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ABSTRACT

Optimization problems with composite structure appears in different areas: ma-
chine learning, control, signal processing and so on. Gradient-type methods are
common approach for such problems. Nevertheless, the exact gradient is not
available in many practical applications. Especially, it holds for decentralized
case. Therefore, we consider decentralized proximal gradient method with inex-
act gradient for time-varying graphs. This work contains analysis for problems
with functions that satisfy proximal Polyak-Łojasiewicz condition. Thus, there is
complexity estimations in terms both of oracle calls, and of communications num-
ber. Additionally, we consider stochastic case too. Besides, we provide numerical
experiments to demonstrate performance of considered approach.

INTRODUCTION

Let us consider a sum-optimization problem with composite structure:

minF (x) :=

n∑
i=1

(fi(x) + ri(x)),

where ri is some smooth function that can be easily optimized. Such problems are common enough
in different areas: statistics Parikh & Boyd (2014), machine learning Goodfellow et al. (2016);
Drori et al. (2015), signal processing Boyd et al. (2011) etc. Usually, fi is main part of objective
function and ri are some regularizators. The typical example of such problems is training of models
in machine learning with ℓ1 and ℓ2 regularization.

Further, note, the common approach for some problems is gradient-type methods with proximal op-
erators. Some of these methods were proposed in Parikh & Boyd (2014). Further, they have been
improved in Liang & Schönlieb (2018); Kim & Fessler (2018). Such methods use smoothness of
the first part and ”simplicity” of the second. They have different advantages: simple implementa-
tion, high performance in practice, well-known theoretical guarantees for wide class of problems.
Especially, it is known for convex and strong-convex case in non-distributed case. Nevertheless,
non-convex case is not well-researched yet. One of such papers Zhou et al. (2020); Li et al. (2017)
is devoted to Kurdyka-Łojasiewicz condition but the obtained rate is sublinear in the worst case and
they do not research dependence on the inexactness.

In the case of large amount of data, such problems can be solved in distributed way Li et al. (2020);
Lian et al. (2017); Nedic & Ozdaglar (2009). In other words, we have a network where each node
knows only its part of sum and can communicate with only neighbors. Such way allow decreasing
requirements for devices to solve this problem. On the other hand, its bottleneck is communications
that can be carefully designed. There are common approaches based on consensus procedure on each
iteration. Because of big data in many practical important applications, researchers are interested in
development of distributed methods too. Here, we can emphasize recent works devoted to distributed
strong-convex case Rogozin et al. (2023). We will continue research from this paper and generalize
its analysis for non-convex case.

Besides distributed methods based on consensus procedure. there is a wide class of methods with
several communication steps per iteration. Here, we can find different primal dual methods with
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proximal operators: ABC Xu et al. (2021), NEXT Di Lorenzo & Scutari (2016), Exact Diffusion
Yuan et al. (2018); Xu et al. (2021), NIDS Li et al. (2019), EXTRA Shi et al. (2015), AugDGM Xu
et al. (2015). Another approaches are based on dual problems. The first such approach was proposed
in Scaman et al. (2017). Nevertheless, the most of such methods have proved convergence only for
convex case. Another disadvantage of such approaches is that they usually work only not changing
networks. But it is a common situation when some links are lost and some are added Bonawitz et al.
(2019); Li et al. (2020); Nedic (2020). Because of that disadvantages, we focus on methods using
consensus procedure.

Despite the high complexity of general non-convex problem, there are different generalization of
convexity: star-convexity Lee & Valiant (2016), weakly-quasi-convexity Hardt et al. (2016); Gu-
minov & Gasnikov (2017), quadratic growth condition Karimi et al. (2016). One of such gener-
alizations is Polyak-Łojasiewicz (proposed in Polyak (1963)) condition that can be found in many
practical problems Belkin (2021); Karimi et al. (2016). Moreover, there is its generalization for con-
vex case - Proximal PL-condition Karimi et al. (2016). It allows proving convergence of different
proximal gradient methods for non-convex problems.

Note, that consensus procedure leads to some errors in method. Nevertheless, the gradient of func-
tion already contains its own inexactness: problems in Hilbert spaces, distributed systems with com-
pression of gradient etc. Examples of such problems can be found in the following works Devolder
et al. (2013); Vasin et al. (2021); Polyak (2020).

