEEE/ACM International Conference on Computer Aided Design. IEEE, 2023.

Zhengyuan Shi, Tiebing Tang, Sadaf Khan, Hui-Ling Zhen, Mingxuan Yuan, Zhufei Chu, and Qiang
Xu. Eda-driven preprocessing for sat solving. arXiv preprint arXiv:2403.19446, 2024a.

Zhengyuan Shi, Ziyang Zheng, Sadaf Khan, Jianyuan Zhong, Min Li, and Qiang Xu. Deepgate3:
Towards scalable circuit representation learning. arXiv preprint arXiv:2407.11095, 2024b.

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal
Sinop. Exphormer: Sparse transformers for graphs. In International Conference on Machine
Learning, pp. 31613–31632. PMLR, 2023.

12

https://www.pyg.org/


Published as a conference paper at ICLR 2025

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Nan Wu, Yingjie Li, Cong Hao, Steve Dai, Cunxi Yu, and Yuan Xie. Gamora: Graph learning
based symbolic reasoning for large-scale boolean networks. In 2023 60th ACM/IEEE Design
Automation Conference (DAC). IEEE, 2023.

Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. Nodeformer: A scalable graph
structure learning transformer for node classification. Advances in Neural Information Processing
Systems, 35:27387–27401, 2022.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in neural
information processing systems, 34:28877–28888, 2021.

Haiyang Yu, Limei Wang, Bokun Wang, Meng Liu, Tianbao Yang, and Shuiwang Ji. Graphfm: Im-
proving large-scale gnn training via feature momentum. In International Conference on Machine
Learning, pp. 25684–25701. PMLR, 2022.

Hengrui Zhang, Zhongming Yu, Guohao Dai, Guyue Huang, Yufei Ding, Yuan Xie, and Yu Wang.
Understanding gnn computational graph: A coordinated computation, io, and memory perspec-
tive. Proceedings of Machine Learning and Systems, 4:467–484, 2022.

13



Published as a conference paper at ICLR 2025

A APPENDIX

A.1 DATASET STATISTIC

Table 5: OpenABC-D Dataset

split name #node #edge #PI #PO max level #cones

train

spi 8565 12530 254 238 69 1348
i2c 2195 3187 177 128 27 291
ss pcm 866 1165 104 90 13 144
usb phy 1025 1380 132 85 16 143
sasc 1349 1827 135 124 15 165
wb dma 9059 12818 828 660 41 1779
simple spi 1928 2694 164 132 23 316
pci 41708 57826 3429 3131 52 6439
dynamic node 36469 51855 2708 2560 55 5170
ac97 ctrl 24399 33524 2339 2130 19 3568
mem ctrl 31001 47906 1187 937 56 3949
des3 area 8069 12737 303 32 47 1226
aes 39898 68140 683 529 44 4734
sha256 30634 44507 1943 1042 143 4606
fir 9412 13560 410 319 86 1526
iir 14139 20623 494 404 131 2377
idft 518787 722736 37603 37383 82 90525
tv80 19877 30569 636 361 99 3025
fpu 56567 85558 632 339 1522 8986
aes xcrypt 67660 111525 1975 1682 76 11490
jpeg 233573 343382 4962 4789 75 33429
tinyRocket 104336 152090 4561 4094 156 17548
picosoc 173744 245387 11302 10786 75 30211
vga lcd 226448 314460 17322 17049 44 43939

val

dft 525762 733211 37597 37382 83 91763
wb conmax 83229 128947 2122 2032 35 12002
ethernet 143316 199749 10731 10401 59 25661
bp be 171292 242214 11592 8225 150 25092
aes secworks 74990 112681 3087 2603 71 12420

