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A Experimental Settings

Datasets and Architectures In the experiments, we use three datasets: MNIST, CIFAR-10 and
SVHN and model architectures (Small, Medium, and Large) in Gowal et al. [15] and their variants
(Small* and Large*) as follows:

• Small: Conv(·,16,4,2) - Conv(16,32,4,1) - Flatten - FC(·,100) - FC(100,c)
• Small*: Conv(·,16,4,2) - Conv(16,32,4,2) - Flatten - FC(·,100) - FC(100,c)
• Medium: Conv(·,32,3,1) - Conv(32,32,4,2) - Conv(32,64,3,1) - Conv(64,64,4,2) - Flatten -

FC(·,512) - FC(512,512) - FC(512,c)
• Large: Conv(·,64,3,1) - Conv(64,64,3,1) - Conv(64,128,3,2) - Conv(128,128,3,1) -

Conv(128,128,3,1) - Flatten - FC(·,512) - FC(512,c)
• Large*: Conv(·,64,3,1) - Conv(64,128,3,2) - Conv(128,128,3,1) - Conv(128,128,3,1) -

Flatten - FC(·,512) - FC(512,c)

where Conv(c1, c2, k, s) is a conv layer with input channel c1, output channel c2, kerner size k, and
stride s, and FC(d1, d2) is a fully-connected layer with input dimension d1 and output dimension d2.
All layers are followed by ReLU activation except for the last layer and the flatten layer (Flatten).

Loss and training schedules For general training schedules, we refer to Appendix C, D of Zhang
et al. [46] with a single GPU (Titan Xp). We use the following mixed cross-entropy loss as in Zhang
et al. [46]:

κL (f(x;θ)) + (1−κ)L
(
(1− β)sIBP(x;θ) + βsMODEL(x;θ)

)
, (8)

where κ is the mixing weight between the natural loss and the robust loss, and β is the mixing weight
between the two bounds obtained with IBP and given relaxation method (e.g. CROWN-IBP).

A.1 Settings in Section 4.1

Figure 1 (Left) We conduct the experiment in Figure 1 on CIFAR-10 dataset with Medium
architecture over all four methods. We train the model with εtrain = 8/255 for 200 epochs using
εt-scheduling with 10 warm-up epochs and 120 ramp-up epochs. We use Adam optimizer with
learning rate 0.001. We reduce the learning rate by 50% every 10 epochs after εt-scheduling ends.

To demonstrate the instability of each training, we describe the variation of the loss along the gradient
direction as Santurkar et al. [30]. We take steps of different lengths in the direction of the gradient and
measure the loss values obtained at each step. For the sake of consistency, we fix a Cauchy random
matrix when evaluating CAP to obtain deterministic loss landscapes, not introducing randomness.
The loss variation is computed with

Lεt(θ([0, 5])) where θ(λ) ≡ θt − λη∇θLεt(θt), (9)

where θt is the current model parameters and η is the learning rate. For the step of length λ, we
sample ten points from a range of [0,5] on a log scale.

Figure 1 (Right) We plot the `2- and cosine distance between two successive loss gradient steps
during training as follows:

Grad Difference (Middle) = ‖∇θLεt(θt)−∇θLεt(θt+1)‖ and
Cosine Distance (Bottom) = 1− cos(∇θLεt(θt),∇θLεt(θt+1)),

where cos(v1,v2) is the cosine value of the angle between two vectors v1 and v2 .

A.2 Settings in Table 1

For MNIST, we use the same hyper-parameters as in Appendix C of Zhang et al. [46]. We train for
200 epochs (10 warm-up epochs and 50 ramp-up epochs) on Large model with batch sizes of 100.
we decay the learning rate, 0.0005, by 10% in [130,190] epochs. As mentioned in Zhang et al. [46],
we also found the same issue when training with small ε (see Appendix K for details). To alleviate
the issue, we use εtrain = min(0.4, εtest + 0.1) for each εtest as Table 2 of Zhang et al. [46].
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For CIFAR-10, we train for 400 epochs (20 warm-up epochs and 240 ramp-up epochs) on Medium
model with batch sizes of 128. We decay the learning rate, 0.003, by 2× every 10 epochs after the
ramp-up period.

For SVHN, we train for 200 epochs (10 warm-up epochs and 120 ramp-up epochs) on Large model
with batch sizes of 128 (OURS with batch sizes of 80 to avoid out of memory). We decay the
learning rate, 0.0003, by 2× every 10 epochs after the ramp-up period. Only for SVHN, we apply
normalization with mean (0.438, 0.444, 0.473) and standard deviation (0.198, 0.201, 0.197) for each
channel.

In Table 1, we use κ-scheduling from 1 to 0. For the corresponding results of κ-scheduling from 0 to
0, we refer the reader to Table 4.

We modify the source code for CAP1 to match our settings. For example, we introduce the warm-up
period and linear ε-scheduling. We avoid using the reported results in the literature and aim to make
a fair comparison under the same settings with only minor differences - for example, because CAP
does not support the channel-wise normalization, we could not use the input normalization. Also, due
to the memory limit of CAP, we use a smaller batch size of 32 and try other smaller architectures. We
found that it often achieves better results with smaller architectures (similar to the results in Table 3 of
Wong et al. [40]). Thus, we present the performance with Large*, Medium, and Small* on MNIST,
CIFAR-10, and SVHN, respectively. Throughout the experiments, CAP uses the fixed κ = 0.