Despite the numerous papers, non-convex distributed case is not researched yet. This paper is de-
voted to the generalization of distributed proximal gradient method for optimization problems with
composite structure under proximal pl-condition. Our main contributions are given by the following
list:

1. Convergence for Inexact Proximal Gradient Method. We present theoretical results for prox-
imal gradient method for non-distributed case under Proximal PL-condition. We estimate sufficient
number of iterations to approach required accuracy. Besides, we consider the case of the use of
gradient with additive inexactness and stochastic gradient. These results are presented in Section 2

2. Generalization of Analysis for Distributed Case We generalize the results from previous point
for distributed case with time-varied graphs. In such case, we have additional natural inexactness in
directions because of distributed calculations. We provide estimations of complexity in terms of the
communications too. You can find our analysis for this case in Section 3.

Besides, we provide numerical experiments in Section 4.

1 PROBLEM STATEMENT

We consider the several problem statements. But all of them has main restriction: exact gradient is
not available. We define it in more formally in Section 1.1.

We start from problem of non-distributed composite minimization (see Section 1.1). This section
also contains the main assumptions about properties of our non-convex function and inexact gradi-
ent.

The next step is the distributed variant of the problem above (see Section 1.2). It also contains
assumption about communication matrix.

Notation. Throughout the paper, ⟨·, ·⟩ denotes the inner product of vectors or matrices. Correspond-
ingly, by ∥ · ∥, we denote the 2-norm for vectors or the Frobenius norm for matrices.

1.1 NON-DISTRIBUTED CASE

We start our analysis from centralized case and consider the following problem:

min
x∈Rd

[F (x) := f(x) + r(x)] , (1)

where f is some smooth possibly non-convex optimization problem and function r is some convex
friendly proximal function. The last statement means that proximal operator with respect to the
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function r can be calculated with low computational cost. The assumption about smoothness means
the following assumption.
Assumption 1 (Smoothness). Function fi is Li-smooth i.e. the following condition holds

F (y) ≤ F (x) + ⟨∇F (x), y − x⟩+ L

2
∥x− y∥2 (2)

for any x, y ∈ Rd.

We will work with non-convex problems that sutisfy the following proximal Polyak-Łojasiewicz
condition (Proximal PL):
Assumption 2 (Proximal PL). Function F (x) := f(x) + r(x) meets proximal-PL condition if
function f is L-smooth and sutisfy the following inequality for all x:

F (x)− F (x⋆) ≤ 1

2µ
D(x, L) (3)

where
D(x, L) = −2αmin

y

[
⟨∇f, x− y⟩+ α

2
∥x− y∥2 + g(y)− g(x)

]
. (4)

There are different examples of problems that satisfy this condition:

1. f is composition of strong-convex function and linear function and r is an indicator func-
tion of polyhedral set. In particular, such class includes optimization of mean least squares
problem over polyhedra.

2. Function F satisfies quadratic growth condition
3. Least squares problem with ℓ1 regularization
4. Nuclear norm regularization
5. Support Vector Machines
6. Some problems that satisfy KL-condition (see Karimi et al. (2016), Li et al. (2023))

Note, the convergence of Proximal Gradient method for problems with such assumption was re-
searched in Karimi et al. (2016). In our paper, we generalize this analysis for the case of gradient
with additive inexactness and the stochastic case. Therefore, let us introduce the following assump-
tions for gradient inexactness.
Assumption 3 (Inexact Gradient). Algorithm has access to inexact gradient, i.e. vector gx,ξ is
defined at any point x such that the following inequalities hold:

∥gx −∇f(x)∥ ≤ δ.

The definition above assume that the inexactness has no structure, and we can guarantee only that it is
not too large. There are well-known for different optimization method in convex case Polyak (1963);
Vasin et al. (2021); Nesterov & Spokoiny (2015) and in even non-convex case Bottou et al. (2018);
Ajalloeian & Stich (2020); Stonyakin et al. (2023); Kuruzov & Stonyakin (2021). In particular, there
are works demonstrating robustness of simple gradient method to error accumulation Polyak (1963).
Note, that the classic accelerated methods usually have not such property (see Vasin et al. (2021)).

