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A APPENDIX

A.1 RELATED WORKS

A.1.1 MULTI-MODAL LARGE LANGUAGE MODEL

Large Language Models (LLMs) have recently significantly impacted the field of natural language
processing. Through alignment techniques such as supervised learning and reinforcement learning
with human feedback, LLMs can effectively generalize to perform a wide range of tasks, even with
limited training data. A remarkable application of LLM is ChatGPT, which presents an amazing
ability to interact with humans. OpenAI’s ChatGPT and GPT4 are prime examples of the impact that
AI can have, and there have been extensive open-source efforts to replicate their success, such as OPT
Zhang et al. (2022), BLOOM Scao et al. (2022), PALM Chowdhery et al. (2022), LLaMA Touvron
et al. (2023).

Multi-modal large language models have further promoted the development of the vision-language
models Radford et al. (2021); Li et al. (2022d); Alayrac et al. (2022); Li et al. (2023); Zhu et al.
(2023); Liu et al. (2023a); Chen et al. (2023); Yang et al. (2024; 2025b). CLIP Radford et al. (2021)
was introduced to separately extract features from the visual encoder and the text encoder, and
combine them using contrastive learning. CLIP supports a variety of downstream tasks, including
image retrieval, image classification tasks and especially zero-shot classification tasks. But, it cannot
generate detailed captions based on images due to the lack of a text decoder. In contrast, our model
primarily addresses the concept drift issue within multi-modal large language models, since an
image-grounded text decoder is employed to generate text based on the images. Besides, CLIP
requires a large-scale and high-quality WIT dataset to be driven, that contains 37.6 million entity
image-text samples with 11.5 million unique images across 108 Wikipedia languages. Whereas, our
method is validated under the extended ImageNet-LT, which consists of only 115.8K imbalanced
images-text pairs.

Building on CLIP, GLIP Li et al. (2022d) was developed to learn object-level, language-aware, and
semantic-rich visual representations, unifying object detection and phrase grounding for pre-training.
Different from the contrastive method, Flamingo Alayrac et al. (2022) aligned a pre-trained vision
encoder and language model using gated cross-attention, demonstrating impressive few-shot learning
capabilities. BLIP2 Li et al. (2023) was subsequently introduced, and it employed a Flan-T5 Chung
et al. along with a Q-Former to effectively align visual features with the language model. MiniGPT4
Zhu et al. (2023), the most recent development in the field is the PaLM-E model, which features 562
billion parameters and is designed to integrate real-world continuous sensor modalities into an LLM,
thereby establishing a connection between real-world perceptions and human languages. Based on
Visual Fundamental Models like BLIP mentioned above, Visual ChatGPT adopts ChatGPT as the
central component for interacting with users. It integrates multiple visual foundation models and
utilizes prompt engineering, also known as Prompt Manager, to instruct ChatGPT about the usage,
input-output format, and capabilities of each foundation model. This enables ChatGPT to determine
how to invoke these models to fulfill the user’s requirements. Besides, GPT-4V(ision) OpenAI (2023)
and GPT-4O(mni) have recently shown unprecedented ability in understanding and processing an
arbitrary mix of input images and texts.

A.1.2 LONG-TAILED OPEN WORLD

In vision tasks, significant efforts have been devoted to mitigating the challenges posed by the
long-tailed open world. Two prominent research directions have emerged: long-tailed classification
under open-world settings, exemplified by approaches like OLTR++ Liu et al. (2019; 2022b), LUNA
Cai et al. (2022), DALC Wang et al. (2023), Open-sampling Wei et al. (2022) and TLC Li et al.
(2022a), and OOD detection in long-tailed recognition, as seen in methods such as PASCL Wang et al.
(2022), EAT Wei et al. (2024). OLTR++ Liu et al. (2019; 2022b) proposed an ensemble algorithm,
consisting of dynamic meta-embedding to improve the recognition of tail categories and active
learning for open categories detection. LUNA Cai et al. (2022) presented a distribution-sensitive
loss to weigh more on the tail classes and a local-density-based metric to measure the novelty of
OOD samples. DALC Wang et al. (2023) designed an active distribution optimization algorithm for
clustering, querying and classification to balance the classification bias. Open-sampling Wei et al.
(2022) rebalances class priors by sampling labels from a complementary distribution for each open-set
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instance, mitigating class imbalance. TLC Li et al. (2022a) utilizes the Dempster-Shafer Evidence
Theory in a multi-expert framework for uncertainty estimation of tail and OOD samples. PASCL
Wang et al. (2022) applied supervised contrastive learning to explicitly boost the model to distinguish
between tail-class in-distribution samples and OOD samples. EAT Wei et al. (2024) introduces
abstention classes for clear decision boundaries and augmenting tail classes with context-rich OOD
data to focus on discriminative features. MCM Ming et al. (2022) pioneers the integration of vision
language models into OOD detection, enabling zero-shot OOD by aligning visual features with text
concepts through a proposed maximum concept matching approach.

