
A Task Descriptions414

Simulated tasks. We select 10 language-conditioned tasks from RLBench [14], all of which involve415

at least 2 variations. See Table 5 for an overview. Our task variations include randomly sampled416

colors, sizes, counts, placements, and categories of objects, totaling 166 different variations. The set417

of colors have 20 instances: red, maroon, lime, green, blue, navy, yellow, cyan, magenta, silver, gray,418

orange, olive, purple, teal, azure, violet, rose, black, and white. The set of sizes includes 2 types:419

short and tall. The set of counts has 3 instances: 1, 2, 3. The placements and object categories420

are specific to each task. For example, open drawer has 3 placement locations: top, middle and421

bottom. In addition to these semantic variations, objects are placed on the tabletop at random poses422

within a limited range.

Table 5: Language-conditioned tasks in RLBench [14].
Task Variation Type # of Variations Avg. Keyframs Language Template

close jar color 20 6.0 “close the — jar”
open drawer placement 3 3.0 “open the — drawer
sweep to dustpan size 2 4.6 “sweep dirt to the — dustpan”
meat off grill category 2 5.0 “take the — off the grill”
turn tap placement 2 2.0 “turn — tap”
slide block color 4 4.7 “slide the block to — target”
put in drawer placement 3 12.0 “put the item in the — drawer”
drag stick color 20 6.0 “use the stick to drag the cube onto the — — target”
push buttons color 50 3.8 “push the — button, [then the — button]”
stack blocks color, count 60 14.6 “stack — — blocks”

423

Generalization tasks in simulation. We design 6 additional tasks where the scene is changed based424

on the original training environment, to test the generalization ability of GNFactor. Table 6 gives an425

overview of these tasks. Videos are also available on gnfactor-robot.github.io.

Table 6: Generalization tasks based on RLBench.

Task Base Change

drag (D) drag stick add two colorful buttons on the table
slide (L) slide block change the block size to a larger one
slide (S) slide block change the block size to a smaller one
open (n) open drawer change the position of the drawer
turn (N) turn tap change the position of the tap
push (D) push buttons add two colorful jar on the table

426

Real robot tasks. In the experiments, we perform three tasks along with three additional tasks where427

distracting objects are present. The oven task requires the agent to open the door on an oven, a task428

which poses challenges due to the precise coordination required. The faucet task requires the agent429

to rotate the faucet back to center position, which involves intricate motor control. Lastly, the teapot430

task requires the agent to locate the randomly placed teapot in the kitchen and move it on top of the431

stove with the correct pose. Among the three, the teapot task is considered the most challenging due432

to the random placement and the need for accurate location and rotation of the gripper. All 6 tasks433

are set up in two different kitchens, as visualized in Figure 6. The keyframes used in real robot tasks434

are given in Figure 7.435

B Implementation Details436

Voxel encoder. We use a lightweight 3D UNet (only 0.3M parameters) to encode the input voxel437

1003 ⇥ 10 (RGB features, coordinates, indices, and occupancy) into our deep 3D volumetric rep-438

resentation of size 1003 ⇥ 128. Due to the cluttered output from directly printing the network, we439

12

https://gnfactor-robot.github.io/


(a) Kitchen 1. (b) Kitchen 2.

Figure 6: Kitchens. We give a closer view of our two kitchens for real robot experiments. The
figures are captured in almost the same position to display the size difference between the two.

time

Tu
rn
	Fa
uc
et

Op
en
	O
ve
n

Re
loc
ate
	Te
ap
ot

Figure 7: Keyframes for real robot tasks. We give the keyframes used in our 3 real robot tasks
across 2 kitchens.

13



provide the PyTorch-Style pseudo-code for the forward process as follows. For each block, we use440

a cascading of one Convolutional Layer, one BatchNorm Layer, and one LeakyReLU layer, which441

is common practice in the vision community.442

def forward(self, x):443

conv0 = self.conv0(x) # 100^3x8444

conv2 = self.conv2(self.conv1(conv0)) # 50^3x16445

conv4 = self.conv4(self.conv3(conv2)) # 25^3x32446

447

x = self.conv6(self.conv5(conv4)) # 13^3x64448

x = conv4 + self.conv7(x) # 25^3x32449

x = conv2 + self.conv9(x) # 50^3x16450

x = self.conv_out(conv0 + self.conv11(x)) # 100^3x128451

return x452

Neural Radiance Field. The overall network architecture of our GNF is close to the original453