On the other hand, stochastic gradient place important role in modern optimization. Besides, it can
contain bias too. Further, we introduce assumptions about biased stochastic oracle that are inspired
by Ajalloeian & Stich (2020):
Assumption 4 (Stochastic Inexact Gradient). Algorithm has access to (δ, σ2) stochastic inexact
gradient, i.e. vector gx,ξ is defined at any point x such that the following inequalities hold:

Eξ∥gx,ξ − Eξgx,ξ∥2 ≤ σ2

and
∥Eξgx,ξ −∇f(x)∥ ≤ δ

This assumption cover different practical applications. In particular, there are different methods of
zeroth-order methods Vasin et al. (2021); Nesterov & Spokoiny (2015) and gradient compression
Beznosikov et al. (2020); Liu et al. (2018). All these methods have bias in gradient and sometimes
include stochastic error. Note, the methods of gradient sparsification and compression have impor-
tant place in decentralized optimization because they allow significantly decreasing complexity of
communications.
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1.2 DISTRIBUTED MINIMIZATION PROBLEM

Let us introduce the distributed composite problem. In this problem we have a sequence of networks
{Gt}t with the same number of nodes but the set of edges can change. Each communication round
can be given through matrices of communications Wt that should satisfy the following conditions:

Assumption 5. Mixing matrix sequence {W k}∞k=0 satisfies the following properties:

• (Decentralized property) If (i, j) /∈ Ek ∪ {i}, then [W k]ij = 0.

• (Double stochasticity) W k1n = 1n, and 1⊤
nW

k = 1⊤
n .

• (Contraction property) There exist τ ∈ Z++ and λ ∈ (0, 1) such that for every k ≥ τ − 1,
it holds the following inequality∥∥W k

τ X−X
∥∥ ≤ (1− λ)

∥∥X−X
∥∥ ,

where W k
τ = W k . . .W k−τ+1.

Note, this class of time-varying networks includes static graphs and sequence of connected graphs.
At the same time, this sequence may contain disconnected graphs too. In particular, the contraction
property is satisfied if each communication is Metropolis weights choice and the sequence is τ -
connected graph sequence Nedic et al. (2017).

Algorithm 1 Consensus.
Require: Initial point x0 ∈ Rn×d, number of communication rounds T .

1: Take current time moment t0 from global variable.
2: for k = 0, . . . , T − 1 do
3: zk+1 := W t0+k xk.
4: Update global variable with current time moment: t0 = t0 + T . return xT .

Now we can present protocol of communication - Algorithm 1. On each step of communication,
each node takes vectors from its neighbors and averages them. Weights of this averaging are given
by communication matrix. Note, each matrix can change according to Assumption 5.

Let us introduce the distributed composite problem:

min
x∈Rd

[
F (x) :=

1

n

N∑
i=1

(fi(x) + ri(x))

]
where each function ri is friendly proximal and each function fi meets Assumption 1. In this
problem statement, each node i has access to only its own function fi and ri. Besides, during
optimization process, each node will have its own variable state xi. So, we can rewrite optimization
problem above in the following way:

min
x∈Rn×d: 1n11⊤=x

[
F̂ (x) :=

N∑
i=1

(fi(xi) + ri(xi)

]

2 PROXIMAL GRADIENT METHOD

In this section, we consider the composite problem in the following form:

min
x∈Rd

[F (x) := f(x) + r(x)] (5)

where f(x) is smooth part and function F satisfy Assumption 2.

Let us introduce the well-known Karimi et al. (2016); Parikh & Boyd (2014) Proximal Gradient
Method (see Algorithm 2). On each iteration we calculate inexact gradient descent and after that
method calculate gradient step and step with proximal operator.
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Algorithm 2 Proximal Gradient Method
Data: step size α, number of consensus steps T , inexact gradient oracle g : Rn → Rn

1: Inexact Gradient Calculation:
gxk := g(xk)

2: (S.1) Gradient Step:
yk+1 = xk − αgxk

3: (S.2) Proximal Step:
xk+1 = proxαri(z

k+1)

4: (S.3) If a termination criterion is not met, then k ← k + 1 and go to step (S.1).

Obviously, our algorithm accumulates errors in Step 1. This errors can be deterministic (see As-
sumption 3) or stochastic 4. Consequently, the results of this section are divided into two corre-
sponding subsections.

Section 2.1 contains Theorem 6 that generalize well-known proximal PL-condition for bounded
deterministic inexactness. It is a key result of this paper that allows estimating convergence rate of
Proximal Gradient Method for non-convex case.

Furthermore, we have similar results for stochastic case presented in Section 2.2.

