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Abstract

The rapid advancement of Large Language Mod-
els (LLMs) has significantly influenced various
domains, leveraging their exceptional few-shot
and zero-shot learning capabilities. In this work,
we aim to explore and understand the LLMs-
based feature selection methods from a data-
centric perspective. We begin by categorizing
existing feature selection methods with LLMs
into two groups: data-driven feature selection
which requires samples values to do statistical
inference and text-based feature selection which
utilizes prior knowledge of LLMs to do seman-
tical associations using descriptive context. We
conduct extensive experiments in both classifica-
tion and regression tasks with LLMs in various
sizes (e.g., GPT-4, ChatGPT and LLaMA-2). Our
findings emphasize the effectiveness and robust-
ness of text-based feature selection methods and
showcase their potentials using a real-world med-
ical application. We also discuss the challenges
and future opportunities in employing LLMs for
feature selection, offering insights for further re-
search and development in this emerging field.

1. Introduction

Recent years have witnessed the remarkable development
of Large Language Models (LLMs) (Achiam et al., 2023;
Brown et al., 2020; Tan et al., 2024a; Touvron et al., 2023)
across various domains and areas (Liang et al., 2022; Chang
et al., 2023; Li et al., 2024c¢). By leveraging extensive train-
ing corpora and well-designed prompting strategies, LLMs
demonstrate impressive few-shot and zero-shot capabilities
in diverse tasks such as question answering (Wei et al., 2022;
Wang et al., 2023b; Tong et al., 2024), information extrac-
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Figure 1. Comparison of traditional feature selection (FS) algo-
rithms and LLM-based methods. Instead of requiring the whole
dataset to make statistic inference, recent works prompt LLMs to
select features in an efficient way. This is often achieved in a (i)
data-driven, or (i) text-based way.

tion (Wadhwa et al., 2023; Zhu et al., 2023) and knowledge
discovery (Pan et al., 2024; Wang et al., 2024b; 2023a).
The tuning-free nature also makes in-context learning (ICL)
in LLMs achieve a great balance between efficiency and
effectiveness (Tan et al., 2024b).

Feature selection (Dash & Liu, 1997; Li et al., 2017) is a crit-
ical data serving step that ensures relevant and high-quality
data for downstream machine learning and data mining ap-
plications. While existing data-driven selection methods
have achieved great success in scenarios with abundant data
and metadata, there is an increasing demand for efficient
feature selection methods with few or even zero samples for
various reasons (Zhang et al., 2019). This need is particu-
larly pronounced in sensitive applications such as predicting
survival times for cancer patients (Tomczak et al., 2015;
Wissel et al., 2022), where privacy concerns may prevent
hospitals and patients from sharing their data, posing diffi-
culties in the feature selection and engineering process. To
address this challenge, recent studies (Jeong et al., 2024;
Han et al., 2024) have explored leveraging the few-shot capa-
bility in LLMs to perform feature selection in low-resource
settings and got promising results.

In this work, our objective is to thoroughly explore and
understand LLMs-based feature selection methods from
a data-centric perspective. The conclusions and insights
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drawn from this exploration can provide insightful guid-
ance for real-world applications where different types of
resources and data are available. To begin with, we cate-
gorize the prompting strategies in previous studies (Choi
et al., 2022; Jeong et al., 2024; Liu et al., 2024b; Han et al.,
2024) for LLMs-based feature selection into two groups:
(1) data-driven methods, which provide specific samples to
LLMs (Liu et al., 2024b; Han et al., 2024), and (ii) text-
based methods, which incorporate feature and task descrip-
tions into the instruction (Choi et al., 2022; Jeong et al.,
2024). These two prompting strategies require different
data types: data-driven methods rely on sample points from
datasets to do statistical inference while text-based meth-
ods need descriptive context for better semantic association
between features and target variables. Figure 1 presents an
overall comparison between the abovementioned methods
and traditional feature selection algorithms. These differ-
ences make us curious about how LLMs perform with each
of them under different data availability settings.

We conduct extensive experiments to explore the two meth-
ods in both classification and regression tasks with different
LLMs in various sizes (E.g. GPT-4, ChatGPT and LLaMA-
2). A key finding based on the results is that, text-based
feature selection using LLMs is more effective and stable
across various low-resource settings. Additionally, it shows
a more pronounced scaling law with respect to the size of
LLMs compared to data-driven approaches. Furthermore,
we carried out a comparative evaluation between text-based
feature selection using LLMs and traditional feature selec-
tion methods. A general observation is that, the text-based
approach is relatively more robust and competitive across
different resource availability settings.

