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Abstract

This paper presents a theoretical analysis of linear interpolation as a principled
method for stabilizing (large-scale) neural network training. We argue that insta-
bilities in the optimization process are often caused by the nonmonotonicity of
the loss landscape and show how linear interpolation can help by leveraging the
theory of nonexpansive operators. We construct a new optimization scheme called
relaxed approximate proximal point (RAPP), which is the first 1-SCLI method
to achieve last iterate convergence rates for ρ-comonotone problems while only
requiring ρ > − 1

2L . The construction extends to constrained and regularized
settings. By replacing the inner optimizer in RAPP we rediscover the family of
Lookahead algorithms for which we establish convergence in cohypomonotone
problems even when the base optimizer is taken to be gradient descent ascent.
The range of cohypomonotone problems in which Lookahead converges is further
expanded by exploiting that Lookahead inherits the properties of the base optimizer.
We corroborate the results with experiments on generative adversarial networks
which demonstrates the benefits of the linear interpolation present in both RAPP
and Lookahead.

1 Introduction

Stability is a major concern when training large scale models. In particular, generative adversarial
networks (GANs) are known to be notoriously difficult to train. To stabilize training, the Lookahead
algorithm of Zhang et al. (2019) was recently proposed for GANs Chavdarova et al. (2020) which
linearly interpolates with a slow moving iterate. The mechanism has enjoyed superior empirical
performance in both minimization and minimax problems, but it largely remains a heuristic with little
theoretical motivation.

One major obstacle for providing a theoretical treatment, is in capturing the (fuzzy) notion of stability.
Loosely speaking, a training dynamics is referred to as unstable in practice when the iterates either
cycle indefinitely or (eventually) diverge—as has been observed for the Adam optimizer (see e.g.
Gidel et al. (2018, Fig. 12) and Chavdarova et al. (2020, Fig. 6) respectively). Conversely, a stable
dynamics has some bias towards stationary points. The notion of stability so far (e.g. in Chavdarova
et al. (2020, Thm. 2-3)) is based on the spectral radius and thus inherently local.

In this work, we are interested in establishing global convergence properties, in which case some
structural assumptions are needed. One (nonmonotone) structure that lends itself well to the study of
stability is that of cohypomonotonicity studied in Combettes & Pennanen (2004); Diakonikolas et al.
(2021), since even the extragradient method has been shown to cycle and diverge in this problem
class (see Pethick et al. (2022, Fig. 1) and Pethick et al. (2023, Fig. 2) respectively). We provide a
geometric intuition behind these difficulties in Figure 1. Biasing the optimization schemes towards
stationary points becomes a central concern and we demonstrate in Figure 2 that Lookahead can
indeed converge for such nonmonotone problems.
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Table 1: Overview of last iterate results with our contribution highlighted in blue . Prior to this work
there existed no rates for 1-SCLI schemes handling ρ-comonotone problems with ρ ∈ (−1/2L,∞)
and no global convergence guarantees for Lookahead beyond bilinear games.

Method Setting ρ Handles constraints ρ-independent rates Reference

Im
pl

ic
it PP Comonotone (−1/2L,∞) ✓ ✗ (Gorbunov et al., 2022b, Thm. 3.1)

Relaxed PP Comonotone (−1/2L,∞) ✓ ✓ Theorem 6.2

E
xt

ra
po

la
te EG Comonotone & Lips. (−1/8L,∞) ✗ ✗ (Gorbunov et al., 2022b, Thm. 4.1)

EG+ Comonotone & Lips. Unknown rates
RAPP Comonotone & Lips. (−1/2L,∞) ✓ ✓ Corollary 6.4

L
oo

ka
he

ad LA-GDA
Local - ✗ - (Chavdarova et al., 2020, Thm. 2)

Bilinear - ✗ - (Ha & Kim, 2022, Cor. 7)
Comonotone & Lips. (−1/3

√
3L,∞) ✗ - Theorem 7.1

LA-EG
Bilinear - ✗ - (Ha & Kim, 2022, Cor. 8)

Monotone & Lips. - ✓ - Theorem F.1
LA-CEG+ Comonotone & Lips. (−1/2L,∞) ✓ - Corollary 7.7

A principled approach to cohypomonotone problems is the extragradient+ algorithm (EG+) proposed
by Diakonikolas et al. (2021). However, the only known rates are on the best iterate, which can be
problematic to pick in practice. It is unclear whether last iterate rates for EG+ are possible even in
the monotone case (see discussion prior to Thm. 3.3 in Gorbunov et al. (2022a)). For this reason, the
community has instead resorted to showing last iterate of extragradient (EG) method of Korpelevich
(1977), despite originally being developed for the monotone case. Maybe not surprisingly, EG only
enjoys a last iterate guarantee under mild form of cohypomonotonicity and have so far only been
studied in the unconstrained case (Luo & Tran-Dinh; Gorbunov et al., 2022b). Recently, last iterate
rate were established for the same (tight) range of cohypomonotone problems for which EG+ has
best iterate guarantees. However, the analyzed scheme is implicit and the complexity blows up with
increasing cohypomonotonicity (Gorbunov et al., 2022b). This leaves the questions: Can an explicit
scheme enjoy last iterate rates for the same range of cohypomonotone problems? Can the rate be
agnostic to the degree of cohypomonotonicity? We answer both in the affirmative.

This work focuses on 1-SCLI schemes (Arjevani et al., 2015; Golowich et al., 2020), whose update
rule only depends on the previous iterate in a time-invariant fashion. Another approach to establishing
last iterate is Halpern-type methods with an explicit scheme developed in Lee & Kim (2021) for cohy-
pomonotone problems and later extended to the constrained case in Cai et al. (2022) (c.f. Appendix A).

As will become clear, a principled mechanism behind convergence in this nonmonotone class is the
linear interpolation also used in Lookahead. This iterative interpolation is more broadly referred to
as the Krasnosel’skiı̆-Mann (KM) iteration in the theory of nonexpansive operators. We show that
the extragradient+ algorithm (EG+) of Diakonikolas et al. (2021), our proposed relaxed approximate
proximal point method (RAPP), and Lookahead based algorithms are all instances of the (inexact)
KM iteration and provide simple proofs of these schemes in the cohypomonotone case.

More concretely we make the following contributions:

1. We prove global convergence rates for the last iterate of our proposed algorithm RAPP which
additionally handles constrained and regularized settings. This makes RAPP the first 1-SCLI
scheme to have non-asymptotic guarantees for ρ-comonotone problems while only requiring
ρ > −1/2L. As a byproduct we obtain a last iterate convergence rate for an implicit scheme that
is independent of the degree of cohypomonotonicity. The last iterate rates are established by
showing monotonic decrease of the operator norm–something which is not possible for EG+.
This contrast is maybe surprising, since RAPP can be viewed as an extension of EG+, which
simply takes multiple extrapolation steps.

2. By replacing the inner optimization routine in RAPP with gradient descent ascent (GDA) and
extragradient (EG) we rediscover the Lookahead algorithms considered in Chavdarova et al.
(2020). We obtain guarantees for the Lookahead variants by deriving nonexpansive properties
of the base optimizers. By casting Lookahead as a KM iteration we find that the optimal
interpolation constant is λ = 0.5. This choice corresponds to the default value used in practice for
both minimization and minimax—thus providing theoretical motivation for the parameter value.
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3. For τ = 2 inner iterations we observe that LA-GDA reduces to a linear interpolation between
GDA and EG+ which allows us to obtain global convergence in ρ-comonotone problems when
ρ > −1/3

√
3L. However, for τ large, we provide a counterexample showing that LA-GDA cannot

be guaranteed to converge. This leads us to instead propose LA-CEG+ which corrects the inner
optimization to guarantee global convergence for ρ-comonotone problems when ρ > −1/2L.

4. We test the methods on a suite of synthetic examples and GAN training where we confirm the
stabilizing effect. Interestingly, RAPP seems to provide a similar benefit as Lookahead, which
suggest that linear interpolation could play a key role also experimentally.

An overview of the theoretical results is provided in Table 1 and Figure 5§B.

2 Related work

Lookahead The Lookahead algorithm was first introduced for minimization in Zhang et al. (2019).
In the context of Federated Averaging in federated learning (McMahan et al., 2017) and the Reptile
algorithm in meta-learning (Nichol et al., 2018), the method can be seen as a single worker and single
task instance respectively. Analysis for Lookahead was carried out for nonconvex minimization
(Wang et al., 2020; Zhou et al., 2021) and a nested variant proposed in (Pushkin & Barba, 2021).
Chavdarova et al. (2020) popularized the Lookahead algorithm for minimax training by showing
state-of-the-art performance on image generation tasks. Apart from the original local convergence
analysis in Chavdarova et al. (2020) and the bilinear case treated in Ha & Kim (2022) we are not
aware of any convergence analysis for Lookahead for minimax problems and beyond.

Cohypomonotone Cohypomontone problems were first studied in Iusem et al. (2003); Combettes
& Pennanen (2004) for proximal point methods and later expanded on in greater detail in Bauschke
et al. (2021). The condition was relaxed to the star-variant referred to as the weak Minty variational
inequality (MVI) in Diakonikolas et al. (2021) and the extragradient+ algorithm (EG+) was analyzed.
The analysis of EG+ was later tightened and extended to the constrained case in Pethick et al. (2022).

