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ABSTRACT

We study causal interactions for payoff allocation in cooperative game theory, in-
cluding quantifying feature attribution for deep learning models. Most feature
attribution methods mainly stem from the criteria of the Shapley value, which as-
signs fair payoffs to players based on their expected contribution in a cooperative
game. However, interactions between players in the game do not explicitly appear
in the original formulation of the Shapley value. In this work, we reformulate
the Shapley value to clarify the role of interactions and discuss implicit assump-
tions from a game-theoretical perspective. Our theoretical analysis demonstrates
that when negative interactions exist—common in deep learning models—the ef-
ficiency axiom can lead to the undervaluation of attributions or payoffs. We sug-
gest a new allocation rule that decomposes contributions into interactions and ag-
gregates positive parts for non-convex games. Furthermore, we propose an ap-
proximation algorithm to reduce the cost of interaction computation which can be
applied to differentiable functions such as deep learning models. Our approach
mitigates counterintuitive attribution outcomes observed in existing methods, en-
suring that features critical to a model’s decision receive appropriate attribution.

1 INTRODUCTION

As black-box models like Deep Neural Networks (DNNs) become increasingly prevalent, providing
the cause of their decision-making process is crucial for model reliability and interpretation. One
fundamental approach to understanding such prediction models is to quantify the attributions of in-
dividual input features to model decisions. Theoretically, feature attribution methods are usually
grounded in the Shapley value (Shapley, 1953), which provides a fair payoff allocation rule in coop-
erative game theory. Shapley (1953) introduced a set of axioms—linearity, dummy, symmetry, and
efficiency—that uniquely defines this payoff allocation. This axiomatic approach has been widely
extended to machine learning research and attribution methods (Bach et al., 2015; Sundararajan
et al., 2017; Rozemberczki et al., 2022).

Despite this game-theoretic foundation, there has been limited exploration of interaction between
features and the relationship with axioms in computing attributions. Causal interaction measures
the discrepancy of a player’s effect on the game output depending on whether another player par-
ticipates or not (VanderWeele, 2015; Keele & Stevenson, 2021). In complex games or functions,
understanding the impact of interactions is crucial for assigning reasonable payoffs or attributions.
However, the original formulation of the Shapley value is based on expected contributions and does
not explicitly account for interactions between players (Grabisch & Roubens, 1999; Procaccia et al.,
2014; Kumar et al., 2021).

In this work, we reformulate the Shapley value in terms of interaction components to clarify its
dependence on interactions. Our derivation shows that the Shapley value can be interpreted as the
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sum of an individual effect and its weighted interactions with other players. This reformulation
demonstrates that the Shapley value implicitly assumes non-negative interactions, a property that
holds when the game is convex. From a game-theoretic perspective, this assumption aligns with the
efficiency axiom and the rational behavior of players within the grand coalition (Von Neumann &
Morgenstern, 1944; Roth, 1988; Peters, 2015). Consequently, the Shapley value becomes a reason-
able and well-defined allocation when a game is convex, and we prove that convexity is equivalent
to non-negative interactions.

However, many real-world scenarios involve non-convex games, where negative interactions exist.
In such cases, the Shapley value may not be a reasonable allocation derived from players’ efficient
and rational behaviors. Most axiomatic approaches for feature attribution, including extensions of
the Shapley value, conventionally adhere to the efficiency axiom, even though many black-box mod-
els like DNNs do not satisfy the convexity. Enforcing the efficiency axiom for non-convex games
leads to the undervaluation of payoffs caused by negative interactions even though the players have a
potential role in improving the output. In the case study, we present illustrative examples demonstrat-
ing their impact on non-convex functions, such as a max function and a sigmoid function, and their
connection to deep learning models. Negative interactions can result in the undervaluation of attri-
butions, where highly relevant features receive low attribution scores. We discuss that these negative
interactions between players arise from role redundancy or output saturation in cooperative game se-
tups. Conventional approaches attempt to mitigate this by applying heuristic post-processing, such
as taking the absolute value of attributions, but these solutions lack theoretical justification.

Building on our theoretical analysis of interaction, we extend the Shapley value to non-convex games
while keeping its philosophy that assigns payoffs by measuring synergistic interactions between
players. We propose a new allocation rule that decomposes each contribution into interactions and
aggregates the refined interactions for non-convex games. Aggregated Positive Interactions (API),
which aggregates only positive interactions, effectively resolves the undervaluation issue and ensures
that crucial features receive sufficiently large attributions in non-convex games while following the
Shapley value properties in convex games. Furthermore, we provide an unbiased estimation of
API using a permutation sampling approach and introduce an approximation algorithm that can be
applied to differentiable functions, making it computationally tractable. In practice, our approach
successfully addresses the undervaluation issue in deep learning tasks.

2 PRELIMINARIES

2.1 COOPERATIVE GAME

A cooperative game consists of a set of players N = {1, · · · , n}, called the grand coalition, and a
characteristic function v : 2N → R, which maps a coalition S ⊆ N to the utility v(S) players in S
achieve. The goal is to determine the payoff vector ϕ(v) ∈ Rn where i-th element ϕi(v) indicates the
payoff allocated to player i from the total utility v(N). This game is sometimes called a transferable
utility game allowing the utility to be fully transferred to the players as their payoffs (Von Neumann
& Morgenstern, 1944; Roth, 1988; Peters, 2015). In classic literature, for convenience, the function
v itself is often referred to as the game, and the cardinality of each set of players (N,S, T, · · · ) is
denoted by the corresponding lower-case letter (n, s, t, · · · ). We follow this convention in this work.

A game is convex if

v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ), ∀S, T ⊆ N. (1)

If Equation (1) holds under the more relaxed condition S ∩ T = ∅, then the game is super-additive.
This indicates that a convex game is a special case of a super-additive game.