Based on the abovementioned findings, we further explore
the applicability of text-based feature selection with LLMs
in a medical application. Specifically, we focus on the
prediction of survival time for cancer patients (Tomczak
et al., 2015; Wissel et al., 2022), which is a crucial task
to evaluate both patient health and treatment effectiveness.
To enhance the LLMs’ understanding of medical-specific
gene names, we developed a Retrieval-Augmented Feature
Selection (RAFS) method that leverages descriptions from
the National Institutes of Health (NIH) as auxiliary context.
Experiment results demonstrate our RAFS’s effectiveness
in performing effective feature selection while safeguarding
patient’s privacy. Finally, we outline the existing challenges
and potential opportunities in employing LLMs for feature
selection.

To summarize, our contributions in this work are as follows:

* We propose a general taxonomy for the existing LLMs-
based feature selection methods, splitting them into
data-driven and text-based methods.

* Through an analysis under varying data availability
conditions, we identify the strengths and weaknesses of
these two methods, finding that text-based approaches
are more effective and robust.

¢ We showcase the utilization of the text-based feature
selection method with LLMs in a real-world medical
application and introduce RAFS, a method designed to
handle domain-specific feature selection with LLMs.

* We systematically analyze the existing challenges and
potential future directions for using LLMs in feature
selection, providing further insights and guidelines for
future studies.

2. Related Work

2.1. Feature Selection

Feature selection is the process of identifying and selecting
the most relevant and important features or variables from a
dataset to improve the performance and efficiency of a ma-
chine learning model (Dash & Liu, 1997; Guyon & Elisseeff,
2003; Chandrashekar & Sahin, 2014; Li et al., 2017). These
feature selection methods can be generally categorized into
three groups: filter, wrapper, and embedded approaches.
Filter methods (Lazar et al., 2012) first rank features by
performing correlation analysis and then selecting the most
important ones for the following learning step. Typical filter
methods include mutual information (Lewis, 1992; Ding
& Peng, 2005), Fisher score (Hart et al., 2000; Gu et al.,
2011) and maximum mean discrepancy (Song et al., 2012).
By contrast, wrapper methods (Kohavi & John, 1997) use
heuristic search strategies to identify a feature subset that
optimally enhances the performance of certain prediction
models (e.g., sequential selection (Luo & Chen, 2014) and
recursive feature elimination (Guyon et al., 2002)). For em-
bedded approaches, it works together with specific machine
learning models in the training phase by adding various
regularization items in the loss function to encourage fea-
ture sparsity (Tibshirani, 1996; Yuan & Lin, 2006; Feng &
Simon, 2017; Lemhadri et al., 2021).

2.2. Feature Selection with LLMs

There are already some works exploring the adaptation of
LLMs in feature selection. (Choi et al., 2022) try to extract
the relevant knowledge from LLMs as the task prior to per-
forming feature selection, reinforcement learning and casual
discovery. For feature selection, they design a prompt to in-
struct GPT-3 (Brown et al., 2020) to generate whether given
features are important by answering “Yes” or “No”. Fol-
lowing them, (Jeong et al., 2024) expand the LLMs-based
feature selection and propose three different pipelines that
directly utilize the generated text output. They also conduct
extensive experiments in evaluation across various model
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20. own telephone (0.2)

Figure 2. Prompting strategies for data-driven and text-based fea-
ture selection methods with LLMs.

scales and prompting strategies. Besides, some studies de-
vise more complex pipelines with LLMs in feature selection
and feature engineering. (Liu et al., 2024b) introduce an In-
Context Evolutionary Search (ICE-SEARCH) in Medical
Predictive Analytics (MPA) applications. It involves recur-
rently optimizing the selected features by prompting LLMs
to perform feature filtering based on test scores. (Han et al.,
2024) employ LLMs as feature engineers to produce meta-
features beyond the original features and combine them with
simple machine learning models to improve predictions in
downstream tasks. In this work, we aim to explore and
understand LLMs in performing feature selection from a
data perspective, offering further insights and hints for the
adaptation of LLM-based feature selectors in real-world
applications.