2.1 DETERMINISTIC CASE

In this section, we estimate influence of deterministic inexactness that satisfy Assumption 3.

Firstly, note, that Proximal PL Condition (see Assumption 2) uses exact gradient when we access to
only inexact one. The following theorem modificates this condition for this case.

Theorem 6. Let gx be an inexact gradient at point x that meets Assumption 3 and function F (x) =
f(x) + r(x) meets Assumptions 1 and 2. Then the following inequality holds:

F (x)− F ⋆ ≤ 1

µ
D̃(x, L/2) +

δ2

µ
, (6)

where L̃ ≥ 1
n

n∑
i=1

Li

Proof. Let us consider the following value:

D̃g(x, L) = −2Lmin
y

[
⟨gx, y − x⟩+ L

2
∥y − x∥+ r(y)− r(x)

]
Because of Assumption 3 we have:

⟨gx, x− y⟩ ≥ ⟨∇f(x), x− y⟩ − δ2

L
− L

4
∥y − x∥.

It gives us the following estimation:

− 2Lmin
y

[
⟨gx, y − x⟩+ L

2
∥y − x∥+ r(y)− r(x)

]
≥− 2Lmin

y

[
⟨∇f(x), y − x⟩+ L

4
∥y − x∥+ r(y)− r(x)

]
− δ2

L

=
1

2
D(x, L/2)− δ2

L

We can obtain estimation for D(x, L/2) through D̃g(x, L). Further, use statement of Assumption 2
gives us the statement of the theorem.
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This theorem allows us to generalize the result from Karimi et al. (2016) to the following result with
inexact gradient.
Theorem 7. Let us consider the problem equation 5 such that function F meets Assumptions 1 and
2, gx be δg-inexact gradient of function f with respect to x (see Assumption 3). Besides, desired

accuracy ε is such that ε ≥ 3δ2g
2µ . Then after N =

⌈
4L
µ ln F (x0)−F∗

ε

⌉
iterations of Algorithm 2 one

can guarantee F (xN )− F ∗ ≤ ε.

The proof of this theorem is similar to analysis of exact PGM in Karimi et al. (2016) and it is placed
in Appendix B.1

We can see that this algorithm does not accumulate error even in non-convex case. Moreover, it can
approach accuracy ε ∼ δ2g with linear rate.

2.2 STOCHASTIC CASE

In this section, we consider the case when gx is stochastic biased estimation of true gradient. We
have discussed the importance of this class in Section 1. Let us start for the generalization of
Proximal PL condition for this stochastic case. In similar way to proof Theorem 6 we can obtain the
following theorem
Theorem 8. Let gx be an inexact gradient at point x that meets Assumption 3 and function F meets
Assumptions 1 and 2. Then the following inequality holds:

F (x)− F ⋆ ≤ 1

µ
ED̃(x,

L̃

2
) +

δ2

µ
+

σ2

µ
. (7)

This theorem allows us to generalize the result from Karimi et al. (2016) to the following result with
inexact gradient.
Theorem 9. Let us consider the problem equation 5 such that function F meets Assumptions 1 and
2, gx be δg-inexact gradient of function f with respect to x (see Assumption 4). Besides, desired

accuracy ε is such that ε ≥ 3δ2g+3σ2

2µ . Then after N =
⌈
4L
µ ln F (x0)−F∗

ε

⌉
iterations of Algorithm 2

one can guarantee quality EF (xN )− F ∗ ≤ ε.

Proof for this theorem is presented in Appendix B.2. We obtain a natural result that stochastic does
not worsen significantly convergence rate, but the quality can be a little worse.

3 ANALYSIS FOR DISTRIBUTED CASE

Further, let us consider generalization of Algorithm 2 for decentralized case - Decentralized Prox-
imal Gradient Method (see Algorithm 3). This section is devoted to this algorithm in the case of
deterministic gradient inexactness. Note, gradient step S.1 and Proximal Step S.2 are made inde-
pendently for different nodes. Besides, we have here additional step of Consensus (see step S.3). We
provide analysis of accumulation of inexactness from gradient and from this consensus procedure.

Let us start from important lemma that demonstrate accumulation of inexactness from gradient and
from consensus procedure.
Lemma 10. Let the number of consensus steps T in Algorithm 3 be such that ∥xk − xk∥ ≤ δc.

Besides, gxk is inexact gradient of function F with constant δg. Then gxk = 1
n

N∑
i=1

gxk
i

is inexact

gradient of function f with respect to xk with parameter δ =
δg+δc maxi Li√

n
.