Remark. The implicit assumption in a cooperative game is that players strategically form the grand
coalition to maximize their payoffs (Roth, 1988; Fujimoto et al., 2006; Peters, 2015). Convex games
indicate that the benefits of joining a coalition increase as the coalition size grows, ensuring that
cooperation always leads to higher utility and that forming the grand coalition N is an optimal
strategy (Shapley, 1971).
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2.2 SHAPLEY VALUE

The Shapley value (Shapley, 1953) is the payoff vector ϕ(v) ∈ Rn that fairly distributes the total
utility v(N) to each player i ∈ N :

ϕi(v) =
∑

S⊆N\{i}

1

n

(
n− 1

s

)−1

[v(S ∪ {i})− v(S)]. (2)

It is a unique form that satisfies four axioms designed for a fair allocation: linearity, dummy, sym-
metry, and efficiency (Weber, 1988). The detailed explanations of the axioms are provided in Ap-
pendix A. Equation (2) can be interpreted as the weighted average of i’s contribution when join-
ing all possible coalitions. Furthermore, it can be viewed as the expectation of the causal effects
on the function output since it evaluates the expected output increase while putting or removing a
player (Janzing et al., 2020; Pearl, 2022). From this perspective, ∆iv(S) := v(S ∪ {i}) − v(S) is
referred to as (causal) effect or (marginal) contribution.

An alternative formulation of the Shapley value is represented as the expected contribution over all
possible random orderings. Let Π(N) denote the set of all permutations of the player set N . For
a given π ∈ Π(N), define πi as the set of players preceding player i in the ordering π. Then, the
Shapley value can be expressed as follows:

ϕi(v) =
1

n!

∑
π∈Π(N)

(
v(πi ∪ {i})− v(πi)

)
. (3)

2.3 EFFICIENCY IN COOPERATIVE GAMES

The Shapley value is a well-defined solution that belongs to the core (Shapley, 1971; Dehez, 2017).
The core of a game is a set of payoff vectors a ∈ Rn that satisfy the following two conditions:

{a ∈ Rn |
∑
i∈N

ai = v(N),
∑
i∈S

ai ≥ v(S) ∀S ⊂ N}. (4)

The core represents the socially stable outcomes where no partial coalition can achieve a better
result than the grand coalition. The first equality condition states that the sum of individual payoffs
should equal the total utility v(N). This equality condition is the same as the efficiency axiom of the
Shapley value. The second inequality condition, namely the coalitional rationality, implies that the
sum of payoffs allocated to any subset coalition S is at least as large as the utility v(S) the coalition
S can achieve on its own.

The concept of efficiency originates from Pareto efficiency, which states that no player’s payoff can
be improved without reducing another player’s payoff (Peleg & Sudhölter, 2007; Peters, 2015). This
implicitly assumes that all players prefer to maintain cooperation through their rational behaviors.
In this background, it is natural to consider rationality, which is linked to the core, when impos-
ing efficiency for payoff allocation in cooperative games. Notably, the Shapley value is a solution
positioned at the center of the core when the core exists (Shapley, 1971).

3 INTERACTIONS IN SHAPLEY VALUE

The Shapley value assesses a player’s payoff based on the average causal effect across all possible
coalitions. However, when effects vary significantly depending on the context, the resulting payoff
allocation may be distorted. This study highlights the impact of interactions inherently captured in
computing the Shapley value and argues that its underlying assumptions may not be suitable for
games with complex interactions.

3.1 REFORMULATION OF SHAPLEY VALUE

We first define interaction between two players in the cooperative game.
Definition 1 (interaction). For a cooperative game v on a player set N , an interaction between two
player i, j ∈ N given a subset of players T ⊆ N \ {i, j} is defined as follows:

Iij(T ) = v(T ∪ {i, j})− v(T ∪ {i})− v(T ∪ {j}) + v(T )

= ∆iv(T ∪ {j})−∆iv(T ).
(5)
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This definition comes from the notion of causal interaction in the causal inference literature (Van-
derWeele, 2015; Keele & Stevenson, 2021). It quantifies the discrepancy of player i’s effect on
the output depending on whether player j participates or not. In the absence of interactions among
players, each player’s effect remains constant regardless of others’ participation, making payoff allo-
cation trivial. However, cooperative games typically assume synergistic interactions, where players
cooperate to maximize their payoffs.

Despite this, the original formulation of the Shapley value provides limited insight into how such
interactions influence payoff allocation. To address this limitation, we reformulate the Shapley value
to explicitly incorporate interaction terms, leading to the following representation.

Theorem 1. The Shapley value is a weighted sum of interactions:

ϕi(v) = ∆iv(∅) +
n−2∑
t=0

1

n

(
n− 1

t

)−1 ∑
j∈N
j ̸=i

∑
T⊆N\{i,j}

|T |=t

Iij(T ). (6)

Proof. See Appendix.

The theorem states that the Shapley value measures the sum of the individual effect and the average
interactions resulting from cooperation.

3.2 RELATIONSHIP WITH CONVEXITY

In Section 2.1, we introduce the concept of a convex game, where the benefits of cooperation in-
crease as the coalition size grows. The connection between convexity and interactions can be re-
vealed from the following theorem, which states a game is convex if and only if all interactions are
non-negative.

Theorem 2. A game v is convex if and only if Iij(R) ≥ 0 ∀i, j ∈ N, ∀R ⊆ N \ {i, j}.

Proof. See Appendix.

Convexity is closely related to the core described in Section 2.3. It guarantees the existence of the
core and ensures that it forms a polytope in the solution space, with its vertices corresponding to the
marginal contribution vectors (Shapley, 1971; Ichiishi, 1981; Dehez, 2017). For a given permutation
π ∈ Π(N), the marginal contribution vector is an n-dimensional vector, where the i-th element is
given by v(πi ∪ {i}) − v(πi) with πi representing the set of players preceding player i in the
ordering π. The alternative formulation in Equation (3) shows that the Shapley value is obtained as
the average of these marginal contribution vectors. Theorem 1 follows from decomposing marginal
contributions into the sum of cumulative interactions (Appendix C.1). Therefore, in convex games,
positive interactions arising from player cooperation enhance marginal contributions, leading to
increasing the Shapley value.