In addition, more and more VL methods have gained attention in the long-tail domain, such as LPT
DONG et al. (2023), BALLAD Ma et al. (2021), Decoder Wang et al. (2024), VL-LTR Tian et al.
(2022) and LIFT Shi et al. (2024). However, most of them pay attention to the fine-tuning of the
vision language model under long-tailed scenarios. They directly use the pre-trained CLIP model,
which is pre-trained using the high-quality and large-scale WIT dataset. In contrast, we are more
concerned about the impact of long-tail open data on the whole model training from pre-training
onwards, including pre-training and fine-tuning.

Additionally, in the domain of the language model, Kandpal et al. (2023) corroborates that large
language models (LLMs) also struggle to learn long-tailed knowledge. While larger models are
better at absorbing long-tailed knowledge, they estimate that current models must be scaled by many
orders of magnitude to reach competitive performance. Besides, Raunak et al. alleviates the long-tail
problem in neural machine translation by quantifying token classification and sequence generation,
and introduces an anti-focus loss that incorporates beam search inductive biases to better adapt model
training to conditional text generation.

A.1.3 CONCEPT DRIFT

In the review Lu et al. (2019), the algorithms related to concept drift are categorized into three groups:
error rate-based, data distribution-based and multiple hypothesis-based. Our proposed algorithm
belongs to the distribution-based concept drift detection and adaptation method. Distribution-based
concept drift algorithms not only accurately detect drift through explicit distributions but also analyze
the drift to identify its happening timing, location, and severity.

Besides, RBM-IM Korycki & Krawczyk proposes a novel trainable concept drift detector based on
Restricted Boltzmann Machine, to solve the concept drift in multi-class imbalanced data streams.
Meanwhile, DDG-DA Li et al. initially trains a predictor to estimate future data distribution with
concept drift, utilizes this information to create training samples, and subsequently trains models
on the generated data. Furthermore, CALMID Liu et al. (2021) proposes a comprehensive active
learning method for multiclass imbalanced streaming data with concept drift, including an ensemble
classifier, a drift detector, and a variable threshold uncertainty strategy. Subsequently, DES-ICD Jiao
et al. (2024) is a dynamic ensemble selection method for imbalanced data streams with concept drift.
It considers the local performances of base classifiers and addresses class imbalance using a novel
synthetic minority oversampling technique. Moreover, GOOD Gui et al. (2022) develops a graph
OOD benchmark, which explicitly distinguishes between covariate and concept shifts and designs
data splits that accurately capture these different shifts. Beyond that, ResilientCL Yang et al. (2025a)
introduces a causal framework that integrates concept drift adaptation with structural causal modeling.
By decoupling spurious correlations via causal graphs and enforcing counterfactual invariance, it
addresses distributional biases in streaming training data. Besides, Liu et al. (2022a; 2023b; 2024)
propose a multi-view uncertainty framework that addresses concept drift across heterogeneous data
streams through set-valued prediction generation, effectively consolidating probabilistic outputs into
deterministic categorical representations.