Proof. Firstly, because of enough large number of consensus steps and Lipschitz continuous gradi-
ent, we have ∥∇F (xk)−∇F (xk)∥ ≤ δc maxi Li. On the other hand, gxk meets ∥∇F (xk)−gxk∥ ≤
δg. It gives us the upper bound on difference between inexact gradient and gradient with respect to
corresponding mean point:

∥∇F (xk)− gxk∥ ≤ δg + δc max
i

Li.
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Algorithm 3 Decentralized Proximal Gradient Method (DPGM)
Data: step size α, number of consensus steps T , inexact gradient oracle g : Rn×d → Rn×d

1: Inexact Gradient Calculation:
gxk := g(xk)

2: (S.1) Gradient Step:
yk+1 = xk − αgxk

3: (S.3) Consensus:
yk+1 = Consensus(yk+1, T )

4: (S.2) Proximal Step:
xk+1
i = proxαri(z

k+1
i )

for all i = 1, n.
5: (S.4) If a termination criterion is not met, then k ← k + 1 and go to step (S.1).

Further, note, that∇f(xk) = 1
n

n∑
i=1

[
∇F (xk)

]
i
. Then we have:

∥gxk
−∇f(xk)∥ ≤ 1

n

n∑
i=1

∥gxk
i
−
[
∇F (xk)

]
i
∥ ≤ 1√

n
∥∇F (xk)− gxk∥ ≤ δg + δc maxi Li√

n

It means that this procedure is still extra similar to usual Proximal Gradient Method with increased
inexactness because of communication error.

Finally, let us provide the result for the deterministic case.

Theorem 11. Let f meet Assumptions 1 and 2, gx be δg-inexact gradient of function F with respect
to a point x, communication network meets Assumption 5 Besides, desired accuracy ε is such that

ε ≥ 16δ2g
nµ . Further let us define value R = 64L2

µ2 max[f(x0)−f(x∗), ε]. Then N =
⌈
4L
µ ln 4(f0−f∗)

ε

⌉
iterations of Algorithm 3 with α = 1

4L and T =
⌈
2τ
λ ln R

ε

⌉
communications per iteration are enough

to approach the point xk+1 such that F (xk)− F ∗ ≤ ε and ∥xk+1 − xk+1∥ ≤ µε
4L .

Finally, let us provide result for the general case - Decentralized Proximal Gradient Method with
Stochastic Biased Gradient.

Theorem 12. Let F meet Assumptions 1 and 2, gx be (δg, σ)-inexact gradient of function F with
respect to a point x, communication network meets Assumption 5. Besides, desired accuracy ε is

such that ε ≥ 4δ2g+4σ2

nµ . Further let us define value R = 500L2

µ2 max[f(x0) − f(x∗), ε]. Then N =⌈
4L
µ ln 4(F0−F∗)

ε

⌉
iterations of Algorithm 3 with α = 1

4L and T =
⌈
2τ
λ ln R

ε

⌉
communications per

iteration are enough to approach the point xN such that EF (xn)−F ∗ ≤ ε and E∥xN−xN∥ ≤ µε
4L .

The proof for this theorem is placed in Appendix C.3.

Further, let us give a couple of remarks about obtained results.

Remark 13. Note, that variance of the stochastic gradient can be decreased through batching tech-
nique (see Allen-Zhu (2017)).

Remark 14. Theorems 11 and 12 demonstrates that distribution of data does not significantly in-
crease complexity of problem in comparison with deterministic case (see Section 2). The main
problem is adding of additional error because of inexact consensus procedure.
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4 NUMERICAL EXPERIMENTS

To provide efficiency of Proximal Gradient Method we will consider the logistic regression problem
with ℓ1 regularization:

min
x∈Rd

n∑
i=1

log(1 + exp(−yia⊤i , x)) + λ∥x∥1, (8)

where ai ∈ Rd is feature vectors, yi ∈ {1, 1} is class of i-th sample, and λ is coefficient of regular-
ization. We will consider this problem on a3a dataset Chang & Lin (2007).

It is non-smooth convex problem. According to lower bounds, it can not be solved faster than with
sublinear rate. It holds for proximal methods. On the other hand, Karimi et al. (2016) demonstrates
that such problem satisfy proximal PL condition. Nevertheless, it is well-known that such methods
are extra effective for such problem Parikh & Boyd (2014). Here we demonstrate that proximal gra-
dient method significantly outperform subgradient method even if the exact gradient is not available.