3.3 PROBLEMS IN NON-CONVEX GAMES

Non-convex games imply the existence of negative interactions between players. In such cases, the
core does not encompass all marginal contribution vectors, indicating that some marginal contribu-
tions arise from non-rational behaviors. As a result, players’ payoffs can be underestimated, even
when they have the potential to enhance the overall outcome. This raises the question of whether
the Shapley value remains an appropriate allocation rule in non-convex settings. The efficiency (or
completeness) axiom is conventionally applied in the applications of the Shapley value and attribu-
tion methods for black-box models (Lundberg, 2017; Sundararajan et al., 2017). This axiom ensures
that the solution, including the Shapley value, is expressed as an expectation of marginal contribu-
tion vectors (Weber, 1988). Enforcing the efficiency axiom for non-convex games can lead to the
undervaluation of payoffs or feature attributions caused by negative interactions even though the
players have a potential role in improving the output. We can identify the issue of undervaluation
that negative interactions explicitly diminish a player’s payoff in Equation (6).
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Negative interactions between players can arise from various factors, such as personal or emotional
conflicts. However, in cooperative games, where the primary assumption is that players collabo-
rate to maximize total utility and individual payoffs, it is more reasonable to attribute such negative
interactions to functional role redundancy. This concept extends to feature attribution in machine
learning. Black-box models typically leverage all available features—forming a grand coalition—to
make decisions without regard for their conflicts. However, high-capacity models like DNNs usually
exhibit non-convexity, leading to negative interactions among features. This has been linked to un-
expected experimental results in Shapley-based feature attribution methods, where features crucial
for decision-making may receive low attribution scores. To mitigate this, conventional approaches
often apply heuristic post-processing adjustments, such as taking the absolute value of attributions.

To better understand the implications of negative interactions, Section 4 presents illustrative exam-
ples demonstrating their impact on non-convex functions, including deep learning models. Section
5 then introduces a principled game-theoretic approach to address these challenges.

4 CASE STUDY

In this section, we will explore examples of non-convex games where negative interactions occur.
The problem emerges when the grand coalition is no longer driven by rational behavior. If the grand
coalition is inefficient—meaning that some players can contribute significantly to the outcome but
are not essential for maximizing the final output—they may experience negative interactions. In
cooperative games, negative interactions between players can happen due to their role redundancy
or output saturation rather than their personal conflicts, which we illustrate through examples such as
a max function and a sigmoid function. Furthermore, we discuss how negative interactions naturally
arise in deep learning models that incorporate these functions.

Max function. The max function returns the highest value that the participating players can yield.
A player’s causal effect on the max function output diminishes when another player with a similar
contribution joins. In this case, interaction becomes negative, and indeed the max function is non-
convex. Furthermore, consider the following function

f(x1, · · · , x8) = max(x1, x2, x3, 4x4) + max(6x5, 6x6, 6x7, 7x8).

We set each variable xi to be binary (0 or 1) to represent the participation keeping the setup of
cooperative game theory. We can generally expect that player 8 may get a larger payoff than player
4. However, there are negative interactions in this function, for example, I14(∅) = −1, I58(∅) = −6,
which lead to counterintuitive results. The Shapley value of player 8 is 10/4 while that of player 4
is 13/4. This phenomenon conceptually arises from redundancy in the roles of individual players.
Even if some player has a large impact on the outcome, their interactions become negative when
their roles overlap, leading to underrated payoffs. In Appendix D, this issue is intuitively described
in an image recognition scenario.

Sigmoid function. Another example of a non-convex function that yields problematic negative
interactions is the sigmoid function that takes the sum of features as input. There exist negative
interactions when the input becomes sufficiently large, pushing the function into its near-saturation
region. Consider the following function

f(x1, x2, x3, x4) = 10 · σ(7x1 + 6x2) + 10 · σ(2x3 + 0.1x4)

where σ denotes the sigmoid function 1/(1 + e−x). Similar to the max function case, players
1 and 2 exhibit a stronger negative interaction (I12(∅) = −4.96) compared to players 3 and 4
(I34(∅) = −0.15). Consequently, player 1’s Shapley value (2.51) is lower than player 3’s (3.73).
This phenomenon arises due to the presence of saturation. More generally, this issue extends to any
squashing function with saturation or an upper-bound, such as the softmax function.

Deep Learning model. A deep learning model is a non-convex function, incorporating various
non-convex components within its architecture. Consider max pooling in Convolutional Neural Net-
works (CNNs) and attention mechanisms in Transformer models. CNN classifiers commonly utilize
the max pooling as a fundamental operation and attention mechanisms in Transformers compute
a weighted sum of values, where the weights are derived from the softmax scores of query-key
similarities (Vaswani et al., 2017). Given these structural properties, similar issues arising from
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non-convexity can be expected in CNNs and Transformers. In Figures 1 and 3, we show the counter-
intuitive results of the Shapley value in such models, highlighting the impact of negative interactions
on feature attributions.

5 AGGREGATED POSITIVE INTERACTIONS

We have discussed the issue of utilizing the Shapley value and its variants for non-convex games. To
address this, we propose a generalized solution that decomposes each contribution into interactions
and aggregates them using a refinement function g : R→ R:

ϕi(v) = ∆iv(∅) +
n−2∑
t=0

1

n

(
n− 1

t

)−1 ∑
j∈N
j ̸=i

∑
T⊆N\{i,j}

|T |=t

g(Iij(T )). (7)

The function g represents how interactions are interpreted as attributions to the output. When g is an
identity function, interactions are directly used as attributions in the calculation, regardless of their
magnitude or sign, resulting in the Shapley value.

