
A Proofs of Lemmas and Theorems487

A.1 Proof of Proposition 1488

Proposition 1. If the learning target is non-identifiable (i.e., every edge in the target is non-identifiable) a priori,489

then SCL is not better than random guessing.490

Re-statement: We take learning target as the orientation of an edge as an example, so we are analyzing the491

performance of a binary classifier against random guessing. The conclusion can be easily extended to general492

case.493

Denote random guessing as a degenerated estimator r(X) ⌘ 0.5, which indicates the probability of label = 1 is494

always 0.5, regardless of any input.495

Denote the joint probability distribution of X and Y as P and the space of all joint probability distribution is P ,
then we aim to prove the following statement which is in an adversarial setting:

r = argmin
f2C

sup
P2P

E(X,Y)⇠P [�Y log f (X)� (1� Y) log (1� f (X))]

The expectation is the standard binary cross entropy loss; we are allowed to enumerate every possible joint496

probability distribution in P because the learning target is non-identifiable. C is the space of all possible binary497

classifiers.498

Proof. Given any binary classifier f , we partition the space of X by A, B and C where A = {x|f(x) > 0.5},
B = {x|f(x) < 0.5}, C = {x|f(x) = 0.5}. Then we construct the following joint probability distribution
P ⇤:

P ⇤ (X,Y) =

8
<

:

P ⇤ (Y = 0|X = x) = 1 if x 2 A
P ⇤ (Y = 1|X = x) = 1 if x 2 B

arbitrary if x 2 C

9
=

;

Then it is easy to see that E(X,Y)⇠P⇤ [�Y log f (X)� (1� Y) log (1� f (X))] � 1. Note that499

E [�Y log r (X)� (1� Y) log (1� r (X))] ⌘ 1 , thus r achieves minimum worse-case loss.500

A.2 Proof of Proposition 2501

Proposition 2. If ML4C-Learner is a perfect classifier, then ML4C outputs correct CPDAG of a canonical502

dataset (i.e., ML4C is perfect).503

Proof. Classical constraint-based methods consist of three steps: skeleton identification, v-structure identifica-504

tion, and further edge orientation by applying Meek rules [37]. It has been proved in PC [34] that when learning505

from a canonical dataset, if both the identified skeleton and v-structures are correct, then the learned CPDAG506

is correct. ML4C follows the three steps, with the correct skeleton is given as input, and ML4C-Learner is507

responsible for v-structure identification. Thus, assuming ML4C-Learner is a perfect classifier (i.e., correctly508

identifies all v-structures) implies that ML4C outputs correct CPDAG.509

A.3 Proof of Lemma 1510

Lemma 1. Sepsets S of any UT of a canonical dataset is non-empty.511

Proof. According to Lemma 3.3.9 of [35], in a directed acyclic graph G, if X is not a descendant of Y , and512

X and Y are not adjacent, then X and Y are d-separated by Parents(Y). Given an UT hX,T, Y i, X and Y513

are not adjacent. Either X is not a descendant of Y , or Y is not a descendant of X , otherwise a loop will be514

introduced. Thus there either exists Parents(X) ⌘ PCX [T , or Parents(Y) ⌘ PCY [T , which belongs to515

S. Thus S is non-empty.516

A.4 Proof of Lemma 2517

Lemma 2 (Existence of weak discriminative predicate). For a canonical dataset with infinite samples,518

the following are three weak discriminative predicates: i) {X ⇠ Y |T} > 0, ii) {X ⇠ Y |PCT } = 0 ,519

iii) {PCX ⇠ PCY |S [T} > 0.520

Proof. For a canonical dataset with infinite samples,521

1. {X ⇠ Y |T} > 0: 1) hX,T, Y i is a v-structure) T is a collider) T unblocks X and Y through522

path X � T � Y) {X ⇠ Y |T} > 0 holds TRUE. 2) if hX,T, Y i is not a v-structure, then523

{X ⇠ Y |T} > 0 can be TRUE or FALSE. e.g., it is FALSE for X ! T ! Y (no more paths connect524

X and Y), but if there exists another node X ! T
0
! Y , it is evaluated TRUE. Therefore, it satisfies525

criterion ii) of definition 12, but not i) hence it is a weak discriminative predicate.526