NeRF [30] implementation. It mainly consists of 5 ResnetFCBlocks, in which a skip connec-454

tion is used. The input feature is first projected to 512 with a linear layer and fed into these blocks,455

and then projected to the output dimension 516 (RGB, density, and Diffusion feature) with a cas-456

cading of one ReLU function and one linear layer. We provide the PyTorch-Style pseudo-code for457

the networks as follows.458

GNF(459

Linear(in_features=170, out_features=512, bias=True),460

(0-4): 5 x ResnetFCBlocks(461

(fc_0): Linear(in_features=512, out_features=512, bias=True)462

(fc_1): Linear(in_features=512, out_features=512, bias=True)463

(activation): ReLU()464

),465

ReLU(),466

Linear(in_features=512, out_features=516, bias=True)467

)468

Percevier Transformer. Our usage of Percevier Transformer is close to PerAct [3]. We use 6469

attention blocks to process the sequence from multi-modalities (3D volume, language token, and470

robot proprioception) and output a sequence also. The usage of Perceiver Transformer enables471

us to process the long sequence with computational efficiency, by only utilizing a small set of472

latents to attend the input. The output sequence is then reshaped back to a voxel to predict the473

robot action. The Q-function for translation is predicted by a 3D convolutional layer, and for the474

prediction of openness, collision avoidance, and rotation, we use global max pooling and spatial475

softmax operation to aggregate 3D volume features and project the resulting feature to the output476

dimension with a multi-layer perception. We could clarify that the design for the policy module is477

not our contribution; for more details please refer to PerAct [3] and its official implementation on478

https://github.com/peract/peract.479

C Demonstration Collection for Real Robot Tasks480

For the collection of real robot demonstrations, we utilize the HTC VIVE controller and basestation481

to track the 6-DOF poses of human hand movements. We then use triad-openvr package1 to employ482

SteamVR and accurately map human operations onto the xArm robot, enabling it to interact with483

objects in the real kitchen. We record the real-time pose of xArm and 640⇥480 RGB-D observations484

with the pyrealsense22. Though the image size is different from our simulation setup, we use the485

same shape of the input voxel, thus ensuring the same algorithm is used across the simulation and486

the real world. The downscaled images (80⇥ 60) are used for neural rendering.487

1https://github.com/TriadSemi/triad_openvr
2https://pypi.org/project/pyrealsense2/

14

https://github.com/peract/peract
https://github.com/TriadSemi/triad_openvr
https://pypi.org/project/pyrealsense2/


D Detailed Data488

Besides reporting the final success rates in our main paper, we give the success rates for the best sin-489

gle checkpoint (i.e., evaluating all saved checkpoints and selecting the one with the highest success490

rates), as shown in Table 7. Under this setting GNFactor outperforms PerAct with a larger margin.491

However, we do not use the best checkpoint in the main results for fairness.492

We also give the detailed number of success in Table 8 for reference in addition to the success rates493

computed in Table 2.494

Table 7: Multi-task test results on RLBench. We report the success rates for the best single checkpoint for
reference. We could observe GNFactor surpasses PerAct by a large margin.

Method / Task close jar open drawer sweep to dustpan meat off grill turn tap Average
PerAct 22.7±5.0 62.7±13.2 0.0±0.0 46.7±14.7 36.0±9.8

GNFactor 40.0±5.7 77.3±7.5 40.0±11.8 66.7±8.2 45.3±3.8

Method / Task slide block put in drawer drag stick push buttons stack blocks

PerAct 22.7±6.8 9.3±5.0 12.0±6.5 18.7±6.8 5.3±1.9 23.6
GNFactor 18.7±10.5 10.7±12.4 73.3±13.6 20.0±3.3 8.0±0.0 40.0

Table 8: Detailed data for generalization to novel tasks. We evaluate 20 episodes, each across 3
seeds, for the final checkpoint and report the number of successful trajectories here.

Generalization PerAct GNFactor w/o. Diffusion GNFactor

drag (D) 2, 0, 2 15, 2, 5 18, 5, 5
slide (L) 6, 6, 8 1, 10, 10 6, 5, 4
slide (S) 0, 2, 1 6, 1, 5 0, 3, 1
push (D) 6, 3, 3 4, 4, 5 7, 6, 6
open (N) 6, 2, 7 5, 2, 9 8, 5, 6
turn (N) 4, 5, 2 2, 7, 2 6, 6, 5

E Hyperparameters495

We give the hyperparameters used in GNFactor as shown in Table 9. We are committed to re-496

leasing the code for further details. For the GNF training, we use a ray batch size bray = 512,497

corresponding to 512 pixels to reconstruct, and use �feat = 0.01 and �recon = 0.01 to maintain ma-498

jor focus on the action prediction. We uniformly sample 64 points along the ray for the “coarse”499

network and sample 32 points with depth-guided sampling and 32 points with uniform sampling for500

the “fine” network.501

15



Table 9: Hyperparameters used in GNFactor.

Variable Name Value

training iteration 100k
image size 128⇥ 128⇥ 3

input voxel size 100⇥ 100⇥ 100
batch size 2
optimizer LAMB [50]

learning rate 0.0005
ray batch size bray 512

weight for reconstruction loss �recon 0.01
weight for embedding loss �feat 0.01
number of transformer blocks 6

number of sampled points for GNF 64
number of latents in Perceiver Transformer 2048

dimension of Stable Diffusion features 512
dimension of CLIP language features 512

hidden dimension of NeRF blocks 512

16


	Introduction
	Related Work
	Method
	Problem Definition
	Learning Volumetric Representations with Generalizable Neural Feature Fields
	Action Prediction with Volumetric Representations

	Experiments
	Experiment Setup
	Simulation Results
	Real Robot Experiments

	Conclusion and Limitations
	Task Descriptions
	Implementation Details
	Demonstration Collection for Real Robot Tasks
	Detailed Data
	Hyperparameters