To alleviate the undervaluation in non-convex games, we suggest a solution with g(x) = max(x, 0),
namely Aggregated Positive Interactions (API). It can be interpreted as the extension of the Shapley
value to non-convex games. In convex games, API equals the Shapley value, as all interactions are
preserved. In non-convex games, API evaluates a player’s potential contribution to improving the
output by forming synergistic coalitions by filtering out problematic negative interactions. Since
negative interactions are removed in aggregation, a player’s payoff is no longer underrated from
irrational coalitions. API effectively addresses the undervaluation demonstrated in Section 4. For
the max function case, API assigns values of 7 and 4 to players 8 and 4, respectively, and for the
sigmoid function case, it assigns values of 4.99 and 3.81 to players 1 and 3, respectively.

Axioms. In non-convex games, a solution does not need to strictly adhere to the efficiency axiom
due to the issues described in Sections 3.3 and 4. Enforcing efficiency ensures that the total sum of
attributions remains fixed, which inevitably leads to lower attributions for some players. In this spirit,
API relaxes the efficiency axiom in non-convex games to prevent undervaluation caused by negative
interactions. The dummy axiom states that if a player has no causal effect on the function output
then the corresponding attribution should be zero. Any solution based on aggregated interactions
with g(0) = 0 satisfies the dummy axiom. We further discuss the converse of this axiom: does
zero attribution imply that the corresponding player has no meaningful contribution to improving
the output? In the Shapley value and its variants, which follow the form of expected contribution,
players in non-convex games may receive zero attribution due to negative interactions canceling out
their positive contributions. This can result in undervaluation, even when a player has a potential role
in improving the output. In contrast, API ensures that zero attribution genuinely reflects a player’s
inability to enhance the output (strictly speaking, in 0-normalized games). Consequently, players
with higher attributions in API are those who significantly contribute to improving the output.

The choice of g depends on how the user interprets interactions as attributions in a given task. In
Appendix E.2, we additionally provide attribution results using different choices of g, specifically
Leaky ReLU and Softplus. The solutions derived from these functions do not follow all the prop-
erties that API upholds. However, in scenarios where a decrease in the function output carries
meaningful implications, such as in regression problems, strictly eliminating all negative interac-
tions could misrepresent the influence of certain variables, and they should be carefully handled.
Therefore, the treatment of negative interactions should be determined based on the context of the
application. Especially, API focuses on solving the undervaluation problems derived from role re-
dundancy or output saturation described in Section 4 by removing unexpected negative interactions
and preserving positive ones.

5.1 ESTIMATION THROUGH PERMUTATION SAMPLING

Since dealing with interaction terms requires high computational cost for applying complex black-
box models like DNNs, we first propose the estimation of Equations (6) and (7). Then, we introduce
an approximation algorithm to reduce the computational cost for interaction terms using gradient
information.
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We reformulate Equation (6) into the expectation form to enable sample estimation with vectorized
representations. Let i ∼ u1(S) be the uniform distribution of player i from set S, and T ∼ u2(t, S)
be the uniform distribution of subset S with cardinality |T | = t. ϕ(v) and ∆v(∅) denote the Shapley
value and the marginal contributions of all players at the empty set in a vector form, respectively. We
define an interaction vector I·j(T ) ∈ Rn where the i-th element is Iij(T ) for given T ⊆ N \ {j}.
We set Iij(T ) = 0 when i = j or i ∈ T , then I·j(T ) is well-defined for any T ⊆ N \ {j}. Then,
we obtain the following vectorized form to estimate the Shapley value with interaction vectors.
Theorem 3. The payoff vector of the Shapley value ϕ(v) is represented as follows:

ϕ(v) = ∆v(∅) +
n−2∑
t=0

Ej∼u1(N),T∼u2(t,N\{j})[I·j(T )]. (8)

Proof. See Appendix.

We can now apply an unbiased sample estimation for the expected interaction at each cardinality and
sum over interactions. This estimation can be also conducted by permutation sampling. For each
permutation, we sequentially add features, and compute interactions at each level of cardinality. In
this setup, we need to reformulate Equation (8) with the expectation under the uniform distribution
of permutations.
Corollary 1. The payoff vector of the Shapley value ϕ(v) is represented as follows:

ϕ(v) = ∆v(∅) +
n−2∑
t=0

Eπ∼Unif(Π(N))[I·πt+1([π]t)]. (9)

where Π(N) is a collection of all possible permutations of players in N . πt represents the t-th
element in π, and [π]t represents the subset of players up to the t-th player in the ordering π.

It can be easily proved by Theorem 3. From the result, we can apply permutation sampling to
estimate the Shapley value with interactions. It can be interpreted as the extension of permutation
sampling on the original Shapley value (Castro et al., 2009). Simply, we obtain Aggregated Positive
Interactions by maintaining only non-negative interactions during sampling.

5.2 APPROXIMATION ALGORITHM

The major computational burden comes from the interaction terms. Since the computational cost for
interactions grows with the number of player combinations, it requires n-times more computations
compared to computing individual effects in the original Shapley value. We propose an algorithm
to reduce the cost of interaction computation that can be applied to differentiable functions. In dif-
ferentiable functions like DNNs, this approach leverages backpropagation to reduce computational
complexity effectively.

Notations. We first explain notations for our algorithm described in Algorithm 1. v is a differen-
tiable function to assess attributions, such as a deep learning predictor. x is a target instance with
n features, and each feature is treated as a player in N . A baseline value in x̄ refers to the value
assigned when a feature does not participate in the game, and it is typically set to the mean value
from the data or zero. ∇v(S) denotes a gradient of v evaluated when features in S are set to values
in x and the others are set to values in x̄.

The original definition of interaction is expressed as the difference between two contributions, rep-
resented by discrete derivatives. We replace this discrete derivative with a partial derivative using
a first-order Taylor approximation. This allows us to compute interactions quickly by leveraging
gradients obtained through backpropagation.