Proximal point The proximal point method (PP) has a long history. For maximally monotone
operators (and thus convex-concave minimax problems) convergence of PP follows from Opial (1967).
The first convergence analysis of inexact PP dates back to Rockafellar (1976); Brézis & Lions (1978).
It was later shown that convergence also holds for the relaxed inexact PP as defined in (8) (Eckstein
& Bertsekas, 1992). In recent times, PP has gained renewed interest due to its success for certain
nonmonotone structures. Inexact PP was studied for cohypomontone problems in Iusem et al. (2003).
Asymptotic convergence was established of the relaxed inexact PP for a sum of cohypomonotone
operators in Combettes & Pennanen (2004), and later considered in Grimmer et al. (2022) without
inexactness. Last iterate rates were established for PP in ρ-comonotone problems (with a dependency
on ρ) (Gorbunov et al., 2022b). Explicit approximations of PP through a contractive map was used
for convex-concave minimax problems in Cevher et al. (2023) and was the original motivation for
MirrorProx of Nemirovski (2004). See Appendix A for additional references in the stochastic setting.

3 Setup
-Fz

z z★

Figure 1: Consider minx∈X maxy∈Y ϕ(z)
with z = (x, y). As opposed to convex-
concave minimax problems, the cohy-
pomonotone condition allows the gradients
Fz = (∇xϕ(z),−∇yϕ(z)) to point away
from the solutions (see Appendix B.1 for
the relationship between cohypomonotonic-
ity and the weak MVI). This can lead to
instability issues for standard algorithms
such as the Adam optimizer.

We are interested in finding a zero of an operator
S : Rd ⇒ Rd which decomposes into a Lipschitz
continuous (but possibly nonmonotone) operator F and
a maximally monotone operator A, i.e. find z ∈ Rd

such that,
0 ∈ Sz := Az + Fz. (1)

Most relevant in the context of GAN training is that (1)
includes constrained minimax problems.
Example 3.1. Consider the following minimax problem

min
x∈X

max
y∈Y

ϕ(x, y). (2)

The problem can be recast as the inclusion problem (1)
by defining the joint iterates z = (x, y), the stacked
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gradients Fz = (∇xϕ(x, y),−∇yϕ(x, y)), and A = (NX ,NY) where N denotes the normal
cone. As will become clear (cf. Algorithm 1), A will only be accessed through the resol-
vent JγA := (id+γA)−1 which reduces to the proximal operator. More specifically JγA(z) =
(projX (x),projY(y)).

We will rely on the following assumptions (see Appendix B for any missing definitions).
Assumption 3.2. In problem (1),

(i) The operator A : Rd ⇒ Rd is maximally monotone.

(ii) The operator F : Rd → Rd is L-Lipschitz, i.e. for some L ∈ [0,∞),

∥Fz − Fz′∥ ≤ L∥z − z′∥ ∀z, z′ ∈ Rd.

(iii) The operator S := F +A is ρ-comonotone for some ρ ∈ (−1/2L,∞), i.e.

⟨v − v′, z − z′⟩ ≥ ρ∥v − v′∥2 ∀(v, z), (v′, z′) ∈ grphS.

Remark 3.3. Assumption 3.2(iii) is also known as |ρ|-cohypomonotonicity when ρ < 0, which allows
for increasing nonmonotonicity as |ρ| grows. See Appendix B.1 for the relationship with weak MVI.

When only stochastic feedback F̂σ(·, ξ) is available we make the following classical assumptions.

Assumption 3.4. For the operator F̂σ(·, ξ) : Rd → Rd the following holds.

(i) Unbiased: Eξ

[
F̂σ(z, ξ)

]
= Fz ∀z ∈ Rd.

(ii) Bounded variance: Eξ

[
∥F̂σ(z, ξ)− Fz∥2

]
≤ σ2 ∀z, z′ ∈ Rd.

4 Inexact Krasnosel’skiı̆-Mann iterations

The main work horse we will rely on is the inexact Krasnosel’skiı̆-Mann (IKM) iteration from
monotone operators (also known as the averaged iteration), which acts on an operator T : Rd → Rd

with inexact feedback,
zk+1 = (1− λ)zk + λ(Tzk + ek), (IKM)

where λ ∈ (0, 1) and ek is a random variable with dependency on all variables up until (and including)
k. The operator T̃k : z 7→ Tz + ek can crucially be an iterative optimization scheme in itself. This is
important, since we can obtain RAPP, LA-GDA and LA-CEG+ by plugging in different optimization
routines. In fact, RAPP is derived by taking T̃k to be a (contractive) fixed point iteration in itself,
which approximates the resolvent.

We note that also the extragradient+ (EG+) method of Diakonikolas et al. (2021), which converges
for cohypomonotone and Lipschitz problems, can be seen as a Krasnosel’skiı̆-Mann iteration on an
extragradient step

EG(z) = z − γF (z − γFz)

zk+1 = (1− λ)zk + λEG(zk)
(EG+)

where λ ∈ (0, 1). We provide a proof of EG+ in Theorem G.1 which extends to the constrained case
using the construction from Pethick et al. (2022) but through a simpler argument under fixed stepsize.

Essentially, the IKM iteration leads to a conservative update that stabilizes the update using the
previous iterate. This is the key mechanism behind showing convergence in the nonmonotone setting
known as cohypomonotonicity. Very generally, it is possible to provide convergence guarantees for
IKM when the following holds (Theorem C.1 is deferred to the appendix due to space limitations).
Definition 4.1. An operator T : Rn → Rd is said to be quasi-nonexpansive if

∥Tz − z′∥ ≤ ∥z − z′∥ ∀z ∈ Rd,∀z′ ∈ fixT. (3)

Remark 4.2. This notion is crucial to us since the resolvent JB := (id+B)−1 is (quasi)-nonexpansive
if B is 1/2-cohypomonotone (Bauschke et al., 2021, Prop. 3.9(iii)).
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5 Approximating the resolvent

As apparent from Remark 4.2, the IKM iteration would provide convergence to a zero of the
cohypomonotone operator S from Assumption 3.2 by using its resolvent T = JγS . However, the
update is implicit, so we will instead approximate JγS . Given z ∈ Rd we seek z′ ∈ Rd such that

z′ = JγS(z) = (id+γS)−1z = (id+γA)−1(z − γFz′)

This can be approximated with a fixed point iteration of

Qz : w 7→ (id+γA)−1(z − γFw) (4)

which is a contraction for small enough γ since F is Lipschitz continuous. It follows from Banach’s
fixed-point theorem Banach (1922) that the sequence converges linearly. We formalize this in the
following theorem, which additionally applies when only stochastic feedback is available.

wt+1 = (id+γA)−1(z − γF̂σ(w
t, ξt)) ξt ∼ P (5)

Lemma 5.1. Suppose Assumptions 3.2(i), 3.2(ii) and 3.4. Given z ∈ Rd, the iterates generated by
(5) with γ ∈ (0, 1/L) converges to a neighborhood linearly, i.e.,

E
[
∥wτ − JγS(z)∥2

]
≤ (γL)2τ∥w0 − w⋆∥2 + γ2

(1−γL)2σ
2. (6)

The resulting update in (5) is identical to GDA but crucially always steps from z. We use this as a
subroutine in RAPP to get convergence under a cohypomonotone operator while only suffering a
logarithmic factor in the rate.

Interpretation In the special case of the constrained minimax problem in (2), the application of
the resolvent JγS(z) is equivalent to solving the following optimization problem

min
x′∈X

max
y′∈Y

{
ϕµ(x

′, y′) := ϕ(x′, y′) +
1

2µ
∥x′ − x∥2 − 1

2µ
∥y′ − y∥2

}
. (7)

for appropriately chosen µ ∈ (0,∞). (5) can thus be interpreted as solving a particular regularized
subproblem. Later we will drop this regularization to arrive at the Lookahead algorithm.

6 Last iterate under cohypomonotonicity

As stated in Section 5, we can obtain convergence using the approximate resolvent through Theo-
rem C.1. The convergence is provided in terms of the average, so additional work is needed for a last
iterate result. IKM iteration on the approximate resolvent (i.e. T̃k(z) = JγS(z) + ek) becomes,

z̄k = zk − vk with vk ∈ γS(z̄k) (8a)

zk+1 = (1− λ)zk + λ(z̄k + ek) (8b)

with λ ∈ (0, 1) and γ > 0 and error ek ∈ Rd. Without error, (8) reduces to relaxed proximal point

zk+1 = (1− λ)zk + λJγS(z
k) (Relaxed PP)

For a last iterate result it remains to argue that the residual ∥JγS(zk)−zk∥ is monotonically decreasing
(up to an error we can control). Showing monotonic decrease is fairly straightforward if λ = 1 (see
Lemma E.1 and the associated proof). However, we face additional complication due to the averaging,
which is apparent both from the proof and the slightly more complicated error term in the following
lemma.
Lemma 6.1. If S is ρ-comonotone with ρ > −γ

2 then (8) satisfies for all z⋆ ∈ zerS,

∥JγS(zk)− zk∥2 ≤ ∥JγS(zk−1)− zk−1∥2 + δk(z
⋆)

where δk(z) := 4∥ek∥(∥zk+1 − z∥+ ∥zk − z∥).

The above lemma allows us to obtain last iterate convergence for IKM on the inexact resolvent by
combing the lemma with Theorem C.1.