Another way to solve problem 8 is use of smoothing Nesterov (2003). In particular, we can use
Huber function instead of |x|. We add consensus procedure for method from Nesterov (2003) but it
has not theoretical guarantees for convergence.

To sum up, we will compare proximal gradient method (PGM), subgradient method (GM), acceler-
ated gradient method Nesterov (2003) (AGM) on smoothed version of equation 8. We will consider
this methods in centralized and decentralized case. In the first case, we will add artificial noise.
In the second case, we will send between nodes gradient with rounded values. For the decentral-
ized case, we will consider some network where at each time moment not more than 0.1 edges will
change.

We take the same value T for all methods. We used batched stochastic gradient in each node that
provide unbiased noise. Besides, we round it to obtain bias in inexactness. In the table 1 you can
find the best approached qualities by different methods and number of iterations.

δ1 N F (xN )− F ∗ ∥xN − xN∥
PGM 1347 0.0007 3.2× 10−5

GM 2495 0.0053 6.2× 10−5

AGM 1233 0.0128 1.2× 10−5

Table 1: Results for logistic regression equation 8 with δ + σ ≤ 10−4 and λ = 10−2

We can see that PGM approaches the best quality and at the same time its speed is comparable with
AGM. At the same time, this method can not theoretical guarantees and PGM’s quality is better.

5 CONCLUSION

In this paper, we propose analysis for Proximal Gradient method for subclass of non-convex non-
smooth functions. We prove that this method is robust to both stochastic noise and finite inexactness.
Note

Furthermore, these results were generalized for distributed case. We provide sufficient number of
communication rounds to decrease the error of communication for sufficient level. Besides, our
estimates depend only on start condition, parameter of algorithm and parameters of function but not
the sequence {xk}k generated by algorithm.

Finally, we presented results of numerical experiments where we compare proximal gradient method
with well-known methods for smoothed problem. Our method outperform almost all methods in the
speed and approached quality.

Note, that the presented results can be generalized in different ways. In particular, the next step
of such research can be word devoted to non-convex saddle-point problems in distributed and non-
distributed cases that takes a lot of applications in modern machine learning.
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A APPENDIX

B SOME PROOFS FOR STOCHASTIC NON-DECENTRALIZED OPTIMIZATION

B.1 PROOF OF THEOREM 7

Proof. According to definition of function F and its smoothness, we have the following inequality:

F (xk+1) = f(xk+1) + r(xk+1)

≤ f(xk) + ⟨∇f(xk), xk+1 − xk + L∥xk+1 − xk∥2 + r(xk+1)

= F (xk) + ⟨∇f(xk), xk+1 − xk⟩+ L

2
∥xk+1 − xk∥2 + r(xk+1)− r(xk)

≤ F (xk) + ⟨gxk , xk+1 − xk⟩+ L∥xk+1 − xk∥2 + r(xk+1)− r(xk) +
1

2L
δ2

≤ F (xk)− 1

4L
D̃g(x, L) +

1

2L
δ2,

where the last inequality holds because of the definition D̃g. Further, we can use Theorem 6 and
obtain the following convergence:

F (xk+1)− F (x∗) ≤
(
1− µ

4L

)
(F (xk)− F (x∗)) +

3

4L
δ2,

Iteratively use of the inequality above gives us the following convergence rate:

F (xk+1)− F (x∗) ≤
(
1− µ

4L

)k
(F (x0)− F (x∗)) +

3δ2

µ
.

It gives us final convergence rate and allows obtaining statement of Theorem 7.

B.2 PROOF OF THEOREM 8

Similarly to the proof of Theorem 6 we can consider the following value:

D̃g(x, L) = −2Lmin
y

[
⟨gx, y − x⟩+ L

2
∥y − x∥+ r(y)− r(x)

]
Note, gx is random value and consequently, D̃g(x, L) is random too. Because of Assumption 3 we
have:

E ⟨gx, x− y⟩ ≥ ⟨∇f(x), x− y⟩ − δ2 + σ2

L
− L

4
∥y − x∥.

Using the same estimation as in Theorem 6, we can obtain the statement of the theorem.