Avg - 91734.38 131337.5 5496.966 5160.931 116 15305.93

Table 6: EPFL Random Control Dataset

split name #node #edge #PI #PO max level #cones

train

router 519 716 60 3 72 72
i2c 2378 3584 136 127 36 311
int2float 458 707 11 7 31 44
mem ctrl 84742 130550 1028 941 198 14234
voter 27721 40478 1001 1 136 3822
ctrl 328 495 7 25 19 64
priority 2043 2893 128 8 498 262
dec 320 616 8 256 4 256

val cavlc 1298 1981 10 11 32 146
arbiter 23488 35071 256 129 174 3714

Avg - 14329.5 21709.1 264.5 150.8 120 2292.5

14



Published as a conference paper at ICLR 2025

Table 7: ITC99 Dataset

split name #node #edge #PI #PO max level #cones

train

b07 opt C 718 1029 50 49 48 121
b17 opt C 47652 73743 1451 1442 104 8457
b02 opt C 47 65 4 4 9 6
b09 opt C 285 391 29 28 20 48
b05 opt C 956 1428 35 55 67 166
b15 opt C 14611 22542 485 449 95 2548
b20 opt C 23788 36709 522 508 102 4083
b13 opt C 538 720 62 53 23 75
b11 opt C 999 1487 38 31 56 134
b01 opt C 79 113 5 4 10 8
b03 opt C 276 371 34 28 19 52
b06 opt C 81 117 5 8 10 10
b04 opt C 1105 1554 77 64 51 180
b18 opt C 140638 217943 3306 3282 214 23214
b22 opt C 34035 52319 735 719 103 6133
b10 opt C 337 486 28 17 19 54
b08 opt C 306 422 30 21 24 40
b21 opt C 23888 36867 522 508 100 4403

val b12 opt C 1861 2724 126 117 29 328
b14 opt C 10502 16135 275 243 96 1751

Avg - 15135.1 23358.25 390.95 381.5 59.95 2590.55

A.2 TRAINING OBJECTIVE

The DeepGate4 model is trained on multiple tasks at both the gate-level and graph-level. To dis-
entangle the functional and structural embeddings, we design training tasks with distinct labels to
supervise each component.

Gate-level Tasks. For function-related tasks at the gate-level, we incorporate the training tasks from
DeepGate2, which involve predicting the logic-1 probability of gates and the pair-wise truth table
distance. We sample gate pairs, Ngate tt, and record their corresponding simulation responses as
incomplete truth tables, Ti. The pair-wise truth table distance Dgate tt is computed as follows:

Dgate tt
(i,j) =

HammingDistance(Ti, Tj)

length(Ti)
, (i, j) ∈ Ngate tt (6)

The loss functions for gate-level functional tasks are:

Lprob
gate = L1Loss(pk,MLPprob(hfk)), k ∈ V

Ltt pair
gate = L1Loss(Dgate tt

(i,j) ,MLPgate tt(hfi, hfj)), (i, j) ∈ Ngate tt

(7)

In addition, we incorporate supervision for structural learning by predicting pair-wise connections.
Since DeepGate4 encodes the logic level as part of the structural encoding, we drop the task of
predicting logic levels. The prediction of pair-wise connections is treated as a classification task,
where a sampled gate pair (i, j) ∈ Ngate con can be classified into two categories: (1) there exists a
path from i to j or from j to i, or (2) otherwise. The loss function is defined as follows:

Lcon
gate = BCELoss(MLPcon(hsi, hsj)), (i, j) ∈ Ngate con (8)

Graph-level Tasks. For each sub-graph, we perform a complete simulation to prepare the truth
table, denoted as Ts. Additionally, we collect two structural characteristics for each sub-graph: the
number of nodes Size(s) and the depth Depth(s). After obtaining the functional embedding hfs

and structural embedding hss via pooling in the Transformer, the following loss functions supervise

15



Published as a conference paper at ICLR 2025

the training, where s ∈ S:

Lsize
graph = L1Loss(Size(s),MLPsize(hs

s))

Ldepth
graph = L1Loss(Depth(s),MLPdepth(hs

s))

Ltt
graph = BCELoss(Ts,MLPtt(hf

s))

(9)

We also introduce loss functions to capture pair-wise correlations between sub-graphs. The truth
table distance Dgraph tt

(s1,s2)
and graph edit distance (Bunke, 1997) Dgraph ged

(s1,s2)
between two sub-graphs

(s1, s2) are predicted using the following formulas:

Dgraph tt
(s1,s2)

=
HammingDistance(Ts1 , Ts2)

length(Ts1)