5



Algorithm 1 Relaxed approximate proximal point method (RAPP)
Require: z0 ∈ Rn λ ∈ (0, 1), γ ∈ (⌊−2ρ⌋+, 1/L)
Repeat for k = 0, 1, . . . until convergence

1: w0
k = zk

2: for all t = 0, 1, . . . , τ − 1 do
3: ξk,t ∼ P
4: wt+1

k = (id+γA)−1(zk − γF̂σk
(wt

k, ξk,t))

5: zk+1 = (1− λ)zk + λwτ
k

Return zk+1

Theorem 6.2 (Last iterate of inexact resolvent). Suppose Assumptions 3.2 and 3.4 with σk. Consider
the sequence (zk)k∈N generated by (8) with λ ∈ (0, 1) and ρ > −γ

2 . Then, for all z⋆ ∈ zerS,

E[∥JγS(zK)− zK∥2] ≤
∥z0 − z⋆∥2 +

∑K−1
k=0 εk(z

⋆)

λ(1− λ)K
+

1

K

K−1∑
k=0

K−1∑
j=k

δj(z
⋆),

where εk(z) := 2λE[∥ek∥∥zk − z∥] +λ2E[∥ek∥2] and δk(z) := 4E[∥ek∥(∥zk+1 − z∥+ ∥zk − z∥)].
Remark 6.3. Notice that the rate in Theorem 6.2 has no dependency on ρ. Specifically, it gets rid
of the factor γ/(γ + 2ρ) which Gorbunov et al. (2022b, Thm. 3.2) shows is unimprovable for PP.
Theorem 6.2 requires that the iterates stays bounded. In Corollary 6.4 we will assume bounded
diameter for simplicity, but it is relatively straightforward to show that the iterates can be guaranteed
to be bounded by controlling the inexactness (see Lemma E.2).

All that remains to get convergence of the explicit scheme in RAPP, is to expand and simplify the
errors εk(z) and δk(z) using the approximation of the resolvent analyzed in Lemma 5.1.
Corollary 6.4 (Explicit inexact resolvent). Suppose Assumption 3.2 holds. Consider the sequence
(zk)k∈N generated by RAPP with deterministic feedback and ρ > −γ

2 . Then, for all z⋆ ∈ zerS with
D := supj∈N ∥zj − z⋆∥ <∞,

(i) with τ = logK
log(1/γL) : 1

K

∑K−1
i=0 ∥JγS(zk)− zk∥2 = O

(
∥z0−z⋆∥2

λ(1−λ)K + D2

(1−λ)K

)
.

(ii) with τ = logK2

log(1/γL) : ∥JγS(zK)− zK∥2 = O
(

∥z0−z⋆∥2

λ(1−λ)K + D2

K + D2

(1−λ)K2 ,
)
.

Remark 6.5. Corollary 6.4(ii) implies an oracle complexity of O
(
log(ε−2)ε−1

)
for ensuring that

the last iterate satisfies ∥JγS(zK)− zK∥2 ≤ ε. A stochastic extension is provided in Corollary E.3
by taking the batch size increasing. Notice that RAPP, for τ = 2 inner steps, reduces to EG+ in the
unconstrained case where A ≡ 0.

7 Analysis of Lookahead

The update in RAPP leads to a fairly conservative update in the inner loop, since it corresponds to
optimizing a highly regularized subproblem as noted in Section 5. Could we instead replace the
optimization procedure with gradient descent ascent (GDA)? If we replace the inner optimization
routine we recover what is known as the Lookahead (LA) algorithm

w0
k = zk

wt+1
k = wt

k − γFwt
k ∀t = 0, ..., τ − 1

zk+1 = (1− λ)zk + λwτ
k

(LA-GDA)

We empirically demonstrate that this scheme can converge for nonmonotone problems for certain
choices of parameters (see Figure 2). However, what global guarantees can we provide theoretically?

It turns out that for LA-GDA with two inner steps (τ = 2) we have an affirmative answer. After some
algebraic manipulation it is not difficult to see that the update can be simplified as follows

zk+1 = 1
2 (z

k − 2λγFzk) + 1
2 (z

k − 2λγF (zk − γFzk)). (9)
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Figure 2: LA-GDA and RAPP can converge for Hsieh et al. (2021, Ex. 5.2). Interestingly, we can
set the stepsize γ larger than 1/L while RAPP remains stable. Approximate proximal point (APP)
with the same stepsize diverges (the iterates of APP are deferred to Figure 6). In this example, it is
apparent from the rates, that there is a benefit in replacing the conservative inner update in RAPP
with GDA in LA-GDA as explored in Section 7.

This is the average of GDA and EG+ (when λ ∈ (0, 1/2)). This observation allows us to show
convergence under cohypomonotonicity. This positive result for nonmonotone problems partially
explains the stabilizing effect of LA-GDA.
Theorem 7.1. Suppose Assumption 3.2 holds. Consider the sequence (zk)k∈N generated by LA-GDA
with τ = 2, γ ≤ 1/L and λ ∈ (0, 1/2). Furthermore, suppose that

2ρ > −(1− 2λ)γ and 2ρ ≥ 2λγ − (1− γ2L2)γ. (10)

Then, for all z⋆ ∈ zerF ,

1

K

K−1∑
k=0

∥F z̄k∥2 ≤ ∥z0 − z⋆∥2

λγ
(
(1− 2λ)γ + 2ρ

)
K
. (11)

Remark 7.2. For λ → 0 and γ = c/L where c ∈ (0,∞), sufficient condition reduces to ρ ≥
−γ(1 − γ2L2)/2 = −c(1−c2)/2L, of which the minimum is attained with c = 1/

√
3, leading to the

requirement ρ ≥ −1/3
√
3L. A similar statement is possible for zk. Thus, (LA-GDA) improves on the

range of ρ compared with EG (see Table 1).

For larger τ , LA-GDA does not necessarily converge (see Figure 3 for a counterexample). We next
ask what we would require of the base optimizer to guarantee convergence for any τ . To this end, we
replace the inner iteration with some abstract algorithm Alg : Rd → Rd, i.e.

w0
k = zk

wt+1
k = Alg(wt

k) ∀t = 0, ..., τ − 1

zk+1 = (1− λ)zk + λwτ
k

(LA)

Convergence follows from quasi-nonexpansiveness.
Theorem 7.3. Suppose Alg : Rd → Rd is quasi-nonexpansive. Then (zk)k∈N generated by (LA)
converges to some z⋆ ∈ fixAlg.
Remark 7.4. Even though the base optimizer Alg might not converge (since nonexpansiveness is
not sufficient), Theorem 7.3 shows that the outer loop converges. Interestingly, this aligns with the
benefit observed in practice of using the outer iteration of Lookahead (see Figure 4).

Cocoercive From Theorem 7.3 we almost immediately get converge of LA-GDA for coercive
problems since V = id−γF is nonexpansive iff γF is 1/2-cocoercive.
Corollary 7.5. Suppose F is 1/L-cocoercive. Then (zk)k∈N generated by LA-GDA with γ ≤ 2/L
converges to some z⋆ ∈ zerF .
Remark 7.6. Corollary 7.5 can trivially be extended to the constrained case by observing that also
V = (id+γA)−1(id−γF ) is nonexpansive when A is maximally monotone. As a special case this
captures constrained convex and gradient Lipschitz minimization problems.
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Figure 3: We test the Lookahead variants on Pethick et al. (2022, Ex. 3(iii)) where ρ ∈ (−1/8L,−1/10L)
(left) and Pethick et al. (2022, Ex. 5) with ρ = −1/3 (right). For the left example LA-GDA (provably)
converges for τ = 2, but may be nonconvergent for larger τ as illustrate. Both variants of LA-GDA
diverges in the more difficult example on the right, while LA-CEG+ in contrast provably converges.
It seems that LA-CEG+ trades off a constant slowdown in the rate for convergence in a larger class.

Monotone When only monotonicity and Lipschitz holds we may instead consider the following
extragradient based version of Lookahead (first empirically investigated in Chavdarova et al. (2020))

w0
k = zk

wt+1
k = EG(wk

t ) ∀t = 0, ..., τ − 1

zk+1 = (1− λ)zk + λwτ
k

(LA-EG)

where EG(z) = z − γF (z − γFz). We show in Theorem F.1 that the EG-operator of the inner loop
is quasi-nonexpansive, which implies convergence of LA-EG through Theorem 7.3. Theorem F.1
extends even to cases where A ̸≡ 0 by utilizing the forward-backward-forward construction of Tseng
(1991). This providing the first global convergence guarantee for Lookahead beyond bilinear games.

Cohypomonotone For cohypomonotone problems large τ may prevent LA-GDA from converging
(see Figure 3 for a counterexample). Therefore we propose replacing the inner optimization loop in
LA-GDA with the method proposed in (Pethick et al., 2022, Alg. 1). Let H = id−γF . We can write
one step of the inner update with α ∈ (0, 1) as

CEG+(w) = w + 2α(Hw̄ −Hw) with w̄ = (id + γA)
−1
Hw. (12)

The usefulness of the operator CEG+ : Rd → Rd comes from the fact that it is quasi-nonexpansive
under Assumption 3.2 (see Theorem G.1). Thus, Theorem 7.3 applies even when F is only cohy-
pomonotone if we make the following modification to LA-GDA

w0
k = zk

wt+1
k = CEG+(wt

k) ∀t = 0, ..., τ − 1

zk+1 = (1− λ)zk + λwτ
k

(LA-CEG+)

In the unconstrained case (A ≡ 0) this reduces to using the EG+ algorithm of Diakonikolas et al.
(2021) for the inner loop. We have the following convergence guarantee.
Corollary 7.7. Suppose Assumption 3.2 holds. Then (zk)k∈N generated by LA-CEG+ with λ ∈ (0, 1),
γ ∈ (⌊−2ρ⌋+, 1/L) and α ∈ (0, 1 + 2ρ

γ ) converges to some z⋆ ∈ zerS.

8 Experiments

This section demonstrates that linear interpolation can lead to an improvement over common baselines.