Iij(T ) = ∆iv(T ∪ {j})−∆iv(T ) ≈ {∂iv(T ∪ {j})− ∂iv(T )} ∗ (xi − x̄i) (10)

When calculating interactions for all features given a set T , the original computation requires O(n2)
forward passes. However, with this approximation, all feature gradients can be computed simul-
taneously with a single backpropagation, reducing the computation to O(n) backward passes. By
utilizing this approximation and permutation sampling, our algorithm computes API as described in
Algorithm 1. The practical runtime of our algorithms is further discussed in Appendix E.3.
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Algorithm 1 Approximation for Aggregated Positive Interactions
Input: Differentiable function v, Instance x, Baseline x̄
Parameter: # of permutations k
Output: Attribution ϕ
Initialize Cnt← 0, ϕ← ∆v(∅), g1 ← ∇v(∅)
while Cnt < k do

sample π ∼ Unif(Π(N))
for t = 0, · · · , n− 2 do

g2 ← ∇v([π]t+1)

Î ← max((g2 − g1) ◦ (x− x̄),0n)

Îi ← 0 ∀i ∈ [π]t+1

ϕ← ϕ+ Î/k
g1 ← g2
Cnt← Cnt + 1

end for
end while
return ϕ

6 EVALUATION

In Section 4, we introduced some simple non-convex examples to identify the impact of negative
interactions on the Shapley value. In this section, we identify such phenomenon in practical deep
learning tasks and evaluate the results from Aggregated Positive Interactions (API). Our experiments
are conducted on image classifiers (VGG19 (Simonyan & Zisserman, 2014), ResNet50 (He et al.,
2016)) trained on the ImageNet dataset (Deng et al., 2009), and a sentence classifier (BERT (Devlin,
2018)) trained on the IMDB Review dataset (Maas et al., 2011). In experimental results, Approxi-
mated Shapley value (abbreviated as Approx. SV) denotes the approximation of the Shapley value
by sampling permutation and aggregating all interactions. We samples 100 permutations for the
image classifiers and 300 permutations for the sentence classifier. In the case of ImageNet data, we
convert images into 20× 20 patches for feasible computation.

6.1 IMPACT OF POSITIVE INTERACTIONS ON IMAGE CLASSIFIER

We analyze the impact of positive interactions on VGG19. Figure 1 shows attribution results, pre-
senting high-attribution regions, and low-attribution regions when aggregating all interactions versus
only positive interactions. In the attribution map, red indicates positive attribution, white represents
zero attribution, and blue denotes negative attribution.

When all interactions are aggregated, attributions tend to become more dispersed. This dispersion
can be explained by negative interactions, as seen in max pooling, where nearby inputs are grouped
together, creating negative interactions within the same pooling operator. The Shapley value strug-
gles to pinpoint key contributing areas to the model decision. However, when we aggregate only
positive interactions, key regions become more distinct, such as the eyes, nose, and front paws of a
red panda or the wheels and windows of a sports car.

6.2 UNDERRATED ATTRIBUTIONS FROM EFFICIENCY AXIOM

To demonstrate the limitations of methods based on the efficiency axiom in non-convex games,
we compare our approach to relevant attribution methods using ResNet50 in Figure 2. For Ker-
nelSHAP (Lundberg, 2017), we use 40,000 samples, as our method approximates using 100 permu-
tations across 400 features. Integrated Gradients (IG) (Sundararajan et al., 2017) is computed with
100 steps, and the attributions are summed for all pixels within each patch. We evaluate performance
using the Insertion and Deletion metrics. Insertion measures the logit value when the top 30% at-
tribution patches are added, while Deletion measures it when the bottom 30% attribution patches
are removed. Higher values for both metrics indicate better identification of regions crucial for the
model’s decision.
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Figure 1: Aggregated Positive Interactions on the ImageNet dataset. While the approximated Shap-
ley Value produces dispersed attributions across relevant regions, API more effectively captures
these regions.

Figure 2: Comparison to other Attribution methods based on Efficiency axiom. Insertion measures
the logit value when the top 30% attribution patches are added, while Deletion measures it with the
bottom 30% removed. API achieves better results compared to the previous methods.

KernelSHAP and IG, constrained by the efficiency axiom, tend to disperse attributions across various
regions, similar to the Approximated Shapley value. In contrast, API focuses attributions on key
input features, avoiding unnecessary assignments to the background. In practice, absolute attribution
values are often used heuristically for better interpretability. API addresses this issue with a more
principled, game-theoretic approach. While KernelSHAP sometimes performs better numerically, it
still suffers from attribution dispersion in irrelevant regions. This may stem from errors introduced
by the first-order Taylor approximation used in API for interaction computation.
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For additional quantitative results, we assess effective complexity (Nguyen & Martı́nez, 2020) in
Appendix E.1. A low effective complexity indicates that the attribution provides a more compact
explanation by focusing on a smaller number of significant features. On average, API achieves 30%
lower complexity than the other methods.

6.3 APPLICATION ON LANGUAGE MODEL

We demonstrate the application of API on a language model, using a BERT (Devlin, 2018) trained
on the IMDB dataset for sentence prediction (Maas et al., 2011). This model takes a movie review,
which is a sequence of tokens, and predicts whether it is positive or negative. Figure 3 shows a frac-
tion of input texts where the top row is predicted as negative, while the bottom row is positive. For
these texts, we compare the approximated Shapley value and API, estimated with 300 permutations,
by highlighting the tokens with attribution in the top 20%.