13

2. {X ⇠ Y |PCT } = 0: 1) hX,T, Y i is not a v-structure) T is a non-collider) 8pct 2 PCT , there527

exists a path X � T � Y from X to Y , where T is the only node on path, T is a non-collider,528

and T /2 {pct}) pct does not block the path) {X ⇠ Y |PCT } = 0 always holds FALSE. 2) if529

hX,T, Y i is a v-structure, then {X ⇠ Y |PCT } = 0 can be TRUE or FALSE. Therefore, it satisfies530

criterion i) but not ii) hence it’s a weak discriminative predicate.531

3. {PCX ⇠ PCY |S [T} > 0: 1) hX,T, Y i is a v-structure) T is a collider) 8pcx 2532

PCX , pcy 2 PCY , S 2 S, S [T unblock pcx and pcy through path pcx �X � T � Y � pcy)533

{pcx ⇠ pcy|S [T} > 0 always hold TRUE. 2) if hX,T, Y i is not a v-structure then it can be TRUE534

or FALSE. Therefore, it satisfies criterion ii) but not i) hence it’s a weak discriminative predicate.535

536

A.5 Proof of Lemma 3537

Lemma 3 (Existence of strong discriminative predicate). For a canonical dataset with infinite samples, the538

following are three strong discriminative predicates: i) OLP(T,S) = 0, ii) OLP(T,S) < 0.5, iii) OLP(T,S) <539

1 ^min {X ⇠ Y |T [S} > 0.540

Proof. First, it is known that the following three algorithms are sound and complete for a canonical dataset with541

infinite samples: CPC [28], MPC [8] and GLL-MB [3]. Below we translate each predicate and then show that542

these predicates are equivalent to the criterion to identify v-structures in CPC [28], MPC [8] and GLL-MB [3]543

respectively.544

1. Predicate OLP(T,S) = 0 () 8S 2 S, T /2 S, which states that predicate is TRUE if and only if545

T is not in any d-separation set of X and Y . This is exactly the criterion of CPC for identifying546

v-structures [28].547

2. Predicate OLP(T,S) < 0.5 indicates that only if more than half of the d-separation sets do not contain548

T , then the UT is oriented as a v-structure. This is called majority-rule PC algorithm MPC [8] for549

v-structure identification.550

3. Predicate OLP(T,S) < 1^min{X ⇠ Y |T [S} > 0) 9S 2 S, T /2 S and X and Y are dependent551

when conditioning on T [S, which is the criterion used for GLL-MB [3] to identify v-structures.552

553

A.6 Proof of Theorem 1554

Theorem 1. ML4C-Learner tends to a perfect classifier on classifying a canonical dataset with sufficient555

samples.556

Proof. According to Lemma 3, there exists strong discriminative predicate P which achieves zero loss given557

a canonical dataset and sufficient samples. Thus, when adequate ML model is chosen, ML4C-Learner can558

achieve no worse performance than P (e.g., we can set the parameters of ML4C-Learner so that it approximates559

predicate P initially, and then apply standard gradient descent procedure). By considering proposition 2, we560

complete the proof.561

B Implementation Details562

B.1 Calculating conditional dependencies563

There are several ways to measure the conditional dependence, such as p-value by testing of conditional564

independence, or conditional mutual information [9]. For categorical variables, a good choice is G2 test [1]. In565

our implementation, we adopt an approximate version of G2 statistic, and use p-value to measure the conditional566

dependence.567

Moreover, considering p-value can easily vanish due to numerical precision in 64-bit computers. Therefore, we
use a transformation of p-value to avoid the issue, as additional quantity to measure conditional dependency. We
first define complementary error function as

g (z) = 1� 2p
⇡

Z z

0

e�t2dt,

and we use quantity z by inverse of g:
z = g�1(x).

14

Given a p-value x, we use g�1 as a non-linear transformation to obtain a better re-scaled quantity to measure568

conditional dependency. Intuitively, z can be viewed as z-sigma for a standard normal distribution, e.g., if569

p-value is 0.05, then z = 2, since 2-sigma indicates probability of values that lie within 2-sigma interval in a570

normal distribution is 0.95.571

B.2 ML4C Training and inference details572

B.2.1 Data synthesis details573

Graph structure: We adopt the Erdős-Rényi (ER) model [13] and the Scale-Free (SF) model [2], which are574

two commonly used model for graph synthesis. We categorize the scale of the graph (number of nodes d) into575

four classes: small, medium, large, and very large, corresponding to d being uniformly sampled from intervals576