Remark A.1. Differences: Concept Drift vs. Data Drift (Covariate Drift) Data drift entails
changes solely in the distribution of inputs P (x), while concept drift involves alterations in both
input and output distributions, i.e., P (x) and P (y), leading to changes in the decision boundary.
Furthermore, data drift predominantly stems from internal factors like data collection and processing,
whereas concept drift typically arises from external factors, reflecting real-world changes.
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A.1.4 HYPERSPHERICAL DISTRIBUTION MODELLING

The Bayesian estimation of the vMF mixture model with variational inference is addressed in Taghia
et al.. The learning task in VI consists of the optimization of the variational posterior distribution.
Besides, a deep metric learning model for image classification and retrieval is presented in Zhe
et al., which utilizes the vMF distribution to define the loss function and introduces an effective
alternative learning algorithm by updating class centers. The model captures global information in
the embedding space and approximates the class distribution during training, leading to improved
performance in image tasks. Kobayashi extends the vMF distribution to regularize the intra-class
feature distribution for imbalanced, small-scale and noisy data. Yang et al. (2023) focus on using
hyperspherical embedding to alleviate the crowding problem arisen by the imbalanced data. Ming et al.
(2023) utilizes hyperspherical embeddings for OOD detection in representation learning, consisting
of two losses, a dispersion loss to increase angular distances between different class prototypes,
and a compactness loss to ensure samples are closer to their respective class prototypes. Besides,
H-SRDC Tang et al. enhances intra-class compactness by combining target data clustering with a
domain-shared classifier and cluster centroid learning, enhancing deep clustering by minimizing
Kullback-Leibler divergence between network predictions and an auxiliary distribution.

A.2 THE T-DISTRIBUTED DISTRIBUTION ON HYPERSPHERE

A.2.1 DIRECTIONAL STATISTICS

Directional statistics primarily focus on the distribution of eigenvector angles, while neglecting
the impact of eigenvector module lengths. Given the unit feature vector Xij ∈ Sd−1, where
Sd−1 = {x ∈ Rd : ||x||2 = 1} denotes the (d − 1)-dimensional hyperspherical set. A key idea in
directional distribution is the tangent-normal decomposition. Any unit vector x can be decomposed
as:

x = tµ+ (1− t2)
1
2 v, t ∈ [−1, 1], (9)

with v ∈ Sd−2 a tangent to Sd−1 at µ Mardia & Jupp (2000); De Cao & Aziz (2020), where v and
t are independent and v is uniform on Sd−2. Thus, the intersection of Sd−1 with the hyperplane
through tµ and normal to µ is a (d− 2)-dimensional sphere of radius

√
1− t2, that t has density as

following:
pT (t; d) ∝ (1− t2)

d−3
2 , t ∈ [−1, 1]. (10)

Therefore, through the marginal density pT and pv , we can estimate the density of the entire spherical
distribution. One prominent instance is the von Mises-Fisher distribution (vMF) Banerjee et al.
(2005), which can be interpreted as a probability distribution over the cosine similarity between a
unit vector x and a fixed mean direction µ, following the density:

pX(x;µ, κ) ∝ exp (κµTx), (11)

where κ ⩾ 0 denotes the concentration and exp represents the exponential function. Therefore,
combined with the Eq. 9 and Eq. 10, the density of vMF is:

p(x) = CX(κ, d)−1 exp (κµTx), x ∼ vMF(µ, κ)

CX(κ, d) =
(2π)d/2Id/2−1(κ)

κd/2−1
,

(12)

where Im denotes the modified Bessel function of the first kind at order m.

A.2.2 DERIVATION OF THE T-DISTRIBUTED DISTRIBUTION ON HYPERSPHERE

Given the unit feature vector Xij ∈ Sd−1, where Sd−1 = {x ∈ Rd : ||x||2 = 1} denotes the
(d− 1)-dimensional hyperspherical set. The proposed T-distribution metric on hypersphere (Thp)
follows the density:

pX(x) ∝ 2

κ(1− µTx)
, (13)

where x ∈ Sd−1, direction µinSd−1 and concentration κ ∈ R≥0. Let T bet a random variable that
denotes the dot-product t = µTx, then T = 2Z − 1, with Z ∼ Beta(α, β), where α = d−1

2 and d−3
2 .
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Proof. Given Eq. 10, the marginal distribution of the dot-product t is

t ∝ 2

κ(1− t)
(1− t2)

d−3
2 . (14)

So, its normalizer is:

NT (κ, d) =

∫
Sd−1

2

κ(1− t)
(1− t2)

d−3
2 dt

=

∫ 1

−1

1

κ(1− t)
(1 + t)

d−3
2 (1− t)

d−3
2 dt

=
1

κ

∫ 1

−1

(1 + t)
d−3
2 (1− t)

d−5
2 dt.