B Interval Bound Propagation (IBP)

IBP [15] starts from the interval bound I(0) ≡ {z : l(0) ≤ z ≤ u(0)} = B(x, ε) in the input space
with the upper bound u(0) = x+ ε1 and the lower bound l(0) = x− ε1 where 1 is a column vector
filled with 1. Then we propagate the interval bound I(k−1) ≡ {z : l(k−1) ≤ z ≤ u(k−1)} by using
following equations iteratively:

u(k) = h(k)(u(k−1)) and l(k) = h(k)(l(k−1)) (10)

for element-wise monotonic increasing nonlinear activation h(k) with the pre-activation bounds
u(k−1) and l(k−1), and

u(k) = W (k)

(
u(k−1) + l(k−1)

2

)
+ |W (k)|

(
u(k−1) − l(k−1)

2

)
+ b(k) and

l(k) = W (k)

(
u(k−1) + l(k−1)

2

)
− |W (k)|

(
u(k−1) − l(k−1)

2

)
+ b(k)

for linear function h(k) (k = 1, · · · ,K). Finally, IBP uses the worst-case margin s = u(K) to
formulate the objective in (1) for certifiable training.

1https://github.com/locuslab/convex_adversarial
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C Details on Linear Relaxation

C.1 Linear relaxation explained in CROWN [45]

To make the paper self-contained, we provide details of linear relaxation given in the supplementary
material of CROWN [45]. We refer readers to the supplementary for more details. Given a network
h[k], we want to upper bound the activation h[k]i . We have h[k]i (x′) = W

(k)
i,: h

(k−1)(h[k−2](x′)) +

b
(k)
i = W

(k)
i,: h

(k−1)(z(k−2)
′
) + b

(k)
i where z(k−2)

′
= h[k−2](x′). With the linear function bounds

of h
(k−1)

and h(k−1) on the activation function h(k−1), we have

h
[k]
i (x′) =W

(k)
i,: h

(k−1)(z(k−2)
′
) + b

(k)
i

≤
∑

W
(k)
i,j <0

W
(k)
i,j h

(k−1)
j (z(k−2)

′
) +

∑
W

(k)
i,j ≥0

W
(k)
i,j h

(k−1)
j (z(k−2)

′
) + b

(k)
i

=
∑

W
(k)
i,j <0

W
(k)
i,j a

(k−1)
j z

(k−2)′
j +

∑
W

(k)
i,j ≥0

W
(k)
i,j a

(k−1)
j z

(k−2)′
j

+
∑

W
(k)
i,j <0

W
(k)
i,j b

(k−1)
j +

∑
W

(k)
i,j ≥0

W
(k)
i,j b

(k−1)
j + b

(k)
i

=W̃
(k)
i,: z

(k−2)′ + b̃
(k)
i

=W̃
(k)
i,: h

[k−2](x′) + b̃
(k)
i

=W̃
(k)
i,:

(
W (k−2)(h[k−3](x′)) + b(k−2)

)
+ b̃

(k)
i

=Ŵ
(k−2)
i,: h(k−3)(z(k−3)

′
) + b̂

(k−2)
i ,

where W̃ (k)
i,: = W

(k)
i,: D

(k−1) with the diagonal matrix D(k−1)
j,j = a

(k−1)
j for j satisfying

W
(k)
i,j < 0 and D(k−1)

j,j = a
(k−1)
j for j satisfying W (k)

i,j ≥ 0, b̃(k)i =
∑
W

(k)
i,j <0

W
(k)
i,j b

(k−1)
j +∑

W
(k)
i,j ≥0

W
(k)
i,j b

(k−1)
j + b

(k)
i , Ŵ (k−2)

i,: = W̃
(k)
i,: W

(k−2), and b̂(k−2)i = W̃
(k)
i,: b

(k−2) + b̃
(k)
i . Ap-

plying similar method iteratively, we can obtain g and b in (2) for the linear relaxation of h[k]i .

C.2 Dual Optimization View

We first modify some notations in the main paper and use the notations similar to Wong and Kolter
[39]. We use the following hat notations: ẑ(k+1) = W (k+1)z(k) + b(k+1) and z(k) = h(k)(ẑ(k))
where h(k) is the k-th nonlinear activation function. We can build a primal problem with cT = Cm,:
as follows:

max
z(K)

cT ẑ(K) (11)

such that

x− ε1 ≤ z(0),
z(0) ≤ x+ ε1,

ẑ(k+1) = W (k+1)z(k) + b(k+1) (k = 0, · · · ,K − 1), and

z(k) = h(k)(ẑ(k)) (k = 1, · · · ,K − 1).
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Note that our c is negation of that of Wong and Kolter [39]. Now we can derive the dual of the primal
(11) as follows:

min
ξ+,ξ−≥0

νk

sup
z(k),ẑ(k)

cT ẑ(K) + ξ−T (x− ε1− z(0)) + ξ+T (z(0) − x− ε1)

+

K−1∑
k=0

νTk+1

(
ẑ(k+1) − (W (k+1)z(k) + b(k+1))

)
+

K−1∑
k=1

ν̂Tk

(
z(k) − h(k)(ẑ(k))

)
= (c+ νK)T ẑ(K) + (ξ+ − ξ− −W (1)Tν1)Tz(0) +

K−1∑
k=1

(−W (k+1)Tνk+1 + ν̂k)Tz(k)

+

K−1∑
k=1

(ν̂Tk h
(k)(ẑ(k))− νTk ẑ(k)) (12)

− νT1 b(1) − ξTx− ε||ξ||1.