[10, 20], [21, 50], [51, 100], and [101, 1000], respectively. Given the number of nodes d, the sparsity of the577

graph (defined as the ratio of the average number of edges to the number of nodes, i.e., the average in-degree578

of all nodes) is randomly sampled from a uniform distribution [1.2, 1.7]. Given the number of nodes and the579

expected number of edges, the graph skeleton is generated accordingly by the two random graph models. Then580

the skeleton is randomly oriented to a DAG by upper triangular permutation.581

Conditional probability table: Now we illustrate how we come up with Conditional Probability Table (CPT)582

for each node. In accordance with the topological ordering of the graph, each node is first assigned its cardinality,583

which is randomly sampled from a truncated normal distribution N (µ = 2,� = 1.5
m ,min = 2), where m584

denotes the maximum number of peers of the node (i.e. max{in-degree of the effect nodes of this node}). This585

regularization is designed to make the forward sampling process faster and prevent some certain nodes with586

many cause nodes from getting stuck. Since the number of different conditions to be enumerated is exponential587

(⇧c2 causescardinalityc), node with a larger maximum peers number tends to have smaller cardinality. Next, we588

enumerate each of its unique conditions (given by combinations of its cause nodes’ cardinalities) and randomly589

generate its probability distribution at each condition. The probability distribution is sampled from a Dirichlet590

distribution with parameter ↵ ⇠ U [0.1, 1.0] and grid number as this code’s cardinality.591

Training data: Having CPT specification of each node, a sample of 10k rows of observations is obtained for592

each graph according to the standard Bayesian network forward sampling. This generates a total dataset of 4593

scales ⇥ 2 graph models ⇥ 50 graphs for each class = 400 unique graphs and the corresponding sampled data.594

Different SCL algorithms are then further used to extract the required features corresponding to the respective595

learning targets, e.g., all edges of all graphs for pairwise SCL algorithms. For our ML4C learning targets, all UTs596

are extracted from graphs, consisting of a total of 97,010 V-structures (label=1) and 195,691 non-V-structures597

(label=0).598

B.2.2 XGBoost hyper-parameter settings599

We use xgb.XGBClassifier() , the Python API provided by XGBoost [6], to implement the binary classifier600

ML4C-Learner. All hyper-parameters are set as default. We set the threshold value T = 0.1.601

B.3 Post processing602

Although ML4C-Learner achieves high accuracy on classifying UTs into v-structures or non-v-structures (UT-F1603

= 0.9, as shown in Table 1), it is still possible to have conflicts among the detected v-structures. We adopt604

a straightforward heuristic to resolve conflicts: suppose we have two conflict v-structures A ! B C605

and B ! C D, we discard the one with lower probability score (by ML4C-Learner). We continue such606

pairwise conflict resolving until no more conflicts exist. We use the left v-structures to construct the partial DAG607

(bottom-right of Figure 1(b)). Pseudo-code is shown in Algorithm 1.608

C Details of Evaluation609

C.1 Evaluation metrics610

We calculate SHD at CPDAG level. Specifically, SHD is computed between the learned CPDAG(Ĝ) and ground611

truth CPDAG(G), i.e., the smallest number of edge additions, deletions, direction reversals and type changes612

(directed vs. undirected) to convert the output CPDAG to ground truth CPDAG. As is shown in Table 5, SHD is613

equal to the sum of the number of 7s in the table.614

F1-score is then calculated based on the identifiable edges of CPDAG(Ĝ) and CPDAG(G), where the accuracy
(precision) is equal to True Positive Rate (TPR) and the recall (recall) is equal to 1 - False Discovery Rate (FDR).