B.3 PROOF OF THEOREM 9

Proof. According to definition of function F and its smoothness, we have the following inequality:

F (xk+1) = f(xk+1) + r(xk+1)

≤ f(xk) + ⟨∇f(xk), xk+1 − xk + L∥xk+1 − xk∥2 + r(xk+1)

= F (xk) + ⟨∇f(xk), xk+1 − xk⟩+ L

2
∥xk+1 − xk∥2 + r(xk+1)− r(xk)

≤ F (xk) + ⟨gxk , xk+1 − xk⟩+ L∥xk+1 − xk∥2 + r(xk+1)− r(xk) +
1

2L
∥∇f(xk)− gxk∥2

≤ F (xk)− 1

4L
D̃g(x, L) +

1

2L
∥∇f(xk)− gxk∥2,

Further, using Assumption 4 and Theorem 8 we obtain the following result:

E[F (xk+1)F (x∗)|xk] ≤ (1− µ

4L
)(F (xk)− F (x∗)) + 2

δ2 + σ2

L
.

Iterative use of the inequality above gives us the required statement of Theorem 9.

12
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C DISTRIBUTED CASE

C.1 PROOF OF THEOREM 11

Proof. Using Lipschitz condition for function f with constant L = 1
n

∑
i Li, we get the following

result.

f(xk+1) ≤f(xk) +
〈
∇f(xk), xk+1 − xk

〉
+

L

2
∥xk+1 − xk∥2 + r(xk+1)− r(xk)

≤f(xk) +
〈
gxk , xk+1 − xk

〉
+ L∥xk+1 − xk∥2 + r(xk+1)− r(xk) +

1

2L
δ2

(9)

Further, let us state the following Lemma:

Lemma 15. Let us define g̃xk
i

=
[
WTgxk

]
i
. Then if for all previous iterations

1
n

n∑
i=1

〈
gxj − g̃xj

i
, xj+1

i − xj
〉
≤ δr and consensus error not more than δc, then after T =⌈

τ
λ ln (4+2L)f(x0)−f(x∗)+(2δr+δc)

δrµ

⌉
communication steps we obtain the same estimation for this it-

eration:
1

n

n∑
i=1

〈
gxk − g̃xk

i
, xk+1 − xk

〉
≤ δr

and
∥xk+1 − 1n(x

k+1)⊤∥ ≤ δr

It allows us to obtain D in our further proof.

The last inequality was obtained from ⟨a, b⟩ ≤ 1
2c∥a∥

2 + c
2∥b∥

2 for any vectors a, b and constant c.
Further, let us express D value:〈

gxk , xk+1 − xk
〉
+ L∥xk+1 − xk∥2 + r(xk+1)− r(xk)

≤ 1

n

n∑
i=1

(
⟨gxk , xk+1

i − xk⟩+ L∥xk+1
i − xk∥2 + r(xk+1

i )− r(xk)
)

≤δr +min
x

1

n

n∑
i=1

(
⟨
[
WTgxk

]
i
, xi − xk⟩+ L∥xi − xk∥2 + r(xi)− r(xk)

)
≤δr +min

x∈C

1

n

n∑
i=1

(
⟨
[
WTgxk

]
i
, xi − xk⟩+ L∥xi − xk∥2 + r(xi)− r(xk)

)
=δr +min

x

[
⟨gxk , x− xk⟩+ L∥x− xk∥2 + r(x)− r(xk)

]
=δr −

1

2L
D̃(xk, 2L)

(10)

where δr = 1
n

n∑
i=1

〈
gxk − gxk

i
, xk+1

i − xk
〉
. Uniting results above and equation 6, we have:

f(xk+1)− f∗ ≤
(
1− µ

4L

)
(f(xk)− f∗) + δr +

2

nL
δ2

Using δr = µ
4L

ε
4 and take corresponding T from Lemma 15 we can obtain the following result:

f(xk+1)− f∗ ≤
(
1− µ

4L

)
(f(xk)− f∗) +

µ

4L

ε

4
+

2δ2g
nL

≤
(
1− µ

4L

)k
(f(x0)− f∗) +

ε

4
+

8δ2g
nµ

≤
(
1− µ

4L

)k
(f(x0)− f∗) +

3ε

4

13



Under review as a conference paper at ICOMP 2024

This inequality gives us sufficient number of iterations to approach quality ε and it finishes our proof.
Let us introduce value:

R =
64L2

µ2
max[f(x0)− f(x∗), ε] (11)