Synthetic examples Figures 2 and 3 demonstrate RAPP, LA-GDA and LA-CEG+ on a host of
nonmonotone problems (Hsieh et al. (2021, Ex. 5.2), Pethick et al. (2022, Ex. 3(iii)), Pethick et al.
(2022, Ex. 5)). See Appendix H.2 for definitions and further details.
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Table 2: Adam-based. The combination of
Lookahead and extragradient-like methods
performs the best.

FID ISC
Adam 21.04±2.20 7.61±0.15

ExtraAdam 18.23±1.13 7.79±0.08
ExtraAdam+ 22.94±1.93 7.65±0.13

LA-Adam 17.63±0.65 7.86±0.07
LA-ExtraAdam 15.88±0.67 7.97±0.12

LA-ExtraAdam+ 17.86±1.03 8.08±0.15

Table 3: GDA-based. Both RAPP and Looka-
head increases the scores substantially.

FID ISC
GDA 19.36±0.08 7.84±0.07
EG 18.94±0.60 7.84±0.02

EG+ 19.35±4.28 7.74±0.44
LA-GDA 16.87±0.18 8.01±0.08
LA-EG 16.91±0.66 7.97±0.12

LA-EG+ 17.20±0.44 7.94±0.11
RAPP 17.76±0.82 7.98±0.08

Image generation We replicate the experimental setup of Chavdarova et al. (2020); Miyato et al.
(2018), which uses hinge version of the non-saturated loss and a ResNet with spectral normalization
for the discriminator (see Appendix H.2 for details). To evaluate the performance we rely on the
commonly used Inception score (ISC) (Salimans et al., 2016) and Fréchet inception distance (FID)
(Heusel et al., 2017) and report the best iterate. We demonstrate the methods on the CIFAR10 dataset
(Krizhevsky et al., 2009). The aim is not to beat the state-of-the-art, but rather to complement the
already exhaustive numerical evidence provided in Chavdarova et al. (2020).

For a fair computational comparison we count the number of gradient computations instead of
iterations k as in Chavdarova et al. (2020). Maybe surprisingly, we find that the extrapolation
methods such as EG and RAPP still outperform the baseline, despite having fewer effective iterations.
RAPP improves over EG, which suggest that it can be worthwhile to spend more computation on
refining the updates at the cost of making fewer updates.

Figure 4: Adam eventually diverges on CI-
FAR10 while Lookahead is stable with the
outer iterate enjoying superior performance.

The first experiment we conduct matches the setting
of Chavdarova et al. (2020) by relying on the Adam
optimizer and using and update ratio of 5 : 1 between
the discriminator and generator. We find in Table 2
that LA-ExtraAdam+ has the highest ISC (8.08) while
LA-ExtraAdam has the lowest FID (15.88). In contrast,
we confirm that Adam is unstable while Lookahead
prevents divergence as apparent from Figure 4, which is
in agreement with Chavdarova et al. (2020). In addition,
the outer loop of Lookahead achieves better empirical
performance, which corroborate the theoretical result
(cf. Remark 7.4). Notice that ExtraAdam+ has slow
convergence (without Lookahead), which is possibly
due to the 1/2-smaller stepsize.

We additionally simplify the setup by using GDA-based optimizers with an update ratio of 1 : 1, which
avoids the complexity of diagonal adaptation, gradient history and multiple steps of the discriminator
as in the Adam-based experiments. The results are found in Table 3. The learning rates are tuned
for GDA and we use those parameters fixed across all other methods. Despite being tuned on GDA,
we find that extragradient methods, Lookahead-based methods and RAPP all still outperform GDA in
terms of FID. The biggest improvement comes from the linear interpolation based methods Lookahead
and RAPP (see Figure 8 for further discussion on EG+). Interesting, the Lookahead-based methods are
roughly comparable with their Adam variants (Table 2) while GDA even performs better than Adam.

9 Conclusion & limitations

We have precisely characterized the stabilizing effect of linear interpolation by analyzing it under
cohypomonotonicity. We proved last iterate convergence rates for our proposed method RAPP. The
algorithm is double-looped, which introduces a log factor in the rate as mentioned in Remark E.4. It
thus remains open whether last iterate is possible using only τ = 2 inner iterations (for which RAPP
reduces to EG+ in the unconstrained case). By replacing the inner solver we subsequently rediscovered
and analyzed Lookahead using nonexpansive operators. In that regard, we have only dealt with
compositions of operators. It would be interesting to further extend the idea to understanding and
developing both Federated Averaging and the meta-learning algorithm Reptile (of which Lookahead
can be seen as a single client and single task instance respectively), which we leave for future work.
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Figure 5: Overview of results and relationship between methods.

A Additional related work

Stochastic feedback There are several ways in which a stochastic variant of PP can be devised.
Incremental proximal methods were pioneered for convex minimization in (Bertsekas, 2011), which
uses an implicit update conditioned on the current randomness. Related approaches include Patrascu
& Necoara (2017); Bianchi (2015); Patrascu & Irofti (2021); Toulis et al. (2016). Alternatively, (Toulis
et al., 2015) assumes noisy access to the full batch implicit update in what they call the proximal
Robbins-Monro precedure, which is similar to the approach taken in Bravo & Cominetti (2022)
concerning Krasnoselskii-Mann iterations. Toulis et al. (2015) explicitly approximate the implicit
update in the proximal stochastic fixed-point algorithm which is closely related to the approximation
in Section 5. In the cohypomonotone case it is common to rely on increasing batchsizes (see e.g.
(Diakonikolas et al., 2021, Thm. 4.5) and (Lee & Kim, 2021, Thm. 6.1)) similarly to Corollary E.3.
Very recently, (Pethick et al., 2023) showed that convergence in stochastic weak MVI (and thus
cohypomonotone problems) is possible for an extragradient-type scheme if the Lipschitz conditions
are further tightened to a mean-squared smoothness assumption on the stochastic oracles.

Halpern-type Halpern iteration introduced in Halpern (1967), in contrast with IKM, linearly
interpolates with the initial point using a time-varying stepsize, i.e. zk+1 = (1− λk)z

0 − λkTz
k.

A O(1/k2) convergence rate for the squared fixed point residual was shown in Lieder (2021) for
nonexpansive operators. By directly approximating the Halpern iteration, an explicit scheme for
monotone problems was later proposed in Diakonikolas (2020), but it suffered a logarithmic factor in
the rate. The logarithmic factor was later removed by means of an extragradient variant (Yoon & Ryu,
2021). The scheme was extended to unconstrained cohypomonotone problems in Lee & Kim (2021)
and subsequently the constrained case in Cai et al. (2022) while only requiring a single projection.

For a detailed discussion on how Halpern-type methods are not 1-SCLI algorithms see Yoon &
Ryu (2021, Appendix E.2), which specifically addresses the anchored extragradient method. The
extragradient method, on the other hand, can be written as an 1-SCLI algorithm (c.f. Golowich et al.
(2020, Def. 5) and the subsequent discussion). This argument extends to the multistep extragradient
construction used in RAPP.

B Preliminaries

The distance from z ∈ Rd to a set Z ⊆ Rd is defined as dist(z,Z) := minz′∈Z ∥z−z′∥. The normal
cone is defined as NZ(z) := { v | ⟨v, z′ − z⟩ ≤ 0 ∀z′ ∈ Z } and the projection as ΠZ(z) :=
minw∈Z ∥z − w∥2. We will denote the natural filtration up to iteration k as Fk and use Ek[·] = E[· |
Fk].

We restate here some common definitions from monotone and nonexpansive operator for convenience
(for further details see Bauschke & Combettes (2017)). An operator A : Rd ⇒ Rn maps each point
z ∈ Rd to a subsetAz ⊆ Rn, where the notationA(z) andAz will be used interchangably. We denote
the domain of A by domA := {z ∈ Rd | Az ̸= ∅}, its graph by grphA := {(z, v) ∈ Rd × Rn |
v ∈ Az}. The inverse of A is defined through its graph, grphA−1 := {(v, z) | (z, v) ∈ grphA}
and the set of its zeros by zerA := {z ∈ Rd | 0 ∈ Az}. The set of fixed points is defined as
fixT := {z ∈ Rd | z ∈ Tz} for the operator T : Rd ⇒ Rd.
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Definition B.1. A single-valued operator T : Rd → Rd is said to be

(i) nonexpansive if ∥Tz − Tz′∥ ≤ ∥z − z′∥ ∀z, z′ ∈ Rd.

(ii) quasi-nonexpansive if ∥Tz − z⋆∥ ≤ ∥z − z⋆∥ ∀z ∈ Rd and ∀z⋆ ∈ fixT .

(iii) firmly nonexpansive if ∥Tz−Tz′∥2 ≤ ∥z−z′∥2−∥(z−z′)− (Tz−Tz′)∥2 ∀z, z′ ∈ Rd.

The resolvent operator JA := (id+A)−1 is firmly nonexpansive (with domJA = Rd) iff A is
maximally monotone.
Definition B.2 ((co)monotonicity Bauschke et al. (2021)). An operator A : Rd ⇒ Rd is called
monotone if,

⟨v − v′, z − z′⟩ ≥ 0 ∀(z, v), (z′, v′) ∈ grphA,

and the operator A is called ρ-comonotone (also referred to as |ρ|-cohypomonotonicity when ρ < 0)
if

⟨v − v′, z − z′⟩ ≥ ρ∥v − v′∥2 ∀(z, v), (z′, v′) ∈ grphA.

The operator A is maximally (co)monotone if no other (co)monotone operator B exists for which
grphA ⊂ grphB.
Definition B.3 (Lipschitz continuity and cocoercivity). Let D ⊆ Rd be a nonempty set. A single-
valued operator A : D → Rn is said to be L-Lipschitz continuous if for any z, z′ ∈ D

∥Az −Az′∥ ≤ L∥z − z′∥,

and β-cocoercive if
⟨z − z′, Az −Az′⟩ ≥ β∥Az −Az′∥2.