It leads to c+νK = 0, ξ+−ξ−−W (1)Tν1 = 0, and−W (k+1)Tνk+1+ν̂k = 0 (k = 1, · · · ,K−1).
Alternatively, they are represented as follows:

νK = −c,
ν̂k = W (k+1)Tνk+1 (k = K − 1, · · · , 1), and
ξ = ν̂1.

Now we need relationship between ν̂k and νk, i.e., νk = g(ν̂k). With the further relaxation
νk = αk � ν̂k, we have a relaxed problem as follows:

min
αk

sup
z(k),ẑ(k)

K−1∑
k=1

(ν̂Tk h
(k)(ẑ(k))− νTk ẑ(k))− νT1 b(1) − ξTx− ε||ξ||1 (13)

such that

νK = −c,
ν̂k = W (k+1)Tνk+1 (k = K − 1, · · · , 1),

νk = αk � ν̂k (k = K − 1, · · · , 1), and
ξ = ν̂1.

We decompose the first term in (13), and ignore the subscript k as follows ν̂Th(ẑ) − (α � ν̂)T ẑ.
Further, we decompose this for each element, ν̂h(ẑ)− αν̂ẑ = ν̂(h(ẑ)− αẑ). If the pre-activation
bounds for h are both positive (active ReLU), then α should be 1 not to make the inner supremum
> 0. Similarly, if the pre-activation bounds for h are both negative (dead ReLU), then α should be 0.
In the case of unstable ReLU (l ≤ 0 ≤ u), if ν̂ < 0, then we need to solve maxα inf ẑ h(ẑ)−αẑ. The
inner infimum is 0 for 0 ≤ α ≤ 1, and is < 0 otherwise. On the other hand, if ν̂ ≥ 0, then we need to
solve minα supẑ h(ẑ)− αẑ. The inner supremum is max{u− αu,−αl}, and thus the optimal dual
variable is α∗ = u

u−l which yields the optimal value (multiplied by ν̂) as ν̂(u − u
u−lu) = − ul

u−l ν̂

which is equivalent to using linear relaxation with a� z+ b = u
u−l � (z− l). We can represent it as

a� z + b = u+

u+−l− � (z − l−) to include the case of active/dead ReLU. For the lower linear bound
h(z) = a� z + b in case of unstable ReLU, we can use any 0 ≤ a ≤ 1 and b = 0 according to the
dual relaxation withα. While CAP and CROWN-IBP use a dual feasible solution likeα = u+

u+−l− or
α = 1[u+ + l− > 0], our proposed method aims to optimize over the dual variable α or equivalently
optimize over 0 ≤ a ≤ 1 to further tighten the upper bound on the loss.
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D Illustration of Linear Relaxations

Figure 4 provides some illustrations of linear relaxations used in IBP, CAP, CROWN-IBP, and the
proposed method. CROWN-IBP adaptively chooses the relaxation variable so that the area between
h and h is minimized. However, the smaller area does not necessarily imply the tighter bound, and
the proposed method achieves tighter bounds than CROWN-IBP relaxation as shown in Figure 3.

l u0

h(z) = u+

h(z) = l+

(a) IBP

l u0

h(z) = u+

h(z) = l+

(b) IBP (u, l > 0)

l u0

h(z) = u+

u+−l− (z − l−)

h(z) = u+

u+−l− z

(c) CAP

l u0

h(z) = u+

u+−l− (z − l−)

h(z) = 1[u+ + l− > 0]z = z

(d) CROWN-IBP
(u+ + l− > 0)

l u0

h(z) = u+

u+−l− (z − l−)

h(z) = 1[u+ + l− > 0]z = 0

(e) CROWN-IBP
(u+ + l− ≤ 0)

l u0

?

?

Optimized over a
h(z) = az

h(z) = u+

u+−l− (z − l−)

(f) The proposed method

Figure 4: Illustrations of linear relaxation methods. Except for (b), they illustrate the relaxations
when l ≤ 0 ≤ u (Unstable ReLU). (b) Illustration of the relaxation of IBP when u, l > 0 (Active
ReLU).
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E Learning curves for variants of CROWN-IBP

We find that 0.5/1 and 1/1 have less smooth loss landscapes than CROWN-IBP (as shown in Figure
5) where p/q denotes the variant with sampling a ∈ {0, 1} with P (a = 1 | |l| > |u|) = p and
P (a = 1 | |l| ≤ |u|) = q for unstable ReLUs. On the other hand, 0/0, 0/0.25, and 0/0.5 have more
smooth loss landscape as in Figure 5, but they have looser bounds than CROWN-IBP.