Ltt pair
graph = L1Loss(Dgraph tt

(s1,s2)
,MLPgraph tt(hf

s1 , hfs2))

Dgraph ged
(s1,s2)

= GraphEditDistance(s1, s2)

Lged pair
graph = L1Loss(Dgraph ged

(s1,s2)
,MLPgraph ged(hs

s1 , hss2))

(10)

To link the gate-level and graph-level embeddings, we enable the model to predict whether gate k
belongs to sub-graph s using the structural embeddings. The loss function is defined as:

Lin = BCELoss({0, 1},MLPin(hsk, hs
s)) (11)

Error of Truth Table Prediction. For each 6-input sub-graph s in the test dataset S ′, we predict
the 64-bit truth table based on the graph-level functional embedding hfs. The prediction error is
calculated by the Hamming distance between the prediction and ground truth:

P tt =
1

len(S ′)

S′∑
s

HammingDistance(Ts,MLPtt(hf
s)) (12)

Accuracy of Gate Connection Prediction. Given the structural embedding of the gate pair (i, j) in
the test dataset N ′

con and the binary label ycon(i,j) = {0, 1}, we define the accuracy of gate connection
prediction as:

P con =
1

len(N ′
con)

N ′
con∑

(i,j)

1(ycon(i,j),MLPcon(hsi, hsj)) (13)

Accuracy of Gate-in-Graph Prediction. For each gate-graph pair (k, s) in the test datasetN ′
in, we

predict whether the gate is included in the sub-graph based on the gate structural embedding hsk
and the sub-graph structural embedding hss. The binary label is yin(k,s) = {0, 1}. The accuracy is
defined as:

P in =
1

len(N ′
in)

N ′
in∑

(k,s)

1(MLPin(hsk, hs
s), yink ) (14)

A.3 ABLATION STUDY ON GRAPH PARTITION HYPERPARAMETERS

In this section, we include a detailed analysis of the hyperparameters k and δ. In our graph partition
algorithm, k denotes the maximum level of the cone, and δ denotes the stride. These parameters
influence memory usage and overlap levels as follows:

• k (Maximum Level): k determines the upper bound of the subgraph size. Specifically, the
size of a subgraph is always smaller than 2k+1 − 1. Larger subgraphs require more GPU
memory; for example, with the same mini-batch size, increasing k significantly increases
memory consumption.

• δ (Stride): δ determines the overlap region between subgraphs. The overlap level is defined
as k − δ + 1, which directly influences the inter-level message-passing ratio.

16



Published as a conference paper at ICLR 2025

Furthermore, we provide an ablation study on k and δ, illustrating the sensitivity of our model to
these hyperparameters. As shown in Table 8, we conclude two observations from the ablation study.
First, settings such as (k = 8, δ = 8), (k = 8, δ = 6), and (k = 8, δ = 4) demonstrate that our
method is not sensitive to overlap ratios, as performance across these settings is similar. Second,
settings such as (k = 8, δ = 6), (k = 10, δ = 8), and (k = 6, δ = 4) maintain the same overlap
level but vary in subgraph size. Results demonstrate that increasing k significantly impacts GPU
memory usage. Furthermore, larger k will degrade structural task performance. This is because
structural tasks rely more heavily on local information, especially for metrics like Lged pair

graph , Lsize
graph,

and Ldepth
graph (See Section A.2).

Table 8: Ablation Study on k and δ

Setting Metric

k δ Train Mem. Lfunc Lstru Lall

8 8 12.62GB 0.4649 ± 0.0017 2.4519 ± 0.0625 2.9168 ± 0.0639
8 6 12.62GB 0.4863 ± 0.0023 2.6783 ± 0.0739 3.1646 ± 0.0761
8 4 12.62GB 0.4713 ± 0.0034 2.5821 ± 0.0963 3.0534 ± 0.0933
10 8 33.90GB 0.4638 ± 0.0108 3.2055 ± 0.0747 3.6692 ± 0.0760
6 4 6.59GB 0.4629 ± 0.0065 2.6563 ± 0.0587 3.1192 ± 0.0567