In the negative review case, the approximated Shapley value only highlights ‘hardly be’ while API
focuses on the entire phrase ‘can hardly be taken seriously on any level’. This indicates that the
portion from ‘taken’ to ’level’ was underrated due to strong negative interactions. While ‘hardly be’
alone does not intuitively seem influential for the negative prediction, it conveys a negative meaning
when combined with the subsequent tokens from ‘taken’ to ‘level’. These tokens have strong nega-
tive interactions that obscure their contributions, which API correctly addresses by focusing on the
key phrase. A similar issue arises in the positive review case in the bottom row, where the Shapley
value underrates tokens ‘i’, ‘liked’, and ‘movie’, while assigning higher attributions to other irrele-
vant tokens. API effectively resolves this by properly attributing the entire phrase ‘i really liked this
movie’.

Figure 3: Application on a Language Model. While the approximated Shapley value assigns low
attributions to the tokens that seem relevant due to the negative interactions, API effectively results
in more reasonable attributions by focusing only on the positive interactions.

7 CONCLUSION

This study has explored the impact of causal interactions on payoff allocation in cooperative game
theory, with a particular focus on feature attribution in deep learning models. We reformulate the
Shapley value to account for interactions between players, and demonstrate that these interactions
explicitly influence payoffs in the Shapley value framework. From the game-theoretic perspective,
we highlight that this framework implicitly assumes players’ rational and efficient behaviors to im-
prove the total utility, which may conflict with the presence of negative interactions in non-convex
games. In such games, the efficiency axiom of the Shapley value can unintentionally lead to the
undervaluation of payoffs or attributions. To extend the Shapley value to non-convex games while
preserving its underlying philosophy, we propose a new allocation rule, namely Aggregated Pos-
itive Interactions (API), which decomposes contributions into interactions and aggregates positive
ones. Additionally, we introduce an approximation algorithm to enhance computational tractability
in interaction computation for differentiable functions. Our experimental results show that API ef-
fectively resolves the counterintuitive results of the Shapley value and feature attribution methods
based on the efficiency axiom. We expect that our work will serve as a solid foundation for ex-
tending game-theoretic approaches to the attribution task, contributing to the interpretability of deep
learning models.
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APPENDIX

A AXIOMS FOR SHAPLEY VALUE

The Shapley value (Shapley, 1953) is the payoff vector ϕ(v) ∈ Rn that fairly distributes the total
utility v(N) to each player i ∈ N :

ϕi(v) =
∑

S⊆N\{i}

1

n

(
n− 1

s

)−1

[v(S ∪ {i})− v(S)]. (11)

It is a unique form that satisfies four axioms designed for a fair allocation: efficiency, symmetry,
linearity, and dummy (Weber, 1988; Peleg & Sudhölter, 2007; Dehez, 2017; Rozemberczki et al.,
2022).

Efficiency. The sum of all payoffs equals the total utility of the grand coalition:∑
i∈N

ϕi(v) = v(N). (12)

It is often called Pareto efficiency (or Pareto optimality), which assumes that players behave effi-
ciently: no partition of players can achieve a larger total utility than the grand coalition. Under
this assumption, the grand coalition results from the players’ optimal strategies. Therefore, it is
reasonable to directly allocate the utility of the grand coalition to the players’ payoffs.

Symmetry. Two players i and j are symmetric if v(S∪{i}) = v(S∪{j}) for every S ⊆ N \{i, j}.
If two players i and j are symmetric, their payoffs should be equal:

ϕi(v) = ϕj(v) if i, j are symmetric. (13)

The symmetry property ensures that players with identical contributions to the utility receive the
same payoff.

Linearity. For any two games (N, v), (N,w) and a real number α, the payoff vector holds that

ϕ(v + w) = ϕ(v) + ϕ(w), (14)
ϕ(αv) = αϕ(v). (15)

The first property is often called additivity. It seems reasonable that for the rescaled game αv the
allocation rule simply rescales a player’s original payoff with the same amount.

Dummy. A player i is a dummy (or null) in v if v(S ∪ {i}) = v(S) for every S ⊆ N \ {i}. If i is a
dummy player, the payoff of i should be zero:

ϕi(v) = 0 if i is a dummy player.

It is natural to assign a zero payoff to a player who does not affect the total utility in any situation.

B RELATED WORK

Shapley Value. The payoff allocation for the utility function has been studied with axiomatic ap-
proaches in cooperative game theory literature (Roth, 1988; Fujimoto et al., 2006; Peters, 2015). The
Shapley value (Shapley, 1953) is the payoff allocation that uniquely satisfies the linearity, dummy,
symmetry, and efficiency axioms (Weber, 1988). It can also be interpreted as the expectation of the
causal effects since the contribution of a player is measured by do-operator (Janzing et al., 2020;
Pearl, 2022). Due to the well-defined axioms of the Shapley value, there have been a lot of ap-
proaches to apply the Shapley value to deep learning literature, especially for measuring feature
attribution (Scott et al., 2017; Sundararajan & Najmi, 2020; Rozemberczki et al., 2022). Despite
the widespread use of the Shapley value, some studies have identified problems with the axioms it
relies on. Kumar et al. highlighted the limitation of the Shapley value when the game is not inessen-
tial and proposed Shapley Residuals to quantify the lost information when using the Shapley value.
Kwon & Zou raised the inappropriateness of the efficiency axiom, pointing out the information gap
depending on the size of the feature sets.
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Game-theoretic Interaction. The concept of interaction was firstly proposed to deal with the infor-
mation of cooperation existing among players (Grabisch & Roubens, 1999), which cannot be taken
into account by the Shapley value (Shapley, 1953) and its variants (Banzhaf III, 1964; Monderer
& Samet, 2002). Since the natural extensions of the axioms of the Shapley value do not guarantee
the uniqueness of interaction indices, previous studies have introduced additional axioms (Grabisch
& Roubens, 1999; Sundararajan et al., 2020; Tsai et al., 2023). Fumagalli et al. proposed a gen-
eral form of these interaction indices and an efficient sampling-based estimator SHAP-IQ. Some
approaches have attempted to explain the underlying reasoning of the inference of DNNs through
the game-theoretic interactions (Deng et al., 2021; Ren et al., 2023; Li & Zhang, 2023).