10 50 100 150 200
Epoch

2 × 100

3 × 100

Lo
ss

Learning Curves

0/0
0/0.25
0/0.5
0/1, CROWN-IBP ( = 1)
0.5/1
1/1
CAP-IBP
OURS

Figure 5: The learning curves for the scheduled value of ε with the loss variation along gradient
descent direction (equivalent to Figure 1). As a becomes sparse, the loss variation is narrower.
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Figure 6: A zoomed-in version of Figure 5 for epochs 100-200.

Table 3: Performance (in terms of errors) of the variants of CROWN-IBP (β = 1). Note that 0/0.25,
0/0.5, and CAP-IBP start with looser bounds but they have more smooth landscape, which leads to a
better performance than CROWN-IBP (β = 1) (highlighted with underline).

Model 0/0 0/0.25 0/0.5
0/1

CROWN-IBP (β = 1) 0.5/1 1/1 CAP-IBP OURS

Standard 70.66 64.50 62.72 63.24 70.69 71.41 60.36 57.14
PGD 73.84 72.67 71.42 71.70 76.68 77.03 69.46 66.88

Verified 77.60 74.47 74.92 75.72 78.38 78.73 74.29 71.45
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F Proof

Theorem 1. With gradient descent using a step size within an interval It during the ramp-up period
(0 ≤ εt ≤ ε), the loss Lε for the target perturbation ε is reduced with

Lε(θt+1) ≤Lε(θt)
(
1− µ

2
cos2(φt)‖Hε

tut‖−1
)

(4)

for ut = ∇θLεt (θt)
‖∇θLεt (θt)‖ where 0 < µ ≤ ‖∇θLε‖2

2Lε , cos(φt) = ∇θLεT∇θLεt
‖∇θLε‖‖∇θLεt‖ and Hε

t satisfies
Lε(θt+1) = Lε(θt) +∇θLε(θt)T∆t + 1

2∆T
t H

ε
t∆t and ∆T

t H
ε
t∆t > 0 with ∆t = θt+1 − θt.

Proof.

Lε(θt+1) =Lε(θt) +∇θLε(θt)T∆t +
1

2
∆T
t H

ε
t∆t

=Lε(θt)− ηt∇θLε(θt)T∇θLεt(θt) +
1

2
η2t∇θLεt(θt)THε

t∇θLεt(θt)

≤Lε(θt)−
1

α

(∇θLε(θt)T∇θLεt(θt))2
2∇θLεt(θt)THε

t∇θLεt(θt)

=Lε(θt)
(
1− 1

α

(∇θLε(θt)T∇θLεt(θt))2
2Lε(θt)

1

∇θLεt(θt)THε
t∇θLεt(θt)

)
=Lε(θt)

(
1− 1

α

(∇θLε(θt)Tu)2

2Lε(θt)
1

uTt H
ε
tut

)
≤Lε(θt)

(
1− µ

α
cos2(φt)

1

utTHε
tut

)
≤Lε(θt)

(
1− µ

α
cos2(φt)||Hε

tut||−1
)

for any α > 1 where in the first inequality a learning rate ηt ∈ It ≡ [(1 −
√

1− 1
α )η∗t , (1 +√

1− 1
α )η∗t ] is used with η∗t = ∇θLε(θt)T∇θLεt (θt)

∇θLεt (θt)THε
t∇θLεt (θt)

. And the last inequality comes from the
Cauchy-Schwarz inequality. Using α = 2, we can derive the final inequality (4).

To prove Theorem 2, we first prove the following proposition. We note that θ and g are vectorized
and the matrix norm of Jacobian is naturally defined - for example, ||∇θg|| is induced by the vector
norms defined in X and Θ.
Proposition 1. Given input x ∈ X and perturbation radius ε, let M = max{||x′|| : x′ ∈ B(x, ε)}.
Then, for the upper bound s(x;θ) = maxx′∈B(x,ε) g(x;θ)Tx′+b(x;θ) with b satisfying Assumption
1 (1), we have
||∇θs(x;θ1)−∇θs(x;θ2)|| ≤2ε||∇θg(x;θ1,2)||+M ||∇θg(x;θ1)−∇θg(x;θ2)||+ Lbθθ||θ1 − θ2||

(14)
for any θ1,θ2, where θ1,2 can be any of θ1 and θ2.

Proof. Say f(x′;θ) = g(x;θ)Tx′ + b(x;θ) and the maximizer x∗i = arg maxx′∈B(x,ε) f(x′;θi)
for each θi = θ1,θ2. Then, we have
||∇θs(x;θ1)−∇θs(x;θ2)|| =||∇θf(x∗1;θ1)−∇θf(x∗2;θ2)||

=||∇θf(x∗1;θ1)−∇θf(x∗2;θ1) +∇θf(x∗2;θ1)−∇θf(x∗2;θ2)||
≤||∇θf(x∗1;θ1)−∇θf(x∗2;θ1)||+ ||∇θf(x∗2;θ1)−∇θf(x∗2;θ2)||.