The forward step H = id−γF is 1/2-cocoercive when F is Lipschitz continuity and γ is sufficiently
small.
Lemma B.4 (Pethick et al. (2022, Lm. A.3(i))). Suppose Assumption 3.2(ii) holds and γ ≤ 1/L.
Then, the mapping H = id−γF is 1/2-cocoercive for all u ∈ Rd. Specifically,

⟨Hz′ −Hz, z′ − z⟩ ≥ 1
2∥Hz

′ −Hz∥2 + 1
2 (1− γ2L2)∥z′ − z∥2 ∀z, z′ ∈ Rd. (13)

Proof. By expanding,

Hz −Hz′ = (z − z′)− γ(Fz − Fz′). (14)

Using (14) we get,

⟨Hz′ −Hz, z′ − z⟩ = ⟨Hz′ −Hz,Hz′ −Hz − γ(Fz − Fz′)⟩

(14) = 1
2∥Hz

′ −Hz∥2 + 1
2∥z

′ − z∥2 − γ2

2 ∥Fz − Fz′∥2

(Assumption 3.2(ii)) ≥ 1
2∥Hz

′ −Hz∥2 + 1
2 (1− γ2L2)∥z′ − z∥2 (15)

This completes the proof.

B.1 Relationship between weak Minty variational inequilities and cohypomonotonicity

Let F : Rd → Rd be a single-valued operator. In the unconstrained case, the weak Minty variational
inequality (MVI) with parameter ρ ∈ (−1/2L,∞) is defined as

⟨Fz, z − z⋆⟩ ≥ ρ∥Fz∥2 ∀z ∈ Rd,∀z⋆ ∈ zerF. (16)

For ρ < 0, this condition allows the operator −Fz to point away from the solution set as illustrated
in Figure 1.

Notice that since z⋆ ∈ zerF we could equivalently write

⟨Fz − Fz⋆, z − z⋆⟩ ≥ ρ∥Fz − Fz⋆∥2. ∀z ∈ Rd (17)

In contrast, ρ-comonotonicity of F states that the above condition should hold for all pairs of point in
the domain, i.e.

⟨Fz − Fz′, z − z′⟩ ≥ ρ∥Fz − Fz′∥2 ∀z, z′ ∈ Rd.
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For ρ < 0, ρ-comonotonicity is also referred to as |ρ|-cohypomonotonicity. We say that the weak
MVI is a star-variant of comonotonicity. This is analogue to the relationship between convexity and
star-convexity.

For simplicity we state all results in terms of comonotonicity. However, note that almost all results
in this paper trivially extends to the more relaxed notion of weak MVI. The only exception is the
last iterate rates in Theorem 6.2 which relies on cohypomonotonicity to prove monotonic decrease
through Lemma 6.1.

C Proofs for Section 4 (Inexact Krasnosel’skiı̆-Mann iterations)

The IKM iteration is well studied (see Combettes (2001)). The following result refurbishes sub-
results of Combettes (2001, Prop. 4.2) to establish a rate of convergence under potentially stochastic
feedback.
Theorem C.1 (Convergence of IKM). Suppose T : Rd → Rd is quasi-nonexpansive. Consider the
sequence (zk)k∈N generated by IKM with λ ∈ (0, 1). Then, for all z⋆ ∈ fixT

1

K

K−1∑
k=0

E∥Tzk − zk∥2 ≤
∥z0 − z⋆∥2 +

∑K−1
k=0 εk(z

⋆)

λ(1− λ)K
. (18)

where εk(z) = 2λE[∥ek∥∥zk − z∥] + λ2E[∥ek∥2]. Furthermore, zk → z⋆ a.s. as long as∑∞
k=0 εk(z

⋆) <∞.
Remark C.2. Notice that the optimal choice of λ in the upper bound is λ = 0.5, which is the default
used for the Lookahead algorithm in both for minimax problems (Chavdarova et al., 2020) and
minimization (Zhang et al., 2019) (see Section 7 for a treatment of Lookahead).

Proof. We will denote the natural filtration up to iteration k as Fk and use Ek[·] = E[· | Fk].
Consider one exact step

sk = (1− λ)zk + λTzk (19)
Then

∥sk − z⋆∥2 = (1− λ)∥zk − z⋆∥2 + λ∥Tzk − z⋆∥2 − λ(1− λ)∥Tzk − zk∥2

(quasi-nonexpansive) ≤ (1− λ)∥zk − z⋆∥2 + λ∥zk − z⋆∥2 − λ(1− λ)∥Tzk − zk∥2

= ∥zk − z⋆∥2 − λ(1− λ)∥Tzk − zk∥2 (20)

So
∥sk − z⋆∥ ≤ ∥zk − z⋆∥ (21)

By using triangle inequality and the update rule IKM we have,

Ek[∥zk+1 − z⋆∥2] ≤ Ek[(∥sk − z⋆∥+ λ∥ek∥)2]
= ∥sk − z⋆∥2 + 2λEk[∥ek∥]∥sk − z⋆∥+ λ2Ek[∥ek∥2]

(21) ≤ ∥sk − z⋆∥2 + 2λEk[∥ek∥]∥zk − z⋆∥+ λ2Ek[∥ek∥2]
(20) ≤ ∥zk − z⋆∥2 − λ(1− λ)∥Tzk − zk∥2 + 2λEk[∥ek∥]∥zk − z⋆∥+ λ2Ek[∥ek∥2].

(22)

Using law of total expectation and telescoping obtains the claimed rate. The claimed asymptotic
result follows from the Robbins-Siegmund supermartingale theorem (Bertsekas, 2011, Prop. 2). This
completes the proof.

D Proofs for Section 5 (Approximating the resolvent)

Lemma 5.1. Suppose Assumptions 3.2(i), 3.2(ii) and 3.4. Given z ∈ Rd, the iterates generated by
(5) with γ ∈ (0, 1/L) converges to a neighborhood linearly, i.e.,

E
[
∥wτ − JγS(z)∥2

]
≤ (γL)2τ∥w0 − w⋆∥2 + γ2

(1−γL)2σ
2. (6)
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Proof. Let ζt = Fwt − F̂σ(w
t, ξt). Then the stochastic update in (5) can be written as

wt+1 = (id+γA)−1(z − γFwt + γζt) (23)

Let w⋆ ∈ fixQz such that

∥wt+1 − w⋆∥2 = ∥wt+1 −Qz(w
⋆)∥2. (24)

Due to (firmly) nonexpansiveness of (id+γA)−1 when A is maximally monotone we can go on as

∥wt+1 −Qz(w
⋆)∥2 = ∥(id+γA)−1(z − γFwt + γζt)− (id+γA)−1(z − γFw⋆)∥2

≤ ∥(z − γFwt + γζt)− (z − γFw⋆)∥2

= γ2∥Fwt − Fw⋆∥2 + γ2∥ζt∥2 + 2γ2 ⟨ζt, Fw⋆ − Fwt⟩
≤ γ2L2∥wt − w⋆∥2 + γ2∥ζt∥2 + 2γ2 ⟨ζt, Fw⋆ − Fwt⟩ (25)

where the last inequality follows from Lipschitz continuity of F .

Taking expectation and using unbiasedness and bounded variance from Assumption 3.4 we get

E
[
∥wt+1 − w⋆∥2 | Ft

]
≤ γ2L2∥wt − w⋆∥2 + γ2σ2 (26)

By law of total expectation

E
[
∥wτ − w⋆∥

]
≤ γ2L2E

[
∥wτ−1 − w⋆∥2

]
+ γ2σ2

≤ γ4L4E
[
∥wτ−2 − w⋆∥2

]
+ γ2(1 + γ2L2)σ2

≤ · · · ≤ (γL)2τE
[
∥w0 − w⋆∥2

]
+ γ2σ2

τ−1∑
t=0

(γL)2t

≤ (γL)2τ∥w0 − w⋆∥2 + γ2

(1−γL)2σ
2

where the last inequality follows from
∑∞

t=0 a
t = 1

1−a when a < 1.

By construction fixQz = {JγS(z)} which completes the proof.

E Proofs for Section 6 (Last iterate under cohypomonotonicity)

Lemma 6.1. If S is ρ-comonotone with ρ > −γ
2 then (8) satisfies for all z⋆ ∈ zerS,

∥JγS(zk)− zk∥2 ≤ ∥JγS(zk−1)− zk−1∥2 + δk(z
⋆)

where δk(z) := 4∥ek∥(∥zk+1 − z∥+ ∥zk − z∥).