(15)

Given the useful integral function:∫
(1 + x)a(1− x)bdx = 2a+b+1B x+1

2
(a+ 1, b+ 1) + C. (16)

So, its normalizer is:

NT (κ, d) =
1

κ
2d−3(B1(

d− 1

2
,
d− 3

2
)−B0(

d− 1

2
,
d− 3

2
))

=
1

κ
2d−3B(

d− 1

2
,
d− 3

2
).

(17)

The Beta function:

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
. (18)

So, the normalizer is

NT (κ, d) =
1

κ
2α+β−1Γ(α)Γ(β)

Γ(α+ β)
, (19)

where, α = d−1
2 and β = d−3

2 . It follows that the probability density function of the marginal
distribution of the dot product is,

pT (t;κ, d) = NT (κ, d)
−1 2

κ(1− t)
(1− t2)

d−3
2

= NT (κ, d)
−1 2

κ
(1 + t)

d−3
2 (1− t)

d−5
2

= NT (κ, d)
−1 2

κ
(2z)

d−1
2 −1(2− 2z)

d−3
2 −1

=
2

κ
B(α, β)−1zα−1(1− z)β−1,

(20)

where, α = d−1
2 and β = d−3

2 .

Due to the surface area of the hyper-sphere Sd−1 is:

Ad−1 =
2π

d
2

Γ(d2 )
. (21)

The T-distributed spherical distribution is expressed via the tangent normal decomposition as a joint
distribution between T ∼ pT t;κ, d and V ∼ U(Sd−2). Since T ⊥⊥ V , the Thp normalizer Nx(p, k)
is the product of the normalizer of pT (t;κ, d) and the uniform distribution on Sd−2 is:

NX(κ, d) = NT (κ, d) ·Ad−2

= 2α+β−1B(α, β)
2πβ

κΓ(β)

=
2α+βπβ

κ

Γ(α)

Γ(α+ β)
.

(22)

Thus,

pX(x;µ, κ) = NX(κ, d)−1 2

κ(1− µTx)
. (23)
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A.3 IMPLEMENTATION DETAILS

For our language-guided image tokenizer, we leverage the strengths of both BERT Devlin et al.
(2019b) and ViT as our text encoder, text decoder and visual encoder, respectively.

We employ ViT-Bae as our visual encoder, which consists of 12 transformer encoder layers and
an FFN intermediate size of 3,072. The input image size is set to 384 × 384, with a patch size of
16× 16. The hidden dimensions of the ViT-Base are 768, with 12 attention heads. And, the number
of parameters is about 86 million. Besides, we also use ResNeXt-50 to perform ablation experiments.
In addition, ResNeXt-50 has 16 residual blocks with 50 layers. Each block has 3 convolutional layers
with the kernel size of 3× 3, the stride of 1 and the padding of 1. The batch normalization and max
pooling are utilized to connect the convolutional layers. The classification head hidden dimensions
are 2,048.

Additionally, BERT as the language model in our vision-language model, has 12 transformer layers
with 768 hidden dimensions and 3,078 intermediate dimensions. The number of attention heads is 12,
with the input sequence length of 512. It has approximately 110 million parameters.

In terms of the pre-training progress, the hyperparameters are presented in Table 7. We utilize the
AdamW optimizer, which is configured with a cosine annealing schedule as the learning policy. The
initial learning rate is set to 2× 10−5, and the AdamW optimizer is employed with hyperparameters
β = (0.9, 0.98). Additionally, we set the weight decay to 0.05 and the dropout rate to 0.1. During
the first 1,000 warm-up steps, the learning rate increases to 2× 10−5, and subsequently decays to
10−7. Unless otherwise specified, the pre-training of our vision language model consists of 800,000
steps, executed on 2× 2 NVIDIA A100 GPUs. And the pre-training experiments are conducted in
the manner of different stages, namely gradual drifts with long-tailed data and sudden drifts with
OOD data. It is mainly to compare with different methods with the same setup.

Table 7: The training hyperparameters of our vision language model.