(15)
The first term on the RHS can be upper bounded as follows:

||∇θf(x∗1;θ1)−∇θf(x∗2;θ1)|| = ||∇θ(g̃1
T x̃∗1 − g̃1T x̃∗2)|| =||∇θ(gT1 x

∗
1 − g1Tx∗2)||

=||∇θg1(x∗1 − x∗2)||
≤2ε||∇θg1||,
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where gi = g(x;θi), bi = b(x;θi), g̃Ti = [gTi ; bi] and x̃T = [xT ; 1]. And the second term on the
RHS can be upper bounded as follows:

||∇θf(x∗2;θ1)−∇θf(x∗2;θ2)|| =||∇θ(g̃1
T x̃∗2 − g̃2T x̃∗2)||

=||∇θ(g̃1 − g̃2)x̃∗2||
≤||∇θ(g1 − g2)||||x∗2||+ ||∇θ(b1 − b2)||
≤M ||∇θ(g1 − g2)||+ Lbθθ||θ1 − θ2||,

Therefore, we obtain

||∇θs(x;θ1)−∇θs(x;θ2)|| ≤2ε||∇θg1||+M ||∇θ(g1 − g2)||+ Lbθθ||θ1 − θ2||
=2ε||∇θg(x;θ1)||+M ||∇θg(x;θ1)−∇θg(x;θ2)||+ Lbθθ||θ1 − θ2||.

Note that θ1 in the first term is arbitrarily chosen in (15). Therefore, this leads to the final inequality
(14).

Theorem 2. Suppose x ∈ X is bounded ‖x‖ ≤M with some M > 0. For a linear relaxation-based
method with the upper bound sm(x;θ) = maxx′∈B(x,ε) g

(m)
θ (x)Tx′ + b

(m)
θ (x), if each b(m)

θ and
ps satisfies Assumption 1, then

‖∇θLε(θ2)−∇θLε(θ1)‖
≤ E(x,y)

[
max
m

(
2ε‖∇θg(m)

θ1,2
(x)‖+M‖∇θg(m)

θ2
(x)−∇θg(m)

θ1
(x)‖+ L(m)‖θ2 − θ1‖

)]
(6)

for any θ1,θ2, where L(m) = Lb
(m)

θθ + Lpsθ ‖∇θs(x;θ1,2)‖ and θ1,2 can be any of θ1 and θ2.

Proof. We start with the fact that the norm of the expected value of a random vector is smaller than
expected norm of the random vector.

||∇θLε(θ2)−∇θLε(θ1)|| =||∇θE(x,y)[L(s(x;θ2)]−∇θE(x,y)[L(s(x;θ1)]||
≤E(x,y)[||∇θL(s(x;θ2)−∇θL(s(x;θ1)||].

We simplify the notation ps as p. Then we have

||∇θL(s(x;θ1))−∇θL(s(x;θ2))||
=||∇θs(x;θ1)∇sL(s(x;θ1))−∇θs(x;θ2)∇sL(s(x;θ2))||
=||
∑
m

∇θsm(x;θ1)(pm(x;θ1)− δy,m)−∇θsm(x;θ2)(pm(x;θ2)− δy,m)||

=||∇θs(x;θ1)(p(x;θ1)− e(y))−∇θs(x;θ2)(p(x;θ2)− e(y))||
=||∇θs(x;θ1)p(x;θ1)−∇θs(x;θ2)p(x;θ2)||
=||∇θs(x;θ1)p(x;θ1)−∇θs(x;θ1)p(x;θ2) +∇θs(x;θ1)p(x;θ2)−∇θs(x;θ2)p(x;θ2)||
=||∇θs(x;θ1)(p(x;θ1)− p(x;θ2)) + (∇θs(x;θ1)−∇θs(x;θ2))p(x;θ2)||
≤||∇θs(x;θ1)||||p(x;θ1)− p(x;θ2)||+ max

m
||∇θsm(x;θ1)−∇θsm(x;θ2)||

≤||∇θs(x;θ1)||Lpθ ||θ1 − θ2||+ max
m
||∇θsm(x;θ1)−∇θsm(x;θ2)||

≤max
m

(
2ε||∇θg(m)(x;θ1,2)||+M ||∇θg(m)(x;θ1)−∇θg(m)(x;θ2)||+ L(m)||θ1 − θ2||

)
.

21



G Mode Connectivity

In this section, we check the mode connectivity [13] between two models that are trained using
certifiable training methods. Mode connectivity is a framework that investigates the connectedness
between two models by finding a high accuracy curve between those models. It enables us to
understand the loss surface of neural networks.

Let w0 and w1 be two sets of weight corresponding to two different well-trained neural networks.
Moreover, let φθc(t) with t ∈ [0, 1] be a continuous piece-wise smooth parametric curve with
parameters θc such that φθc(0) = w0 and φθc(1) = w1. To find a low-loss path between w0 and
w1, Garipov et al. [13] suggested to find the parameter θc that minimizes the expectation of a loss
`(w) over a distribution qθc(t) on the curve,

L(θc) = Et∼qθc (t)[`(φθc(t)].

To optimize L(θc) for θc, we use uniform distribution U [0, 1] as qθc(t) and Bezier curve [12] as
φθc(t), which provides a convenient parameterization of smoothness on the paths connecting two
end points (w0 and w1) as follows:

φθc(t) = (1− t)2w0 + 2t(1− t)θc + t2w1, 0 ≤ t ≤ 1.

A path φθc is said to have a barrier if ∃t such that `(φθc(t)) > max{`(w0), `(w1)}. The existence
of a barrier suggests the modes of two well-trained models are not connected by the path in terms of
the given loss function ` [49].