Attribution Methods. Attribution methods aim to measure the contributions of input features to
the model output. While LRP-based methods sequentially redistribute the model output across the
layers in reverse order (Bach et al., 2015; Montavon et al., 2017; Shrikumar et al., 2017; Nam et al.,
2020), IG and its variants evaluate attributions by aggregating gradients along one or more paths
in the input space (Sundararajan et al., 2017; Kapishnikov et al., 2021; Jeon et al., 2023). Additive
feature attribution methods unify several existing methods, with SHAP uniquely satisfying Shapley-
based axioms (Lundberg, 2017). These methods typically impose the efficiency axiom, requiring
attributions to sum to the model output.

C PROOF

For convenience, we represent the cardinality of N,S, T as n, s, t, respectively. Π(S) denotes the
set of all permutations of the player set S. Given π ∈ Π(S) and i ∈ S, πi is the set of players
preceding player i in the ordering π. [π]k denotes the subset of players up to the k-th player in the
ordering π, where [π]0 := ∅ and [π]s := S.

C.1 PROOF OF THEOREM 1

Lemma 1. Given a player i and S ⊆ N \ {i}, for any permutation π ∈ Π(S) and k ∈ {1, · · · s},

∆iv(S) = ∆iv([π]k−1) +

s∑
t=k

Ii,πt([π]t−1), (16)

where π = (π1, · · · , πs), [π]k represents the subset of players up to the k-th player in the ordering
π, [π]0 := ∅ and [π]s := S.

Proof. It can be simply proved by the definition of interactions.

∆iv(S) = ∆iv([π]s)

= ∆iv([π]s−1) + {∆iv([π]s)−∆iv([π]s−1)}
= ∆iv([π]s−1) + Ii,πs([π]s−1)

= · · ·

= ∆iv([π]k−1) +

s∑
t=k

Ii,πt
([π]t−1).

(17)

Theorem 1. The Shapley value is a weighted sum of interactions:

ϕi(v) = ∆iv(∅) +
n−2∑
t=0

1

n

(
n− 1

t

)−1 ∑
j∈N
j ̸=i

∑
T⊆N\{i,j}

|T |=t

Iij(T ). (18)

Sketch of proof.

1. The Shaley value is the expectation of marginal contributions over all possible random
orderings.

15



Published as a conference paper at ICLR 2025

2. Each contribution is decomposed into cumulative interactions.

3. The coefficients of individual interactions in the Shapley value equation are obtained by
aggregating the results of the decomposition.

Proof. The Shapley value can be expressed as the expected marginal contribution over all possible
random orderings:

ϕi(v) =
1

n!

∑
π∈Π(N)

∆iv(π
i) =

1

n!

∑
π∈Π(N)

(
v(πi ∪ {i})− v(πi)

)
. (19)

Each contribution ∆iv(π
i) can be decomposed into various combinations of interactions depending

on the order of players in πi. Let π := (π1, · · · , πs) be a fixed ordering for set S. By Lemma 1, we
obtain

∆iv(S) = ∆iv([π]s) =

s∑
t=1

Ii,πt
([π]t−1) + ∆iv(∅). (20)

By substitution, the Shapley value can be represented as the sum of an individual contribution term
and the aggregated interactions between players, weighted over all possible subsets.

ϕi(v) = ∆iv(∅) +
∑
j∈N
j ̸=i

∑
T⊆N\{i,j}

wT
ijIij(T ) (21)

The coefficient wT
ij is determined by counting the occurrences of wT

ij in ∆iv(π
i) in Equation (19).

wT
ij =

∑
π̄∈Π(T )

1

n!

∑
π∈Π(N)

1[[π]t = π̄, πt+1 = j]

= t! · 1
n!
· (n− t− 1)!

=
1

n

(
n− 1

t

)−1

(22)

The coefficient wT
ij only depends on the cardinality of T . Finally, the Shapley value is represented

as follows:

ϕi(v) = ∆iv(∅) +
n−2∑
t=0

1

n

(
n− 1

t

)−1 ∑
j∈N
j ̸=i

∑
T⊆N\{i,j}

|T |=t

Iij(T ).

C.2 PROOF OF THEOREM 2

Theorem 2. A game v is convex if and only if Iij(R) ≥ 0 ∀i, j ∈ N, ∀R ⊆ N \ {i, j}.

Proof. (→) Necessity.

We show Iij(R) ≥ 0 for any i, j ∈ N and R ⊆ N \ {i, j}. Define S = R ∪ {i} and T = R ∪ {j}.
By the convexity of v, we obtain

v(R ∪ {i.j}) + v(R) ≥ v(R ∪ {i}) + v(R ∪ {j}),
∆iv(R ∪ {j}) ≥ ∆iv(R).

(23)

Thus, it follows that Iij(R) ≥ 0.

(←) Sufficiency.
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Given S, T ⊆ N , set P = S \T , Q = T \S, and R = S∩T . Let p, q denote the cardinality of P,Q,
respectively. Choose permutations π ∈ Π(P ), π̄ ∈ Π(Q). By Lemma 1, the following equations
hold for all k ∈ {1, · · · , q}.

∆π̄k
v(S ∪ [π̄]k−1) = ∆π̄k

v(R ∪ [π̄]k−1) +

p∑
i=1

Iπ̄k,πi
(R ∪ [π]i−1 ∪ [π̄]k−1)

≥ ∆π̄k
v(R ∪ [π̄]k−1)

(24)

Summing over all k, we obtain
q∑

k=1

{
∆π̄k

v(S ∪ [π̄]k−1)−∆π̄k
v(R ∪ [π̄]k−1)

}
≥ 0,{

v(S ∪ [π̄]q)− v(S)
}
−

{
v(R ∪ [π̄]q)− v(R)

}
≥ 0,

v(S ∪ T )− v(S)− v(T ) + v(S ∩ T ) ≥ 0.