3. A Data-centric Taxonomy

Given a pre-trained LLM M, we follow the scoring-based
method proposed by (Jeong et al., 2024), which prompt M
to generate an importance score s; for the given feature/
concept f; in the dataset d:

S; :M(Pfi)7 1€ {1,...,[}, (1)

where [ is the total number of the features in dataset d. Py,
refers to the specific prompt we use to generate the impor-
tance score. We will discuss two methods for constructing
prompts in Sections 3.1 and 3.2, each focusing on different
capabilities of LLMs. Figure 2 demonstrates the detailed
prompting strategy for each of them.

3.1. Data-driven Feature Selection

Recently, LLMs have been employed to directly handle
numeric data, demonstrating their capabilities in numeri-
cal prediction and analytics (Gruver et al., 2024; Jin et al.,

2023). Therefore, we build a data-driven feature selection
method with LLMs by providing both features’ value n,
and the value of the target variable n,. Intuitively, LLMs
are supposed to infer the correlation and perform statistical
analysis to determine the importance of the given feature in
the dataset.

To be more specific, assume there are m samples available
in the dataset d, we first build the sample pairs S P; using
values of the chosen feature and target variable:

SP ={(n},n))}, i€ {l,..i},je{l,..m} (2

Then, we curate the prompt Py, using S P; and other instruc-
tion context C:

PP = prompt(C, SP;), 3)

here prompt is a function to concatenate the information
and build a fluent instruction for LLMs.

3.2. Text-based Feature Selection

Another line of work (Choi et al., 2022; Jeong et al.,
2024) tries to employ the extensive semantics knowledge in
LLMs (Li et al., 2024a) to perform feature selection. Specif-
ically, they incorporate detailed dataset descriptions in the
prompt, instructing LLMs to semantically distinguish the
importance of a given feature using their inherent knowledge
and experience.

In our studies, we consider two concrete descriptive con-
texts: dataset description (desg) and feature description
(desy,). The dataset description includes the task’s objec-
tive, details about the dataset’s collection, and an explana-
tion of the target variable. The feature description focuses
on detailing and clarifying the feature to be scored.

Formally, we build prompts by integrating the abovemen-
tioned information:

PfTie” = prompt(C, desq, desy, ). 4

We give specific instruction examples for the two feature
selection methods in Appendix A.

4. Analyses
4.1. Experiment Settings

In this section, we evaluate the performance of the LLM-
based feature selection methods using various datasets and
models.

Models. Below are the LLMs used in our experiment.

e LLaMA-2 (Touvron et al., 2023): 7B parameters.
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Figure 3. (a) Average AUROC (left; higher is better) and ranking by MAE (right; lower is better) across all datasets. (b) Each LLM’s
feature selection results, separated by task types (CLS and REG) and selection methods (w/sample and w/text).

e LLaMA-2 (Touvron et al., 2023): 13B parameters.
e ChatGPT (OpenAl, 2022): ~175B parameters'.

» GPT-4 (Achiam et al., 2023): ~1.7T parameters'.

We use the “gpt-4-turbo-2024-04-09” and “gpt-3.5-turbo-
0125 models via API calling. For LLaMA-2, we do local
inference with the checkpoints available from Huggingface,
namely “llama-2-70b-chat-hf” and “llama-2-13b-chat-hf”.

Compared Methods As the main methods to be analyzed
in this section, we use “w/ data” and “w/ text” to represent
the data-driven and text-based feature selection methods.
We also compare the LLM-based feature selection methods
with the following traditional feature selection baselines:

* Filtering by Mutual Information (MI) (Lewis, 1992).

* Recursive Feature Elimination (RFE) (Guyon et al.,
2002).

e Minimum Redundancy Maximum Relevance selection
(MRMR) (Ding & Peng, 2005).

¢ Random feature selection.

'We use ~ to denote the estimated size (Jeong et al., 2024) of
the two closed-source LLMs

Dataset # of samples  # of features
Adult 48842 14
Bank 45211 16
Communities 1994 102
Credit-g 1000 20
Heart 918 11
Myocardial 686 92
Diabetes 442 20
NBA 538 28
Rideshare 5000 18
Wine 6497 11

Table 1. Statistics of the datasets used.