15

input : v-structure candidates V C = {v1, · · · , vp},
score querier s : vi ! si, returning vi’s probability score

output : Final v-structure candidates FV , which is self-consistent.
Initialize: removing v-structure set RV .
for vi 2 V C do

si s(vi)
flag FALSE
for vj 2 V C do

sj s(vj)
if vi conflicts with vj and si < sj then

flag TRUE
break

if flag then
SV SV[{vi}

FV VC\RV.
Algorithm 1: Conflict resolving

Table 5: SHD calculation details.

in result CPDAG→
in truth CPDAG↓

iden (directed) uniden
(undirected)

missing in
skeletonright wrong

iden 3 1 7 2 7 3 7 4
uniden 7 5 3 6 7 7

nonexist 7 8 7 9 3 10

Details about the specific calculation can also refer to Table 5:

precision=TPR =
1

1 + 2 + 3 + 4
,

recall=1-FDR =
1

1 + 2 + 5 + 8
,

C.2 Full result of Table 1: End-to-end comparison615

Here we report full results including other 5 smallest and trivial datasets. Note that 1) All F1-score degrade into616

0. on sachs dataset, because that sachs has no identifiable edges. 2) The rank(SHD) row is also re-calculated617

over full datasets.618

C.3 Predicates in Table 2: Reliability619

Table 2 shows the performance of 4 weak discriminative predicates and 4 strong discriminative predicates.620

Specifically, the four strong predicates are respectively 1) t ⇠ U [0, 1], OLP(T,S) � t; 2) OLP(T,S) == 0;621

3) OLP(T,S) == 0 and {X ⇠ Y |S [T} > 0; 4) {X ⇠ Y |S _ T} > 0. The four weak predicates are622

respectively 1) {PCX ⇠ PCY |T} > 0; 2) {PCX ⇠ PCY |S _ T} > 0; 3) {X ⇠ Y |PCT } == 0; 4)623

{X ⇠ Y |S _ PCT } > 0.624

C.4 Details of Table 4: Transferability625

To evaluate ML4C’s transferability across different domains, we train on dataset generated using one config-626

uration, and test on another. By default the configuration is that: #nodes=50, sparsity=#edges/#nodes=1.5,627

generating model=ER, and sample size=10000. We conduct controlled trials on the four configuration domains628

listed above (shown as the four big bars of Table 4).629

When we test transferability over one domain (e.g., the first bar, #nodes), then #nodes is set from 4 options (10,630

50, 100, 1k), and 4 ⇥ 4 = 16 pairs of train-test experiments are conducted. For each experiment, 50 graphs631

are synthesized for training and another 5 graphs for test. Except for the target domain (#nodes), all the other632

16

Table 6: Full result of Table 1.

Datasets
#nodes/#edges

supervised unsupervised no skeleton input

ML4C Jarfo D2C RCC NCC PC CPC MPC GMB GES GS HC CDS DGNN BLIP GNIP
cancer SHD 0 4 3 4 0 2 0 0 0 3 0 0 2 4 4 0

5/4 F1 1.0 .00 .25 .00 1.0 .50 1.0 1.0 1.0 .25 1.0 1.0 .50 .00 .00 1.0
earthquake SHD 0 4 2 4 0 2 0 0 0 0 0 4 0 4 5 0

5/4 F1 1.0 .00 .50 .00 1.0 .50 1.0 1.0 1.0 1.0 1.0 .00 1.0 .00 .00 1.0
survey SHD 1 4 5 4 0 0 1 1 0 4 0 6 5 6 6 6

6/6 F1 .83 .50 .25 .33 1.0 1.0 .83 .83 1.0 .44 1.0 .00 .25 .00 .00 .00
asia SHD 0 5 7 1 0 1 3 0 0 0 0 0 2 16 6 2
8/8 F1 1.0 .33 .15 .80 1.0 .80 .67 1.0 1.0 1.0 1.0 1.0 .67 .20 .57 .91

sachs SHD 0 9 11 8 12 13 0 0 13 14 11 0 8 16 1 0
11/17 F1 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
child SHD 0 18 16 18 20 22 13 9 20 15 13 13 18 23 0 0
20/25 F1 1.0 .24 .43 .33 .12 .12 .00 .74 .12 .47 .59 .57 .34 .25 1.0 1.0

insurance SHD 5 41 30 34 28 36 34 21 29 34 28 19 36 53 35 14
27/52 F1 .89 .26 .44 .42 .44 .39 .00 .66 .55 .46 .56 .76 .36 .05 .51 .82
water SHD 5 33 43 31 0 4 60 7 8 38 27 38 18 61 65 52
32/66 F1 .94 .52 .34 .56 1.0 .97 .00 .91 .87 .49 .62 .46 .76 .00 .20 .50