(25)

Therefore, the game v is convex.

C.3 PROOF OF THEOREM 3

Let i ∼ u1(S) be the uniform distribution of player i over the set S, and T ∼ u2(t, S) be the
uniform distribution over subsets T ⊆ S with cardinality |T | = t. ϕ(v) and ∆v(∅) denote the
Shapley value and the discrete derivatives of all players in vector form, respectively. We define an
interaction vector I·j(T ) ∈ Rn where the i-th element is Iij(T ) for given T ⊆ N \ {j}. We set
Iij(T ) = 0 when i = j or i ∈ T , ensuring I·j(T ) is well-defined for T ⊆ N \ {j}. Then, we obtain
the following vectorized form to estimate the Shapley value with interaction vectors.

Theorem 3. The vector of the Shapley value ϕ(v) is represented as follows:

ϕ(v) = ∆v(∅) +
n−2∑
t=0

Ej∼u1(N),T∼u2(t,N\{j})[I·j(T )].

Proof. Since we set Iij(T ) = 0 when i = j or i ∈ T , the following equality holds for all i ∈ N :∑
j∈N
j ̸=i

∑
T⊆N\{i,j}

|T |=t

Iij(T ) =
∑
j∈N

∑
T⊆N\{j}

|T |=t

Iij(T )

= n ·
(
n− 1

t

)
· Ej∼u1(N),T∼u2(t,N\{j})[Iij(T )].

(26)

By combining Theorem 1 with Equation (26) and vectorizing the result, we obtain the conclusion:

ϕ(v) = ∆v(∅) +
n−2∑
t=0

Ej∼u1(N),T∼u2(t,N\{j})[I·j(T )].

D AN ILLUSTRATIVE EXAMPLE OF UNDERVALUATION

In Figure 4, we provide an example of undervaluation in an image recognition scenario. Pattern
scores for image classification are computed within each region, followed by max pooling, and
the results are summed to obtain the final output. In this example, the efficiency axiom constrains
the total attributions in each region to 7 and 4, respectively. Although Region 1 (the first max
pooling) extracts features that significantly contribute to the output, the Shapley value assigns a
lower attribution to feature ‘7’ compared to feature ‘4’ in Region 2 (the second max pooling). This
occurs due to strong negative interactions within an inefficient coalition, as discussed in Section 4.
The proposed API effectively alleviates this undervaluation by eliminating problematic negative
interactions, ensuring that feature ‘7’ receives a higher attribution (7) than feature ‘4’ (4).
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Figure 4: An Example in Image Recognition. Due to negative interactions, feature ‘7’ receives a
lower Shapley value than feature ‘4’, which is a counterintuitive result.

E ADDITIONAL EXPERIMENTS

E.1 EXPERIMENT RESULTS FOR COMPLEXITY

Figure 5: Experiment Results for Complexity. We measured the minimum number of features in-
serted (in descending order of attribution scores) to achieve the KL divergence between the model
output and the original model output below 0.001. API requires fewer features to reproduce the
original model output compared to other methods.

We additionally conduct quantitative experiments. We insert the features (i.e., patches) in descend-
ing order of attribution scores and compute the output class probability distribution to measure the
KL divergence with the original distribution (which includes all features). Then, we identified the
minimum number of features required to reduce the KL divergence to below 0.001. Figure 5 (a)
shows the average number of features required, with API achieving almost 30% reduction compared
to other methods. More specifically, the average numbers are 272.34, 342.94, 281.59, and 203.32 for
KernelSHAP, IG, Approximated Shapley value, and API, respectively. This indicates API requires
fewer features to reproduce the original model output, effectively capturing the relevant features for
the model prediction.

Figure 5 (b) shows the KL divergence with respect to the number of features inserted for a specific
image, as depicted in Figure 5 (c). We observe that API leads to a more rapid decrease in KL
divergence with relatively fewer features inserted. Specifically, the number of features required
to reach the KL divergence of 0.001 is 311, 339, 337, and 203 for KernelSHAP, IG, Approximated
Shapley value, and API, respectively. Furthermore, Figure 5 (c) shows a visualization of the features
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inserted to achieve the KL divergence of 0.001. With the proposed API, we can reproduce the
original decision with fewer irrelevant features inserted compared to other methods.

E.2 ABLATION STUDY FOR FUNCTION CHOICE ON INTERACTIONS

Figure 6: Attribution Results with Different Function Choices on Interactions.

Assigning attributions in the form of interactions in Equation (7) can be seen as decomposing the
characteristic function into interaction terms and then transforming these through a function g (e.g.
ReLU) to determine the attributions for each player. If g is the identity function, the result is the
Shapley value; if it is the ReLU function, the result is API.

The choice of g depends on how the user interprets interactions as attributions in the given task.
For instance, if a smoother transition from interaction values to attributions is preferred, a softplus
function might be a suitable choice. Figure 6 shows the impact of different function choices in
an ImageNet classifier. In this setting, due to the large proportion of negative interactions, even a
slight relaxation using the Leaky ReLU function yields results similar to those of the API (albeit
with differences in scale). When applying the softplus function, negative interactions are mitigated;
however, the differences in positive interactions are also slightly reduced, leading to lower contrast
in the final attributions.

E.3 RUNTIME OF API

Figure 7: Attribution Results and Runtime with respect to the number of Permutations. API takes
around 55 seconds for every 10 permutation samples. Notably, stable results can be achieved with
as few as 30 permutations.

Figure 7 shows the runtime of API for different numbers of permutation samples on an ImageNet
classifier. We observed that stable results can be achieved with as few as 30 permutations, which
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took around 3 minutes on an RTX 6000 GPU. While this is slower compared to IG, it remains com-
parable to other permutation-based attribution methods grounded in game theory. Since handling
interactions inherently involves significant computational costs, accelerating this process through
path-based approximations is one of our future research directions.
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