It gives us sufficient number of iterations: T = 2τ
λ ln R

ε

C.2 PROOF OF LEMMA 15

Proof. Using convexity of function (·)2, monotonicty of
√
· and quaratic growth condition, we ob-

tain the following result:

1

n

n∑
i=1

〈
gxk − g̃xk

i
, xk+1

i − xk
〉
≤

√√√√ 1

n

n∑
i=1

∣∣∣〈gxk − g̃xk
i
, xk+1

i − xk
〉∣∣∣2

≤

√√√√ 1

n

(
n∑

i=1

∥gxk − g̃xk
i
∥2
)(

n∑
i=1

∥xk+1
i − xk∥2

)

≤ 1√
n
∥(I −

kT∏
k=(k−1)T

W k)gxk∥ · ∥xk+1
i − xk∥

≤ 1√
n
(1− λ)

T
k ∥xk+1

i − ⊮n(x
k)⊤∥∥gxk∥.

Note, that Proximal PL satisfy quadratic growth condition (see Karimi et al. (2016). It means that
we can write the following estimations:

∥gxk∥ ≤δ + ∥∇f(xk)∥ ≤ δ +
2L

µ
(F (xk)− F (x∗)),

∥xk+1
i − ⊮n(x

k)⊤∥ ≤ 2

µ
((F (xk+1)− F (x∗)) + (F (xk)− F (x∗))) + ∥xk+1 − 1n(x

k)⊤∥

≤2 + 2L

µ
((F (xk+1)− F (x∗)) + (F (xk)− F (x∗))) + δr.

Note, that for the fixed value of consensus error and gradient inexactness we have the following
estimation:

T =

⌈
2τ

λ
ln

(8L)max
(
f(x0)− f(x∗), (2δr + δ)

]
δrµ

⌉
to approach the required quality.

C.3 PROOF OF THEOREM 12

Let us introduce the following notation for conditional mathematical expectation E[X] = E[X|Xj ].

Firstly, let us note that we can generalize Lemma 15 for the stochastic case.

Lemma 16. Let us define g̃xk
i

=
[∏kT

(k−1)T gxk

]
i
. Then if for all previous iterations

Ej−1
1
n

n∑
i=1

〈
gxj − g̃xj

i
, xj+1

i − xj
〉
≤ δr and consensus error Ej−1∥xj − xj−1∥ not more than

δc, then after T =

⌈
τ
λ ln

(4+2L)f(x0)−f(x∗)+(2δr+
δ2+σ2

nµ )

δrµ

⌉
communication steps we obtain the same

estimation for this iteration:

Ek
1

n

n∑
i=1

〈
gxk − g̃xk

i
, xk+1 − xk

〉
≤ δr

and
Ek∥xk+1 − 1n(x

k+1)⊤∥ ≤ δr

14
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In similar way we can estimate the following value, using the same decomposition as in proof of
Theorem 11:

Ek

〈
gxk , xk+1 − xk

〉
+ L∥xk+1 − xk∥2 + r(xk+1)− r(xk) ≤ δr − Ek

1

2L
D̃(xk, 2L) (12)

Uniting the results above and Theorem 8, we have:

Ef(xk+1)− f∗ ≤
(
1− µ

4L

)
(Ef(xk)− f∗) + δr +

4

nL
(δ2 + σ2)

If we take the same δr = µ
4L then we have that N iterations and T communications per iteration is

enough to approach required quality where N is defined in statement of Theorem 12.

C.4 PROOF OF LEMMA 16

Note, that the key estimation holds the same

1

n

n∑
i=1

〈
gxk − g̃xk

i
, xk+1

i − xk
〉
≤ 1√

n
(1− λ)

T
k ∥xk+1

i − ⊮n(x
k)⊤∥∥gxk∥.

Further, note that
E∥gxk −∇f(xk)∥2 ≤ 2δ2 + 2σ2

. In other words, we have the same estimation for multipliers as in proof of Lemma 15 except of
additive value:

∥gxk∥ ≤δ + ∥∇f(xk)∥ ≤ 2σ + 2δ +
2L

µ
(F (xk)− F (x∗)),

∥xk+1
i − ⊮n(x

k)⊤∥ ≤2 + 2L

µ
((F (xk+1)− F (x∗)) + (F (xk)− F (x∗))) + δr + 2δ + 2σ.

It gives us required number of communications round.
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