A.4 COMPARSION ON OPENABC-D

Implementation Details We collect the circuits from OpenABC-D (Chowdhury et al., 2021). All
designs are transformed into AIGs by ABC tool (Brayton & Mishchenko, 2010). The statistical
details of datasets can be found in Section A.1. We follow the experiment setting in Section 4.1. All
experiments are performed on one L40 GPU with 48GB maximum memory. For training objectives,
we use the gate-level tasks in Section A.2.
Comparison on Effectiveness DeepGate4 demonstrates outstanding effectiveness across all train-
ing tasks. As shown in Table 9, it achieves state-of-the-art performance on all gate-level tasks within
the OpenABC-D datasets. Notably, DeepGate4 reduces the overall loss by 31.48% compared to
the second-best method. Moreover, while baseline models struggle with gate connection predic-
tion, DeepGate4 significantly enhances performance in this area, achieving an accuracy of 79%.
This highlights the outstanding ability of DeepGate4 to capture the structural relationships between
gates.
Comparison on Efficiency In terms of efficiency, models like PNA and HOGA-5 encounter out-
of-memory (OOM) errors, whereas DeepGate4 can successfully train a graph transformer on large
circuits containing over 500k gates.

Table 9: Comparsion on OpenABC-D benchmark.

Model Param. Mem. Lprob
gate Ltt pair

gate Lcon
gate P con Lall

GCN 0.76M 19.72G 0.1600 ± 0.0484 0.1168 ± 0.0270 0.6926 ± 0.0808 59.93% ± 5.89% 0.9695 ± 0.1168
GraphSAGE 0.89M 23.23G 0.0607 ± 0.0044 0.0745 ± 0.0063 0.6651 ± 0.0458 64.25% ± 3.27% 0.8004 ± 0.0453

GAT 0.76M 33.02G 0.2036 ± 0.0142 0.1040 ± 0.0130 0.6293 ± 0.0178 64.94% ± 1.87% 0.9370 ± 0.0283
PNA 2.75M OOM - - - - -

DeepGate2 1.28M 24.15G 0.0406 ± 0.0004 0.0621 ± 0.0003 0.6976 ± 0.0079 63.16% ± 0.77% 0.8003 ± 0.0083
DeepGate3 8.17M OOM - - - - -
PolarGate 0.88M 44.48G 0.7767 ± 0.3965 0.1179 ± 0.0615 0.9096 ± 0.1934 53.00% ± 14.82% 1.8042 ± 0.3771
HOGA-2 0.78M 43.12G 0.1635 ± 0.0004 0.0896 ± 0.0002 0.6245 ± 0.0004 64.81% ± 0.42% 0.8777 ± 0.0005
HOGA-5 0.78M OOM - - - - -

DeepGate4 7.37M 41.09G 0.0233 ± 0.0010 0.0462 ± 0.0019 0.4789 ± 0.0180 79.00% ± 0.30% 0.5484 ± 0.0166

17



Published as a conference paper at ICLR 2025

A.5 LOGIC EQUIVALENCE CHECKING

Logic Equivalence Checking (LEC) is a critical task in Formal Verification, aimed at determining
whether two designs are functionally equivalent. As circuit complexity grows, the significance of
LEC increases since design errors in such systems can lead to costly fixes or operational failures in
the final product.
We evaluate LEC on the ITC99 dataset by extracting subcircuits with multiple primary inputs (PIs)
and a single primary output (PO). Given a subcircuit pair (G1, G2), the model performs a binary
classification task to predict whether G1 and G2 are equivalent. In the candidate pairs, only 1.29%
of pairs are equivalent, highlighting the challenge of imbalanced data. To assess performance, we
use the widely adopted metrics Average Precision (AP) and Precision-Recall Area Under the Curve
(PR-AUC). These metrics are threshold-independent and particularly effective for imbalanced
datasets, where one class is significantly rarer than the other.