Proof. Rearranging the update (8b) and subsequently using (8a),

zk − zk+1 = λ(zk − z̄k − ek) = λ(vk − ek). (27)

Since γS is 1
2 -cohypomonotone

− 1
2∥v

k − vk+1∥2 ≤ ⟨vk − vk+1, z̄k − z̄k+1⟩
(8a) = ⟨vk − vk+1, zk − vk − (zk+1 − vk+1)⟩

= ⟨vk − vk+1, zk − zk+1⟩ − ∥vk − vk+1∥2

(27) = λ ⟨vk − vk+1, vk − ek⟩ − ∥vk − vk+1∥2

= λ∥vk∥2 − λ ⟨vk+1, vk⟩ − ∥vk − vk+1∥2 + λ ⟨vk+1 − vk, ek⟩

(28)

Rearranging

0 ≤ λ∥vk∥2 − λ ⟨vk+1, vk⟩ − 1
2∥v

k − vk+1∥2 + λ ⟨vk+1 − vk, ek⟩
≤ λ∥vk∥2 − λ ⟨vk+1, vk⟩ − λ

2 ∥v
k − vk+1∥2 + λ ⟨vk+1 − vk, ek⟩

= λ∥vk∥2 − λ
2 ∥v

k∥2 − λ
2 ∥v

k+1∥2 + λ ⟨vk+1 − vk, ek⟩ (29)
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where the second inequality follows from observing that 1
2 >

λ
2 since λ ∈ (0, 1). It remain to bound

the error term. Since γS is 1/2-cohypomonotone the resolvent JγS is nonexpansive. Thus,

∥z̄k − z⋆∥ ≤ ∥zk − z⋆∥. (30)

Using Cauchy-Schwarz and the triangle inequality,

⟨vk+1 − vk, ek⟩ ≤ ∥ek∥∥vk+1 − vk∥
≤ ∥ek∥(∥vk+1∥+ ∥vk∥)
= ∥ek∥(∥z̄k+1 − zk+1∥+ ∥z̄k − zk∥)
≤ ∥ek∥(∥zk+1 − z⋆∥+ ∥zk − z⋆∥+ ∥z̄k+1 − z⋆∥+ ∥z̄k − z⋆|∥)

(30) ≤ 2∥ek∥(∥zk+1 − z⋆∥+ ∥zk − z⋆∥) (31)

Combining (29) and (31),

1
2∥v

k+1∥2 ≤ 1
2∥v

k∥2 + 2∥ek∥(∥zk+1 − z⋆∥+ ∥zk − z⋆∥). (32)

Substituting in the resolvent using (8a) completes the proof.

The proof of Lemma 6.1 simplifies for λ = 1. Consider one application of the inexact resolvent with
error e ∈ Rd,

z′ = JγS(z) + e, (33)

where λ ∈ (0, 1) and γ > 0.

Lemma E.1. If S is ρ-comonotone with ρ > −γ
2 then (33) satisfies ∥JγS(z′)− z′∥ ≤ ∥JγS(z)−

z∥+ 2∥e∥.

Proof. Since γS is 1/2-cohypomonotone the resolvent JγS is nonexpansive. Thus,

∥JγS(z′)− z′∥ = ∥JγS(z′)− JγS(z)− e∥
(triangle ineq.) ≤ ∥JγS(z′)− JγS(z)∥+ ∥e∥
(nonexpansive) ≤ ∥z′ − z∥+ ∥e∥
(triangle ineq.) ≤ ∥JγS(z)− z∥+ 2∥e∥

This completes the proof.

Furthermore, the iterates of (8) are bounded in the following sense.

Lemma E.2. Consider the sequence (zk)k∈N generated by (8) with λ ∈ (0, 1) and ρ > −γ
2 . Then

for any z⋆ ∈ zerS,

∥zk+1 − z⋆∥ ≤ ∥z0 − z⋆∥+ λ

k∑
j=0

∥ej∥. (34)

Proof. Since γS is 1/2-cohypomonotone the resolvent JγS is nonexpansive. Thus,

∥z̄k − z⋆∥ ≤ ∥zk − z⋆∥. (35)

We use the update rule

∥zk+1 − z⋆∥ = ∥(1− λ)zk + λ(z̄k + ek)− z⋆∥
≤ ∥(1− λ)(zk − z⋆) + λ(z̄k − z⋆)∥+ λ∥ek∥
≤ (1− λ)∥zk − z⋆∥+ λ∥z̄k − z⋆∥+ λ∥ek∥

(35) ≤ ∥zk − z⋆∥+ λ∥ek∥ (36)

By recursively applying (36) we obtain the claim.
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Theorem 6.2 (Last iterate of inexact resolvent). Suppose Assumptions 3.2 and 3.4 with σk. Consider
the sequence (zk)k∈N generated by (8) with λ ∈ (0, 1) and ρ > −γ

2 . Then, for all z⋆ ∈ zerS,

E[∥JγS(zK)− zK∥2] ≤
∥z0 − z⋆∥2 +

∑K−1
k=0 εk(z

⋆)

λ(1− λ)K
+

1

K

K−1∑
k=0

K−1∑
j=k

δj(z
⋆),

where εk(z) := 2λE[∥ek∥∥zk − z∥] +λ2E[∥ek∥2] and δk(z) := 4E[∥ek∥(∥zk+1 − z∥+ ∥zk − z∥)].

Proof. By taking T = JγS in Theorem C.1 we have

1

K

K−1∑
k=0

E[∥JγS(zk)− zk∥2] ≤
∥z0 − z⋆∥2 +

∑K−1
k=0 εk(z

⋆)

λ(1− λ)K
. (37)

From Lemma 6.1 (and law of total expectation) we obtain,

KE[∥JγS(zK)− zK∥2] ≤
K−1∑
k=0

E[∥JγS(zk)− zk∥2] +
K−1∑
k=0

K−1∑
j=k

δj(z
⋆). (38)

Dividing by K and combining with (37) yields the rate. Noticing that fix JγS = zerS completes the
proof.

Corollary E.3 (Explicit inexact stochastic resolvent). Suppose Assumptions 3.2 and 3.4 with σk
for all k ∈ N. Consider the sequence (zk)k∈N generated by RAPP with ρ > −γ

2 . Then, for all
z⋆ ∈ zerS with D := supj∈N ∥zj − z⋆∥ <∞,

(i) with σ2
k = σ2

0/k2 and τ = logK
log(1/γL) ,

1

K

K−1∑
i=0

E[∥JγS(zk)− zk∥2] ≤ ∥z0 − z⋆∥2

λ(1− λ)K
+O

(
max

{
D2

(1−λ)K ,
γDσ0

(1−γL)(1−λ)K

}
+ λD2

(1−λ)K +
λγ2σ2

0

(1−γL)2(1−λ)K2

)
.

(ii) with σ2
k = σ2

0/k3 and τ = logK2

log(1/γL) ,

E[∥JγS(zK)− zK∥2] ≤ ∥z0 − z⋆∥2

λ(1− λ)K
+O

(
max{D2

K , 8γDσ0

(1−γL)
√
K
}
)

+O
(
max

{
D2

(1−λ)K2 ,
2γDσ0

(1−γL)(1−λ)K3/2

}
+ λD2

(1−λ)K2 +
λγ2σ2

0

(1−γL)2(1−λ)K3

) (39)

Remark E.4. The assumption on the noise σ2
k = σ2

0/nk can be achieved by taking the batch size as
nk, i.e.

F̂σk
(z, ξ) =

1

nk

nk∑
i=0

F̂σ0(z, ξi). (40)

This is clear by simple computation. Observe that the random variable Xi := F̂σ(z, ξi)− Fz is i.i.d.
with Var(Xi) = σ2. Then, the average, Xn = 1

n (X1 + · · ·+Xn), has a variance as follows

Var(Xn) = Var( 1n (X1 + · · ·+Xn)) =
1

n2
Var(X1 + · · ·+Xn) =

nσ2

n2
=
σ2

n
.

We note that increasing batch size might be unfavorable in some applications, but the alternative of
diminishing stepsize only leads to only asymptotic convergence of the last iterate (as in e.g. Pethick
et al. (2023)).
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Proof. The theorem follows from combing Lemma 5.1 with Theorems 6.2 and C.1. Invoke Theo-
rems 6.2 and C.1 with ek = wτ

k − JγS(z
k) and σ = σk and note that the error ek can be bounded

through Lemma 5.1 as

Ek[∥ek∥2] = ∥wτ
k − JγS(z

k)∥2 ≤ γ2τL2τ∥w0
k − JγS(z

k)∥2 + γ2

(1−γL)2σ
2
k

= γ2τL2τ∥zk − JγS(z
k)∥2 + γ2

(1−γL)2σ
2
k. (41)

The former term can in turn be bounded through the triangle inequality

∥zk − JγS(z
k)∥ ≤ ∥zk − z⋆∥+ ∥JγS(zk)− z⋆∥ ≤ 2∥zk − z⋆∥ ≤ 2D. (42)

with D := supj∈N ∥zj − z⋆∥ and where the second last inequality follows from z⋆ ∈ fix JγS and
nonexpansiveness of JγS . Plugging into (41) we have,

Ek[∥ek∥2] ≤ 4γ2τL2τD2 + γ2

(1−γL)2σ
2
k, (43)

and
Ek[∥ek∥] ≤

√
4γ2τL2τD2 + γ2

(1−γL)2σ
2
k ≤ max{2γτLτD, γ

1−γLσk}. (44)

Substituting into the expression of δk(z⋆) and εk(z⋆) yields,

δk(z
⋆) ≤ max{16γτLτD2, 8γ

1−γLσkD}

εk(z
⋆) ≤ max{4λγτLτD2, 2λγ

1−γLσkD}+ 4λ2γ2τL2τD2 + λ2γ2

(1−γL)2σ
2
k.

Consequently, with the choice σ2
k = σ2

0/k2,∑K−1
k=0 εk(z

⋆)

λ(1− λ)K
≤ max

{4γτLτD2

1− λ
, 2γDσ0

(1−γL)(1−λ)K

}
+

4λγ2τL2τD2

1− λ
+

λγ2σ2
0

(1−γL)2(1−λ)K2 . (45)

We ideally want the terms involving τ to be of order O(1/K).

1/aτ = 1/K ⇐⇒ aτ = K ⇐⇒ τ log a = logK ⇐⇒ τ =
logK

log a
(46)

Choosing a = 1/γL it thus suffice to pick τ = logK
log(1/γL) in order to have γτLτ = 1/K. Plugging

into the average iterate result of Theorem C.1 yields the claim in Corollary E.3(i).