mildew SHD 6 - 17 25 34 21 - - 7 3 9 23 18 52 36 -
35/46 F1 .87 - .68 .50 .33 .56 - - .85 .93 .80 .64 .65 .19 .41 -
alarm SHD 1 21 26 18 20 20 20 6 17 8 3 21 18 46 17 2
37/46 F1 .98 .57 .44 .64 .57 .57 .57 .92 .64 .86 .94 .66 .62 .12 .82 .98
barley SHD 5 48 55 50 0 3 - - 8 42 - 34 50 87 60 42
48/84 F1 .95 .46 .38 .44 1.0 .96 - - .91 .59 - .72 .43 .00 .48 .67

hailfinder SHD 11 47 41 43 0 17 - - 26 60 - 59 44 76 111 118
56/66 F1 .80 .37 .45 .42 1.0 .85 - - .70 .21 - .23 .42 .00 .18 .12
hepar2 SHD 0 54 81 59 0 35 27 37 14 46 40 35 75 123 79 61
70/123 F1 1.0 .59 .34 .54 1.0 .72 .81 .70 .89 .75 .70 .81 .39 .00 .54 .68

win95pts SHD 1 65 51 33 0 8 42 7 5 32 21 16 50 112 103 -
76/112 F1 .99 .43 .54 .73 1.0 .95 .64 .95 .97 .77 .85 .91 .57 .00 .47 -

pathfinder SHD 25 157 145 151 0 150 - - 147 158 - 168 148 196 241 -
109/195 F1 .77 .21 .29 .21 1.0 .29 - - .30 .29 - .28 .31 .00 .07 -
munin1 SHD 10 169 154 153 72 86 117 - 84 109 - 233 151 - 257 -
186/273 F1 .97 .42 .47 .46 .77 .71 .58 - .72 .67 - .26 .50 - .42 -

andes SHD 0 226 209 246 0 4 83 4 5 47 15 38 149 - 175 -
223/338 F1 1.0 .35 .41 .29 1.0 .99 .75 .99 .98 .92 .96 .92 .60 - .76 -
diabetes SHD 25 220 395 237 48 0 - - 204 146 - 592 368 - 534 -
413/602 F1 .96 .62 .38 .62 .96 1.0 - - .68 .77 - .03 .43 - .43 -

pigs SHD 0 350 332 263 400 400 - - 268 0 - 532 316 - 6 -
441/592 F1 1.0 .44 .46 .59 .35 .35 - - .56 1.0 - .18 .50 - 1.0 -

link SHD 0 731 630 638 749 737 - - 204 324 - 1047 400 - 947 -
724/1125 F1 1.0 .38 .45 .45 .39 .40 - - .81 .80 - .14 .64 - .49 -

munin SHD 72 967 790 816 0 156 - - 458 661 - 1397 795 - 1599 -
1041/1397 F1 .95 .36 .48 .44 1.0 .89 - - .69 .62 - .00 .51 - .29 -

munin2 SHD 118 554 611 646 1052 898 - - 536 632 - 1240 753 - 1321 -
1003/1244 F1 .92 .60 .56 .55 .19 .30 - - .57 .58 - .01 .49 - .46 -

munin3 SHD 113 616 629 688 1048 860 - - 544 566 - 1306 819 - 1539 -
1041/1306 F1 .92 .58 .57 .54 .25 .37 - - .60 .65 - .00 .46 - .26 -

munin4 SHD 126 696 658 776 1058 876 - - 649 618 - 1388 812 - 1627 -
1038/1388 F1 .93 .54 .56 .50 .29 .39 - - .55 .64 - .00 .49 - .28 -

rank(SHD) mean 1.6 9.5 8.9 8.3 4.7 6.7 9.4 7.9 4.2 6.1 8.2 8.0 7.9 13.5 10.9 9.5
±stdd 1.0 3.1 3.6 2.3 4.3 3.8 4.3 4.9 3.1 3.7 4.6 3.7 2.7 1.8 3.6 5.0

UT-F1 mean .90 .22 .19 .27 .66 .50 .53 .87 .59 .54 .77 .47 .30 .09 .36 .70
±stdd .13 .17 .13 .18 .40 .34 .33 .16 .32 .28 .24 .35 .22 .07 .29 .33

domains use the default configuration. The result SHD and F1-score are reported as mean value and standard633

deviation over the five test graphs.634

D Code and Data635

D.1 URLs of all competitors636

We use open-source codes of other algorithms for evaluation.637

For Jarfo, RCC, NCC, GES, GS(Grow-Shrink), and CDS, we use the API provided by Causal Discovery638