We test the mode connectivity between the models trained with IBP, CROWN-IBP, and OURS. For
example, to check the mode connectivity between two different models trained with CROWN-IBP and
IBP, we use the loss function used on each model as a user-specified loss for training the parametric
curve φθc . Therefore, we can obtain two curves as depicted in Figure 7, 8, and 9 for each pair of
models. Here, we use the identical settings in Appendix A.1.

Figure 7 shows the mode-connectivity between CROWN-IBP and IBP. We use CROWN-IBP loss as
user-specific loss in Figure 7a and IBP loss in Figure 7b. In this figure, we find that using CROWN-
IBP loss (7a), there exists a barrier between the two models. This suggests they are not connected by
the path in terms of CROWN-IBP loss. However, with IBP loss, there is no loss barrier separating the
two models. This indicates that using CROWN-IBP, it is hard to optimize the parameters from w0 to
w1, but IBP can.

Figure 8 shows the mode-connectivity results on IBP and OURS. We find that two models are not
connected to each other using either IBP bound or OURS bound, since there exists a barrier in both
curves. In this figure, we can also notify that OURS has tighter bounds than IBP because the value of
the loss function using OURS is lower than that of IBP.

Finally, Figure 9 illustrates the mode connectivity between CROWN-IBP and OURS. Using CROWN-
IBP as a user-specified loss function, we can find that the robust loss on the curve is higher than
that of the end points. However, when OURS is used as a loss function, the robust loss generally
decreases as the t increases. It shows that OURS has much favorable loss landscape compared to
CROWN-IBP. In addition, we can find that OURS has a tighter bound than CROWN-IBP, since the
value of the robust loss using OURS is lower than CROWN-IBP.
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Figure 7: Mode connectivity between CROWN-IBP and IBP, where w0 and w1 are well-trained
models using CROWN-IBP bound and IBP bound, respectively. θc is trained using CROWN-IBP
(7a) and IBP (7b), respectively.
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Figure 8: Mode connectivity between IBP and OURS, where w0 and w1 are well-trained models
using IBP bound and OURS bound, respectively. θc is trained using IBP (8a) and OURS (8b),
respectively.
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Figure 9: Mode connectivity between CROWN-IBP and OURS, where w0 andw1 are well-trained
models using CROWN-IBP bound and OURS bound, respectively. θc is trained using CROWN-IBP
(9a) and OURS (9b), respectively.
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H ReLU

In this section, we investigate how pre-activation bounds u and l for the activation layer change
during training. For each activation node, it is said to be "active" when the pre-activation bounds are
both positive (0 < l ≤ u), "unstable" when they span zero (l ≤ 0 ≤ u), and "dead" when they are
both negative (l ≤ u < 0).

Figure 10 shows the ratios of the number of active and dead ReLUs during the ramp-up period.
Notably, we find that CROWN-IBP has more active ReLUs during training compared to the other
three methods. Simultaneously, CROWN-IBP has the lowest ratio of dead ReLUs.

Figure 11 shows the numbers of active, unstable, and dead ReLUs during the ramp-up period. We
find that in CROWN-IBP, the number of unstable and active ReLUs increases as the number of dead
ReLUs decreases. This indicates that a number of dead ReLUs change to unstable ReLUs as the
training ε increases. However, in the other methods, the number of unstable ReLUs is consistently
small, while the number of active ReLUs decreases as the number of dead ReLUs increases.

Figure 12 depicts the histograms of the distribution of the slope u+

u+−l− of the unstable ReLUs during
the ramp-up period. In the early stages of CAP training, the slope distribution is concentrated around
0.4. However as the training progresses with a larger ε, the histogram distribution moves to left,
which indicates unstable ReLUs change to dead ReLUs. It is consistent with the results in Figure
11c. On the other hand, in the case of CROWN-IBP, the histogram distribution moves to right during
training. It is the same with the results in Figure 11b, which shows that number of active ReLUs
increases during training.
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Figure 10: The ratio of the number of active (top) and dead (bottom) ReLUs during the ramp-up
period.
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Figure 11: Number of active (Green), unstable (Orange), and dead (Red) ReLUs.
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(b) CROWN-IBP
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Figure 12: Histograms of the distribution of the slope u+

u+−l− when l ≤ 0 ≤ u during the ramp-up
period.
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I β- and κ-schedulings

Table 4 shows the evaluation results of the models as in Table 1 but trained with different κ-scheduling
(from 0 to 0). Table 5 shows the evaluation results of the proposed models trained with different κ-
and β-schedulings.

Table 4: Test errors (Standard / PGD / Verified error) of IBP, CROWN-IBP (β = 1), CAP, and OURS
on MNIST, CIFAR-10, and SVHN. See Appendix A for all the other settings, same as in Table 1.
Bold and underline numbers are the first and second lowest verified error.