Additionally, with the choice σ2
k = σ2

0/k3,∑K−1
k=0 εk(z

⋆)

λ(1− λ)K
≤ max

{4γτLτD2

1− λ
, 2γDσ0

(1−γL)(1−λ)K3/2

}
+

4λγ2τL2τD2

1− λ
+

λγ2σ2
0

(1−γL)2(1−λ)K3

1

K

K−1∑
k=0

K−1∑
j=k

δj(z
⋆) ≤ max{K16γτLτD2, 8γDσ0

(1−γL)
√
K
}.

(47)

In order for the terms involving τ to be of order O(1/K) we need τ to be slightly larger.

K/aτ = 1/K ⇐⇒ aτ = K2 ⇐⇒ τ log a = logK2 ⇐⇒ τ =
logK2

log a
(48)

Choosing a = 1/γL it thus suffice to pick τ = logK2

log(1/γL) in order to have KγτLτ = 1/K. Plugging
(47) into the last iterate result of Theorem 6.2 completes the proof.

Corollary 6.4 (Explicit inexact resolvent). Suppose Assumption 3.2 holds. Consider the sequence
(zk)k∈N generated by RAPP with deterministic feedback and ρ > −γ

2 . Then, for all z⋆ ∈ zerS with
D := supj∈N ∥zj − z⋆∥ <∞,

(i) with τ = logK
log(1/γL) : 1

K

∑K−1
i=0 ∥JγS(zk)− zk∥2 = O

(
∥z0−z⋆∥2

λ(1−λ)K + D2

(1−λ)K

)
.

(ii) with τ = logK2

log(1/γL) : ∥JγS(zK)− zK∥2 = O
(

∥z0−z⋆∥2

λ(1−λ)K + D2

K + D2

(1−λ)K2 ,
)
.

Proof. The claim follows directly from Corollary E.3 as a special case with σ0 = 0.
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F Proofs for Section 7 (Analysis of Lookahead)

Theorem 7.1. Suppose Assumption 3.2 holds. Consider the sequence (zk)k∈N generated by LA-GDA
with τ = 2, γ ≤ 1/L and λ ∈ (0, 1/2). Furthermore, suppose that

2ρ > −(1− 2λ)γ and 2ρ ≥ 2λγ − (1− γ2L2)γ. (10)

Then, for all z⋆ ∈ zerF ,

1

K

K−1∑
k=0

∥F z̄k∥2 ≤ ∥z0 − z⋆∥2

λγ
(
(1− 2λ)γ + 2ρ

)
K
. (11)

Proof. For τ = 2 we can write (LA-GDA) as

zk+1/3 = zk − γFzk

zk+2/3 = zk+1/3 − γFzk+1/3

zk+1 = (1− λ)zk + λzk+2/3

(49)

The proof relies on the simplified form of the update rule (9), which can be obtain as follows

zk+1 = (1− λ)zk + λzk+2/3

= (1− λ)zk + λ(zk+1/3 − γFzk+1/3)

= (1− λ)zk + λ(zk − γFzk − γFzk+1/3)

= zk − λγFzk − λγF (zk − γFzk)

= 1
2 (z

k − 2λγFzk) + 1
2 (z

k − 2λγF (zk − γFzk)). (50)

Define the following operators with β = 2λ

EG+(z) = z − βγF (z − γFz) (51a)
GDA(z) = z − βγFz (51b)

Then, using (50), LA-GDA with τ = 2 can be written as

zk+1 = 1
2 GDA(zk) + 1

2 EG
+(zk) (52)

One step of the update can be bounded as

∥zk+1−z⋆∥2 = ∥ 1
2 GDA(zk)+ 1

2 EG
+(zk)−z⋆∥2 ≤ 1

2∥GDA(zk)−z⋆∥2+ 1
2∥EG

+(zk)−z⋆∥2,
(53)

where we have used Young’s inequality. The first term can be expanded

∥GDA(zk)− z⋆∥2 = ∥zk − z⋆∥2 + β2γ2∥Fzk∥2 − 2βγ⟨Fzk, zk − z⋆⟩ (54)

For the second term of (53) we will need to bound the following inner product

⟨γF z̄k, zk − z̄k⟩ = γ2

2 ∥F z̄k∥2 − 1
2∥γF z̄

k − (zk − z̄k)∥2 + 1
2∥z̄

k − zk∥2

(51a) = γ2

2 ∥F z̄k∥2 − γ2

2 ∥F z̄k − Fzk∥2 + 1
2∥z̄

k − zk∥2

(Assumption 3.2(ii)) ≥ γ2

2 ∥F z̄k∥2 + 1
2 (1− γ2L2)∥z̄k − zk∥2. (55)

Consequently,

γ⟨F z̄k, zk − z⋆⟩ = γ⟨F z̄k, z̄k − z⋆⟩+ γ⟨F z̄k, zk − z̄k⟩

(55) ≤ γ⟨F z̄k, z̄k − z⋆⟩ − γ2

2 ∥F z̄k∥2 − 1
2 (1− γ2L2)∥z̄k − zk∥2. (56)

Finally,

∥EG+(zk)− z⋆∥2 = ∥zk − z⋆∥2 + β2γ2∥F z̄k∥2 − 2βγ⟨F z̄k, zk − z⋆⟩
(56) ≤ ∥zk − z⋆∥2 − β(1− β)γ2∥F z̄k∥2 − β(1− γ2L2)∥z̄k − zk∥2 − 2βγ⟨F z̄k, z̄k − z⋆⟩

(51a) = ∥zk − z⋆∥2 − β(1− β)γ2∥F z̄k∥2 − β(1− γ2L2)γ2∥Fzk∥2 − 2βγ⟨F z̄k, z̄k − z⋆⟩
(57)
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Using (54) and (57) in (53), we have

2∥zk+1 − z⋆∥2 ≤ 2∥zk − z⋆∥2 + β2γ2∥Fzk∥2 − 2βγ⟨Fzk, zk − z⋆⟩
− β(1− β)γ2∥F z̄k∥2 − β(1− γ2L2)γ2∥Fzk∥2 − 2βγ⟨F z̄k, z̄k − z⋆⟩

(Assumption 3.2(iii)) ≤ 2∥zk − z⋆∥2 − βγ
(
(1− γ2L2)γ + 2ρ− βγ

)
∥Fzk∥2

− βγ
(
(1− β)γ + 2ρ

)
∥F z̄k∥2 (58)

To get a recursion it thus suffice to require

(1− β)γ + 2ρ > 0 and (1− γ2L2)γ + 2ρ− βγ ≥ 0. (59)

Rearranging and telescoping (58) achieves the claimed rate. Rearranging (59) completes the proof.

Theorem 7.3. Suppose Alg : Rd → Rd is quasi-nonexpansive. Then (zk)k∈N generated by (LA)
converges to some z⋆ ∈ fixAlg.

Proof. By the composition rule (Bauschke & Combettes, 2017, Prop. 4.49(ii)) Algt is also nonexpan-
sive. Since (zk)k∈N can be seen as a Krasnosel’skiı̆-Mann iteration of a quasi-nonexpansive operator
the iterates converges to z⋆ ∈ fixAlgt by Theorem C.1 with εk = 0, i.e. ∥zk − z⋆∥ k→∞−→ 0. By
Bauschke & Combettes (2017, Prop. 4.49(i)) it also follows that fixAlgt = fixAlg, which completes
the proof.

Corollary 7.5. Suppose F is 1/L-cocoercive. Then (zk)k∈N generated by LA-GDA with γ ≤ 2/L
converges to some z⋆ ∈ zerF .

Proof. If F is 1/L-cocoercive then γF is 1/2-cocoercive given γ ≤ 2/L, which in turn implies
that V = id−γF is nonexpansive. The claim follows from Theorem 7.3 and by observing that
fixV = zerF .

Consider the forward-backward-forward (FBF) method of Tseng (1991). We can write one step as
follows

z̄ = (id+γA)−1Hz (60a)
FBF(z) = z − (Hz −Hz̄) (60b)

where H = id−γF . The extragradient method is obtained as a special case when A ≡ 0.

Theorem F.1. If A : Rd ⇒ Rd is maximally monotone and F : Rd → Rd is monotone and L-
Lipschitz continuous then the operator (60) with γ ≤ 1/L is quasi-nonexpansive. Furthermore,
fixFBF = zerS with S := A+ F .

Proof. By 1/2-cocoercivity from Lemma B.4 we obtain

⟨Hz̄ −Hz, z − z⋆⟩ = ⟨Hz̄ −Hz, z̄ − z⋆⟩+ ⟨Hz̄ −Hz, z − z̄⟩
(Lemma B.4) ≤ ⟨Hz̄ −Hz, z̄ − z⋆⟩ − 1

2∥Hz̄ −Hz∥2 − 1
2 (1− γ2L2)∥z̄ − z∥2

(monotone) ≤ − 1
2∥Hz̄ −Hz∥2 − 1

2 (1− γ2L2)∥z̄ − z∥2 (61)

The operator in (60b) satisfies

∥FBF(z)− z⋆∥2 = ∥z − z⋆∥2 + ∥Hz̄ −Hz∥2 + 2⟨Hz̄ −Hz, z − z⋆⟩
(61) ≤ ∥z − z⋆∥2 − (1− γ2L2)∥z̄ − z∥2

where the last term is negative due to γ ≤ 1/L. Recognizing the definition of quasi-nonexpansive
completes the proof.