Table 10: Logic Equivalence Checking

Method AP PR-AUC

GCN 0.05 0.04
GraphSAGE 0.10 0.11

GAT 0.02 0.02
PNA 0.20 0.17

HOGA-5 0.03 0.03
DeepGate2 0.13 0.13
PolarGate 0.03 0.21

DeepGate3 OOM OOM
DeepGate3† 0.17 0.17

DeepGate4 0.31 0.30

Note that DeepGate3† denotes that we use our proposed updating strategy and training pipline. As
shown in Table 10, DeepGate4 outperforms all other methods by a significant margin, achieving
the highest AP (0.31) and PR-AUC (0.30), and improve these two metrics by 55% and 42%
respectively, compared to the second-best method. These values indicate its superior ability to
balance precision and recall, especially in scenarios with imbalanced data.

A.6 BOOLEAN SATISFIABILITY PROBLEM

The Boolean Satisfiability (SAT) problem is a fundamental computational problem that determines
whether a Boolean formula can evaluate to logic-1 for at least one variable assignment. As the first
proven NP-complete problem, SAT serves as a cornerstone in computer science, with applications
spanning fields such as scheduling, planning, and verification. Modern SAT solvers primarily uti-
lize the conflict-driven clause learning (CDCL) algorithm, which efficiently handles path conflicts
during the search process and explores additional constraints to reduce the search space. Over the
years, various heuristic strategies have been developed to further accelerate CDCL in SAT solvers.
We follow the setting in DeepGate2 (Shi et al., 2023). We utilize the CaDiCal (QUEUE, 2019) SAT
solver as the backbone solver and modify the variable decision heuristic based on it. In the Baseline
setting, SAT problems are directly solved using the backbone SAT solver. For model-acclerated
SAT solving, given a SAT instance, the first step is to encode the corresponding AIG to get the gate
embedding. During the variable decision process, a decision value di is assigned to variable vi. If
another variable vj with an assigned value dj is identified as correlated to vi, the reversed value d′j
is assigned to vi, i.e., di = 0 if dj = 1 or di = 1 if dj = 0. The determination of correlated
variables relies on their functional similarity, and the similarity Sim(vi, vj) exceeding the threshold
θ indicates correlation.

18



Published as a conference paper at ICLR 2025

Table 11: SAT solving time comparsion.† denotes that we use our updating strategy.

Case Name ad44 f20 ab18 ac1 ad14 Avg.

Size 44949 27806 37275 42038 44949 39403.4

Baseline Solving Time 918.21 1046.31 3150.81 5522.85 5766.85 3281.01

DeepGate3† Model Runtime 27.73 16.57 22.60 33.17 27.27 25.47
Solving Time 678.42 952.91 1607.06 6189.61 4413.96 2768.39

PolarGate Model Runtime 0.01 0.01 0.01 0.24 0.01 0.06
Solving Time 606.74 1154.87 1000.02 3923.88 3222.98 1981.70

Exphormer† Model Runtime 0.74 0.51 0.62 0.64 0.97 0.70
Solving Time 885.98 1177.07 1293.57 4156.04 3387.24 2179.98

DeepGate4 Model Runtime 3.65 2.80 3.10 3.33 3.62 3.30
Solving Time 970.28 143.09 1351.49 393.25 4268.57 1425.34

The results are shown in Table 11. Since SAT solving is time-consuming, we compare our approach
only with the top-3 methods listed in Table 1, namely DeepGate3†, Exphormer†, and PolarGate.
The Baseline represents using the SAT solver without any model-based acceleration. Leveraging its
exceptional ability to understand the functional relationships within circuits, DeepGate4 achieves a
substantial reduction in SAT solving time, with an 86.33% reduction for case f20 and an 92.90%
reduction for case ac1. Regarding average solving time, it achieves a 56.56% reduction, outper-
forming all other methods. These results highlight DeepGate4’s strong generalization capability and
effectiveness in addressing real-world SAT solving challenges.

19


	Introduction
	Related Work
	Method
	Overview
	Graph Partition
	Observation and Motivation
	Updating Strategy
	GAT-based Sparse Transformer
	Training Objective
	Inference Acceleration

	Experiment
	Experiment Setting
	Main Result
	Performance over Circuit of Different Scale
	Memory&Runtime Analysis
	Ablation Study

	Conclusion
	Appendix
	Dataset Statistic
	Training Objective
	Ablation Study on Graph Partition Hyperparameters
	Comparsion on OpenABC-D
	Logic Equivalence Checking
	Boolean Satisfiability Problem