Data ε(l∞) IBP CROWN-IBP (β = 1) CAP OURS

MNIST

ε = 0.1 1.25 / 2.31 / 3.10 1.23 / 2.19 / 2.75 0.80 / 1.73 / 3.19 1.09 / 1.86 / 2.28
ε = 0.2 1.95 / 2.95 / 6.28 2.89 / 5.32 / 7.61 3.22 / 6.72 / 11.06 1.70 / 3.37 / 4.78
ε = 0.3 3.67 / 5.55 / 9.74 6.11 / 11.33 / 17.51 19.19 / 35.84 / 47.85 3.39 / 4.85 / 9.12
ε = 0.4 3.67 / 6.55 / 16.55 6.11 / 15.34 / 26.72 - 3.39 / 5.88 / 15.04

CIFAR

10

ε = 2/255 43.60 / 52.62 / 56.58 32.15 / 42.67 / 49.36 28.80 / 38.95 / 48.50 32.04 / 43.13 / 49.62

ε = 4/255 53.89 / 62.58 / 65.14 45.05 / 56.46 / 63.04 40.78 / 52.62 / 61.88 43.15 / 54.85 / 61.31

ε = 6/255 61.37 / 68.64 / 70.82 53.87 / 65.03 / 71.08 49.20 / 60.85 / 69.03 50.99 / 62.23 / 67.59

ε = 8/255 64.11 / 70.68 / 72.99 60.96 / 70.52 / 75.68 56.77 / 66.78 / 73.02 56.35 / 67.06 / 70.56

ε = 16/255 69.74 / 76.66 / 79.86 79.14 / 83.64 / 84.36 75.11 / 80.67 / 82.07 66.96 / 75.63 / 78.08

SVHN ε = 0.01 20.19 / 34.57 / 44.25 16.66 / 30.05 / 38.15 16.88/ 30.16 / 37.09 15.46 / 29.34 / 38.57

Table 5: Test errors of OURS with different β- and κ-scheduling on MNIST and CIFAR-10.

Data ε(l∞)
OURS1→1 (κ = 1→ 0) OURS1→0 (κ = 1→ 0) OURS1→1 (κ = 0→ 0) OURS1→0 (κ = 0→ 0)

Standard PGD Verfied Standard PGD Verfied Standard PGD Verfied Standard PGD Verfied

MNIST

ε = 0.1 1.09 1.77 2.36 1.29 2.29 3.58 1.09 1.86 2.28 1.15 2.03 3.53

ε = 0.2 1.70 3.44 4.34 1.61 3.09 5.71 1.70 3.37 4.78 1.64 2.57 5.43

ε = 0.3 3.49 5.59 9.79 2.42 4.37 7.84 3.39 4.85 9.12 2.44 4.41 8.00

ε = 0.4 3.49 6.77 15.42 2.42 5.68 13.72 3.39 5.88 15.04 2.44 5.29 13.84

CIFAR

10

ε = 2/255 31.49 42.73 49.42 37.77 48.30 54.43 32.04 43.13 49.62 38.58 48.59 54.63

ε = 8/255 56.01 66.17 69.70 58.87 67.76 71.50 56.35 67.06 70.56 58.90 67.81 70.99

ε = 16/255 65.39 75.39 77.87 66.24 74.69 78.66 66.96 75.63 78.08 66.76 75.17 77.99
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J one-step vs multi-step

To get a tighter bound, we propose multi-step version of (7) as follows:

at+1 = Π[0,1]n
(
at − αsign(∇aL(s(x, y, ε;θ,φ), y))

)
. (16)

We compare the original 1-step method (α ≥ 1) to 7-step (t = 7) method with α = 0.1. The results
are summarized in Table 6. We found no significant difference between two methods even though
multi-step takes multiple times with multi-step. Therefore, we decide to focus on one-step method.

Table 6: Test errors of OURS with different numbers of gradient update steps in (16) on CIFAR-10.
Here, we use constant κ = 0.

Data ε(l∞)
OURS (1-step) OURS (7-step)

Standard PGD Verfied Standard PGD Verfied

CIFAR-10 ε = 2/255 32.04 43.11 49.62 31.40 42.30 49.20
ε = 8/255 56.35 67.03 70.56 54.44 66.29 71.53

K Train with εtrain ≥ εtest

K.1 εtrain ≥ εtest on MNIST

[46] and [15] observed that IBP performs better when using εtrain ≥ εtest than εtrain = εtest. Figure
7 shows the results with different εtrain’s for each εtest. The overfitting issue is more prominent in
the case of IBP and CROWN-IBP1→0 than the proposed method and CROWN-IBP1→1. However,
using larger perturbations compromises the standard accuracy, and thus it is desirable to use smaller
εtrain.

Table 7: Comparison of the performance (Standard / PGD / Verified error) depending on various
εtrain. Here, we use constant κ = 0.

Data εtest εtrain IBP CROWN-IBP1→1 OURS CROWN-IBP1→0

MNIST
0.2

0.2 1.25 / 3.39 / 7.77 1.23 / 3.48 / 7.64 1.09 / 3.17 / 6.29 1.13 / 2.85 / 5.89
0.3 1.95 / 2.93 / 6.28 2.89 / 5.32 / 7.61 1.70 / 3.37 / 4.76 1.48 / 2.73 / 4.79
0.4 3.67 / 4.77 / 6.36 6.11 / 9.08 / 12.71 3.49 / 4.72 / 6.36 2.37 / 3.26 / 4.64

0.3 0.3 1.95 / 3.31 / 12.90 2.89 / 7.35 / 14.97 1.70 / 4.82 / 9.20 1.48 / 3.52 / 9.40
0.4 3.67 / 5.55 / 9.74 6.11 / 11.33 / 17.51 3.49 / 5.59 / 9.79 2.37 / 3.63 / 7.22

K.2 εtrain = 1.1εtest on CIFAR-10

As mentioned in Gowal et al. [15], we also train with εtrain = 1.1εtest on CIFAR-10. The results are
shown in Table 8. They attain slightly improved performances in 2/255, but not in 8/255 and larger ε.