Corollary 7.7. Suppose Assumption 3.2 holds. Then (zk)k∈N generated by LA-CEG+ with λ ∈ (0, 1),
γ ∈ (⌊−2ρ⌋+, 1/L) and α ∈ (0, 1 + 2ρ

γ ) converges to some z⋆ ∈ zerS.
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Proof. Quasi-nonexpansiveness of the operator CEG+ : Rd → Rd follows from Theorem G.1(i)
provided α ∈ (0, 1 + 2ρ

γ ) so Theorem 7.3 applies.

It remains to verify that fixCEG+ = zerS. This follows from
1
γ (Hz −Hz̄) ∈ A(z̄) + F (z̄) = S(z̄), (62)

and noticing that the stepsizes are positive, i.e. α > 0 and γ > 0, which completes the proof.

G Analysis of CEG+

This section provides a simplified convergence proof of the CEG+ scheme proposed in Pethick et al.
(2022, Cor. 3.2) without going through adaptivity and a projected interpretation. We additionally
provide convergence in terms of the residual ∥zk − z̄k∥. The algorithm can be described with the
following recursion

z̄k = (id+γA)−1(Hzk) (63a)

zk+1 = zk − α
(
Hzk −Hz̄k

)
(63b)

where H = id−γF . The EG+ algorithm is obtained as a special case when A ≡ 0.
Theorem G.1. Suppose Assumption 3.2 and γ ∈ (⌊−2ρ⌋+, 1/L]. Consider the sequence (zk)k∈N
generated by (63). Then, for all z⋆ ∈ zerS, it follows that

(i) the iterates (zk)k∈N satisfies

∥zk+1 − z⋆∥2 ≤ ∥zk − z⋆∥2 − α(1 + 2ρ
γ − α)∥Hz̄k −Hzk∥2 − α(1− γ2L2)∥z̄k − zk∥2,

and in particular, CEG+ : Rd → Rd in (12) is quasi-nonexpansive if α ∈ (0, 1 + 2ρ
γ ).

(ii) for α ∈ (0, 1] and α < 1 + 2ρ
γ

1

K

K−1∑
k=0

∥zk − z̄k∥2 ≤ ∥z0 − z⋆∥2

α(1− γ2L2)K
. (64)

(iii) for α ∈ (0, 1) and α < 1 + 2ρ
γ

1

K

K−1∑
k=0

dist(0, Sz̄k)2 ≤ ∥z0 − z⋆∥2

αγ2(1 + 2ρ
γ − α)K

. (65)

Proof. By 1/2-cocoercivity of H = id−γF from Lemma B.4 we obtain

⟨Hz̄k −Hzk, zk − z⋆⟩ = ⟨Hz̄k −Hzk, z̄k − z⋆⟩+ ⟨Hz̄k −Hzk, zk − z̄k⟩
≤ ⟨Hz̄k −Hzk, z̄k − z⋆⟩ − 1

2∥Hz̄
k −Hzk∥2 − 1

2 (1− γ2L2)∥z̄k − zk∥2
(66)

The update in (63b) yields

∥zk+1 − z⋆∥2 = ∥zk − z⋆∥2 + α2∥Hz̄k −Hzk∥2 + 2α⟨Hz̄k −Hzk, zk − z⋆⟩
(66) ≤ ∥zk − z⋆∥2 − 2α⟨Hzk −Hz̄k, z̄k − z⋆⟩

− α(1− α)∥Hz̄k −Hzk∥2 − α(1− γ2L2)∥z̄k − zk∥2. (67)
Noticing that both latter terms are negative. Observe that by (63a) we have

1
γ (Hz

k −Hz̄k) ∈ A(z̄k) + F (z̄k) = S(z̄k).

Therefore, by cohypomonotonicity of S = A+ F ,
1
γ ⟨Hz

k −Hz̄k, z̄k − z⋆⟩ ≥ ρ∥Hzk −Hz̄k∥2. (68)

and consequently (67) leads to Fejér monotonicity,

∥zk+1 − z⋆∥2 ≤ ∥zk − z⋆∥2 − α(1 + 2ρ
γ − α)∥Hz̄k −Hzk∥2 − α(1− γ2L2)∥z̄k − zk∥2.

By telescoping we obtain the two claims.

23



H Experiments

H.1 Simulations

We repeat the synthetic examples for convenience below.

Example H.1 (PolarGame (Pethick et al., 2022, Ex. 3(iii))). Consider

Fz = (ψ(x, y)− y, ψ(y, x) + x) ,

where ∥z∥∞ ≤ 11/10 and ψ(x, y) = 1
16ax(−1 + x2 + y2)(−9 + 16x2 + 16y2) with a = 1

3 .

Example H.2 (Quadratic (Pethick et al., 2022, Ex. 5)). Consider,

min
x∈R

max
y∈R

ϕ(x, y) := axy +
b

2
x2 − b

2
y2, (69)

where a ∈ R+ and b ∈ R.

The problem constants in Example H.2 can easily be computed as ρ = b
a2+b2 and L =

√
a2 + b2.

We can rewrite Example H.2 in terms of L and ρ by choosing a =
√
L2 − L4ρ2 and b = L2ρ.

We provide below a slight generalization of the Forsaken example (Hsieh et al., 2021, Example 5.2),
from which we derive another important case.

Example H.3. Consider,

min
|x|≤3/2

max
|y|≤3/2

ϕ(x, y) := x(y − a) + ψ(x)− ψ(y), (70)

where ψ(z) = 1
4z

2 − 1
2z

4 + 1
6z

6 and a ∈ R. We have the following important cases:

(i) for a = 0.45 we recover Forsaken (Hsieh et al., 2021, Example 5.2).

(ii) for a = 0.34 we ensure that the first-order stationary point is a local Nash equilibrium (LNE),
which is apparent from inspection of the Jacobian. We call this new example LNEForsaken.

In both Example H.2 and Example H.3 the operator F is defined as Fz = (∇xϕ(x, y),−∇yϕ(x, y)).
For Example H.3 the Lookahead methods use τ = 20, λ = 0.2 and γ = 1/L ≈ 0.08 and (R)APP
uses τ = 10, λ = 0.2 and γ = 4/L ≈ 0.32. In Examples H.1 and H.2 we use γ = 1/L, λ = 0.1 for
LA-GDA and EG+ with α = 0.1 for the latter. In the constrained examples L refers to the Lipschitz
constant constrained to the constraint set.

Figure 6: The iterates of APP associated with Figure 2.

H.2 Image generation

Architecture The ResNet uses a 128-dimensional input space for the generator and spectral
normalization for the discriminator (see Chavdarova et al. (2020, Table 7)). The models’ parameters
are initialized using the Xavier initialization as suggested in Miyato et al. (2018).
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Figure 7: Iterates associated with Figure 3.

Optimizers All methods relies on stochastic gradients computed over a mini-batch. The discrimi-
nator and generator is updated in an alternating fashion. We use the same variant of extragradient as
Chavdarova et al. (2020) uses in their implementation. The variant only uses the extrapolated point
of the opponent in the update of the next iterate (xk+1, yk+1) as follows

x̄k = xk − γ1∇ϕ(xk, yk)
ȳk = yk + γ2∇ϕ(xk, yk)

xk+1 = xk − γ1∇ϕ(xk, ȳk)
yk+1 = yk + γ2∇ϕ(x̄k, yk)

(71)

Interestingly, we observed that the classical extragradient method (both a simultaneous and alternating
variant) did not perform well under the hinge loss as used in the experiments. We leave investigate of
this for future work.

Evaluation We use the Fréchet inception distance (FID) (Heusel et al., 2017) evaluated on 50 000
examples and the Inception score (ISC) (Salimans et al., 2016). For consistent and reproducible
evaluation we use the torch-fidelity Python library (Obukhov et al., 2020) to compute the scores.
The mean and standard deviation is computed over 5 and 3 independent execution in Table 2 and
Table 3, respectively.

Compute time Producing Table 2 alone takes roughly 6 methods× 5 runs× 30 hours = 37.5 days
on a NVIDIA A100 GPU.

Figure 8: (left) Adam eventually diverges for all 5 runs. See Figure 4 for comparison with Lookahead.
(right) In contrast, EG+ increases stability (and thus avoids divergence), but in effect might also be
stuck in a local (suboptimal) solution. This explains the high variance and poor performance of EG+.
By excluding the locally stuck run, EG+ achieves a FID of 16.88 ± 0.05 and a ISC of 8.0 ± 0.02,
which is competitive even with the Lookahead-based methods.
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H.2.1 Hyperparameters

Table 4: Training Hyperparameters for Adam-based experiments on CIFAR10

Hyperparameter Adam LA-Adam ExtraAdam+ LA-ExtraAdam+ ExtraAdam LA-ExtraAdam
lrD 2e-4 2e-4 2e-4 2e-4 2e-4 2e-4
lrG 2e-4 2e-4 2e-4 2e-4 2e-4 2e-4

Batch Size 128 128 128 128 128 128
β1 0.0 0.0 0.0 0.0 0.0 0.0

D-steps 5 5 5 5 5 5
Lookahead τ 5 5000 5000
Lookahead λ 0.5 0.5 0.5

EG+ α 0.5 0.5

Table 5: Training Hyperparameters for GDA-based experiments on CIFAR10

Hyperparameter GDA LA-GDA EG+ LA-EG+ EG LA-EG RAPP
lrD 0.1 0.1 0.1 0.1 0.1 0.1 0.1
lrG 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Batch Size 128 128 128 128 128 128 128
D-steps 1 1 1 1 1 1 1

Lookahead τ 5000 5000 5000
Lookahead λ 0.5 0.5 0.5

EG+ α 0.5 0.5
RAPP τ 3
RAPP λ 0.9
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