Toolbox [18]: https://github.com/FenTechSolutions/CausalDiscoveryToolbox.639

For HC(Hill-Climbing) we use pgmpy https://github.com/pgmpy/pgmpy with BDeu score.640

For PC we use the official R package pcalg https://cran.r-project.org/web/packages/pcalg.641

17

https://github.com/FenTechSolutions/CausalDiscoveryToolbox
https://github.com/pgmpy/pgmpy
https://cran.r-project.org/web/packages/pcalg

For Conservative-PC and Majority-rule PC, we slightly modify the source code of pcalg to enable a faster run642

on large scale datasets. GLL-MB is also implemented based on pcalg. Reviewers can download our modified643

implementation of these 3 algorithms from http://ml4c.xyz.644

D.2 Algorithms starting from data: DAG-GNN/BLIP/GOBNILP645

D.2.1 Code URL646

1. GOBNILP: https://bitbucket.org/jamescussens/pygobnilp/.647

2. BLIP: https://cran.r-project.org/web/packages/r.blip/.648

3. DAG-GNN: We use a repository with a standard and clean version of the DAG-GNN algorithm, which649

is well maintained and can be found at https://github.com/ronikobrosly/DAG_from_GNN/ .650

D.2.2 Hyper-parameter settings651

1. Time limit: The running time of all programs is limited to 24 hours.652

2. Max-in-degree: The max-in-degree threshold for BILP is set to 6. The max-in-degree threshold for653

GOBNILP is set to 3.654

3. Configurations of DAG-GNN are as follows. Epochs=300, batch size=100, learning rate=3e-3, graph655

threshold=0.3. Graph threshold is a threshold for weighted adjacency matrix (i.e., any weights > -0.3656

and < 0.3 means the two variables are not adjacent).657

D.2.3 Verifying the results of DAG-GNN658

To make sure DAG-GNN is correctly executed, we have carefully experiment DAG-GNN from the following659

two aspects:660

Reproducing the results of paper [38] We take the child dataset as an example to test the reproducibility,661

because the data set has been reported by [38]. As can be seen from Table 7, the BIC scores are similar to

Table 7: Reproducing results for child

groundtruth child

BIC -1.23e+4 -1.36e+4
662

the results reported in the original paper (child: -1.38e+4). That is to say, the results in Yu et al.’s paper are663

reproduced by us.664

Different graph thresholds The following are the BIC scores on the data sets of alarm and water with665

different graph thresholds. The graph threshold recommended by [38] is 0.3. It can be seen that the performance

Table 8: Results with different graph thresholds

Groundtruth 0.1 0.2 0.3 0.4 0.5

alarm -1.08e+5 -1.90e+5 -1.44e+5 -1.59e+5 -1.77e+5 -1.91e+5
water -1.35e+5 -1.32e+5 -1.37e+5 -1.44e+5 -1.53e+5 -1.62e+5

666
is stable when the threshold is around 0.3. We have verified that there are similar conclusions on other data sets.667

Therefore 0.3 should be a reasonable threshold.668

D.3 ML4C: Code and data669

For reviewers to check reproducibility of our results reported in §5, we put our code and data on an anonymous670

site http://ml4c.xyz.671

18

http://ml4c.xyz
https://bitbucket.org/jamescussens/pygobnilp/
https://cran.r-project.org/web/packages/r.blip/
https://github.com/ronikobrosly/DAG_from_GNN/
http://ml4c.xyz

	Introduction
	Related Work
	Background
	Basic Notations
	Causal Structure Identifiability
	ML4C Related Notations

	Approach
	Overview
	Featurization
	Learnability

	Evaluation
	Conclusion and Future Work
	Proofs of Lemmas and Theorems
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Theorem 1

	Implementation Details
	Calculating conditional dependencies
	ML4C Training and inference details
	Data synthesis details
	XGBoost hyper-parameter settings

	Post processing

	Details of Evaluation
	Evaluation metrics
	Full result of Table 1: End-to-end comparison
	Predicates in Table 2: Reliability
	Details of Table 4: Transferability

	Code and Data
	URLs of all competitors
	Algorithms starting from data: DAG-GNN/BLIP/GOBNILP
	Code URL
	Hyper-parameter settings
	Verifying the results of DAG-GNN

	ML4C: Code and data