Table 8: Comparison of the performance (Standard / PGD / Verified error) of the models trained with
εtrain and 1.1εtrain. Here, we use constant κ = 0.

Data εtest εtrain IBP CROWN-IBP1→1 OURS CROWN-IBP1→0

CIFAR
10

2/255
2/255 43.6 / 52.71 / 56.58 32.15 / 42.67 / 49.36 32.04 / 43.13 / 49.62 37.25 / 47.19 / 52.53
2.2/255 44.78 / 52.62 / 55.78 33.23 / 43.11 / 49.18 33.04 / 43.70 / 48.60 38.42 / 47.80 / 52.53

8/255
8/255 64.11 / 70.68 / 72.99 60.96 / 70.52 / 75.68 56.35 / 67.06 / 70.56 56.95 / 67.89 / 70.43
8.8/255 64.54 / 70.30 / 72.40 61.48 / 70.58 / 75.17 58.28 / 67.50 / 70.52 59.37 / 68.51 / 70.71
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L Training time

All the training times are measured on a single TITAN X (Pascal) on Medium for CIFAR-10. We
train with a batch size of 128 for OURS, CROWN-IBP1→1 and IBP, but with a batch size of 32 for
CAP due to its high memory cost. For CAP, we use random projection of 50 dimensions.

• OURS: 115.9 sec / epoch
• CROWN-IBP1→1: 51.68 sec / epoch
• IBP: 14.85 sec / epoch
• CAP (batch size 32, 1 GPU): 751.0 sec / epoch
• CAP (batch size 64, 1 GPU): 724.6 sec / epoch
• CAP (batch size 128, 2 GPUs): 387.9 sec / epoch
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M Loss and Tightness violin plots

We plot the equivalent tightness violin plots in Section 6 for models trained with other methods. The
proposed method achieves the best results in terms of loss and tightness followed by CROWN-IBP,
CAP-IBP, and RANDOM. Figure 13 (a)-(b), (c)-(d), and (e)-(f) show the tightness evaluated on the
model trained by CROWN-IBP1→0, CROWN-IBP1→1 and IBP, respectively.
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Figure 13: Violin plots of the test loss (Left Column) and of tightness (Right Column) for various
linear relaxations same as in Section 6. Lower is better.
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N Comparison with CAP-IBP

As in section E, we train a model with CAP-IBP and compare with the proposed method and CROWN-
IBP (β = 1). Figure 14 shows that CAP-IBP has gradient differences larger than the proposed method
and smaller than CROWN-IBP (β = 1), which leads to a performance between the proposed method
and CROWN-IBP (β = 1) (see Table 3). CAP-IBP has looser bounds than CROWN-IBP (β = 1) as
shown in Figure 3 and Figure 13, but with a relatively more smooth landscape, it can achieve a better
performance than CROWN-IBP (β = 1).
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two consecutive loss gradients and (Bottom) the cosine distance between them during the ramp-up
phase.
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O ReLU Stability

To see the effect of unstable ReLUs on smoothness, we adopt the ReLU stability loss (RS loss)
LRS(u, l) = − tanh(1+u·l) as a regularizer [42]. We use L+λLRS as a loss and run CROWN-IBP
(β = 1) with various λ settings. We plot the smoothness and the tightness in Figure 15 and Figure 16
on λ = 0, λ = 0.01, λ = 10.

We found that small λ suggested in Xiao et al. [42] has no effect on reducing the number of unstable
ReLUs, and thus not on improving the smoothness as shown in Figure 11. By increasing λ, we
observed that RS successfully reduces the number of unstable ReLUs with λ = 10. Figure 15
shows that large λ leads to a smaller loss variation and gradient difference. This supports that
unstable ReLUs are closely related to the smoothness of the loss landscape. However, as Xiao et al.
[42] mentioned "placing too much weight on RS Loss can decrease the model capacity, potentially
lowering the provable adversarial accuracy", the models trained with a large λ ≥ 1 couldn’t obtain a
tightness of the upper bound and significant improvement on robustness as illustrated in Figure 16.
The test errors (Standard / PGD / Verified) are 0.6278 / 0.7189 / 0.7634 on λ = 0.01 and 0.6090 /
0.7085 / 0.7600 on λ = 10.
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Figure 15: (Top) Loss variations along the gradient descent direction, (Middle) `2-distance between
two consecutive loss gradients and (Bottom) the cosine distance between them during the ramp-up
phase on CROWN-IBP (β = 1) with λ = 0, λ = 0.01, λ = 10 and OURS.
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Figure 16: Robust loss of CROWN-IBP (β = 1) with λ = 0, λ = 0.01, λ = 10 and OURS during
training.

31



P CBP1→0 and the smoothness
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Figure 17: The success of CBP1→0 is also due to the smoothness. See the Figure 1 caption for more
details.
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