Pre-training
Training Steps 400,000
Warmup Steps 1,000
Optimizer AdamW
Learning Rate 1e-4
Learning Rate Decay Cosine
Adam β (0.9, 0.98)
Weight Decay 0.05
Batch Size 50

Fine-tuning
Training Steps 18,000
Warmup Steps 0
Optimizer AdamW
Learning Rate 2e-5
Learning Rate Decay Cosine
Adam β (0.9, 0.98)
Weight Decay 0.05
Batch Size 400

While in the fine-tuning on the downstream task of classification, the initial learning rate is reduced to
10−6 without the warmup. The visual encoder and text decoder are frozen out of the training. Thus,
the batch size can be increased to 400. The fine-tuning consists of 18,000 steps, executed on 2× 2
NVIDIA A100 GPUs. Other training parameters are the same as the pre-training. Besides, under the
only fine-tuning settings, the image encoder and the text encoder are frozen with the CLIP pre-trained
parameters, while the image-grounded text decoder is trained during the fine-tuning.

When evaluating the performance of our VL model under the long-tailed open world, we use the
top-1 accuracy metric on the downstream classification task. In particular, the categories are split into
three groups: many-shot (with more than 100 training samples), medium-shot (with 20-100 training
samples), and few-shot (with fewer than 20 training samples). The Top-1 accuracies are computed for
each group to evaluate the performance of mitigating the bias introduced by the long-tail distribution,
respectively. Furthermore, in order to assess the capability of detecting the OOD drift, we employ two
metrics: FPR95 which measures the false positive rate of OOD samples when the true positive rate of
ID samples reaches 95%, and AUROC providing the area under the receiver operating characteristic
curve. Besides, cosine distance is exploited to measure the distances between features and centers in
the feature space of the VL model.
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Caption: The image depicts a [mask], also 
known as a [mask], sitting on a branch of a 
tree. The [mask] is holding a leaf in its mouth, 
which suggests that it might be eating or chew-
ing on the plant. This behavior is typical of 
[mask]s, as they primarily feed on bamboo 
shoots, leaves, fruits, and insects. In the wild, 
[mask]s are found in the mountainous regions 
of southern and southwestern China, Myanmar, 
and India.
Annotation: lesser panda, red panda, panda, 
bear cat, cat bear, Ailurus fulgens

(a) Sample in Training Set

Caption: The picture depicts a young man 
sitting on a bench, holding a [mask] in his 
hand. This suggests that he is either playing the 
[mask] or contemplating playing it. The [mask] 
is a musical instrument that is commonly asso-
ciated with blues and folk music, and it can be 
used to create melodic and rhythmic sounds. 
The presence of the [mask] in the image adds a 
musical element to the scene.

Annotation: harmonica, mouth organ, harp, 
mouth harp

(b) Sample in Test Set

Caption: The main object in the picture is an open 
suitcase, which is a type of luggage. It is red in 
color and appears to be medium-sized. The suit-
case is located on the floor of a room. The suitcase 
is partially filled with clothing items, including 
shirts, pants, and socks. It appears that the suitcase 
is still in the process of being packed or unpacked, 
as some items are visible on top of the suitcase 
while others are spilling out of it. The suitcase is 
open, allowing easy access to the clothing items 
inside. Overall, the picture provides a glimpse into 
the process of preparing for a trip or organizing 
one's belongings.

(c) Sample in Open Set

Figure 4: Samples of OpenMMlo in training set, test set and open set.

A.4 BUILDING MULTI-MODAL LONG-TAILED OOD DATASETS GROUP OPENMMLO

Figure 4 showcases the samples utilized for training and validation in our study. To intuitively verify
the impact of long-tail open-world scenarios on multi-modal large language models, we employ
classification as our downstream task. When matching images and texts, we strategically mask words
that are directly related to category names. This approach ensures the accuracy and reliability of
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our experimental results. As depicted in Figure 4, comprehensive descriptions of the image are
provided through long-form text, encompassing details such as size, position, color, relationships,
and other relevant information about the objects present in the image. This ensures a detailed and
information-rich depiction of the visual content. We have publicly released the datasets used for
training and validation, as well as the original unmasked datasets.
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