Datasets. In our evaluation, we consider both classification
and regression tasks. For the classification task, we use six
datasets: Adult (Asuncion et al., 2007), Bank (Moro et al.,
2014), Communities (Redmond, 2009), Credit-g (Kadra
et al., 2021), Heart® and Myocardial (Golovenkin et al.,
2020). For the regression task, we use four datasets:
Diabetes (Efron et al., 2004), NBA3, Rideshare* and

Zhttps://kaggle.com/datasets/fedesoriano/heart-failure-
prediction

3https://www.kaggle.com/datasets/bryanchungweather/nba-
player-stats-dataset-for-the-2023-2024

*https://www.kaggle.com/datasets/aaronweymouth/nyc-
rideshare-raw-data
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Figure 4. (a). Each feature selection method’s results in the classification task, categorized by different LLMs; for each method, we add an
error bar to represent its standard variant among various data availabilities. (b). Each feature selection method’s results in the regression
task, categorized by different LLMs. In each sub-figure, we include the average performance of traditional data-driven methods and the

random selection method for comparison.

Wine (Asuncion et al., 2007). Detailed statistics of datasets
are given in Table 1.

Implementation Details. For each dataset, we fix the fea-
ture selection ratio to be 30%. We vary the data availability
to conduct evaluations with 16-shot, 32-shot, 64-shot, and
128-shot configurations. The test performance is measured
using a downstream L2-penalized logistic/linear regression
model, selected via grid search with 5-fold cross-validation.
We use the area under the ROC curve (AUROC) to evalu-
ate classification tasks and mean absolute error (MAE) for
regression tasks.

4.2. Result Analysis

We present our main experimental results in Figure 3 and
Figure 4 for analyzing, and highlighting the following find-
ings for answering the RESEARCH QUESTION:

Finding 1: Text-based feature selection is more effective
than data-driven ones with LLMs in low-resource set-
tings. As results demonstrated in Figure 3 (a), almost in
every LLM and task (except LLaMA-2-7B in classification),
the performance of small machine learning models with
the text-based feature selection method surpasses that of
the data-driven feature selection method. This finding is
consistent when we delve into feature selection methods’
performance in each data availability, as depicted in Fig-
ure 4. Additionally, in Figure 3 (a), we notice for the same
LLM, the text-based feature selection method usually leads

to a smaller standard variant among various data availability
settings. This further underscores the robustness and inde-
pendence of the text-based feature selection method with
respect to sample size.

AUROC Ranking by MAE

MI 0.779 1.75
RFE 0.758 3.50
MRMR 0.798 2.25
GPT-4 w/text ~ 0.783 2.50

Table 2. Feature selection results in the full dataset with traditional
data-driven methods and “GPT-4 w/text”.

Finding 2: Text-based feature selection with the most
advanced LLMs can achieve comparable performance
with traditional feature selection methods in every data
availability setting. In Figure 3 (a), we observe that while
GPT-4 with the text-based feature selection method per-
forms slightly below the best traditional method (MRMR),
it still demonstrates comparable performance, making it a
competitive feature selection method in few-shot scenarios.
However, when the LLM backbone is switched to smaller
models, such as ChatGPT, there is a significant performance
drop with the text-based selection method. Additionally,
we conducted experiments on the full dataset using *GPT-4
w/text’” alongside three traditional feature selection methods,
and found that GPT-4 with the text-based method remains
competitive even in the full-shot scenario.

T T T T
16-shots 32-shots 64-shots 128-shots
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Finding 3: Data-driven feature selection using LLMs
struggles when number of samples increases. An in-
teresting phenomenon we observed is a significant perfor-
mance drop in the classification task when the sample size
increases from 64 to 128 using the data-driven feature se-
lection method (Figure 3 (b)). This drop is consistently
observed across all four LLMs, indicating that each model
generates poorer feature subsets as the sample size grows.
We attribute this issue to LLMs struggling with processing
long sequences, a challenge highlighted in many previous
studies (Dong et al., 2023; Liu et al., 2024a). This lim-
itation constrains the effectiveness of data-driven feature
selection, which is why we did not include it in the full-shot
experiment.

Finding 4: Text-based feature selection exhibits a
stronger scaling law with model size compared to data-
driven feature selection with LLMs. We investigated how
scaling laws in model size affect feature selection capabili-
ties. In Figure 3 (b), we observe a clear relationship between
the size of LLMs and their text-based feature selection ca-
pabilities. In contrast, while GPT-4 shows significantly
superior performance in data-driven feature selection, the
other three LLMs do not clearly follow the scaling law.
This suggests that text-based feature selection is a reliable
approach that can be enhanced by using larger and more
powerful LLMs.

5. Survival Prediction - A Case Study

We use a biomedical task to showcase the utilization of
LLMs-based feature selection in real-world applications.
Survival time prediction (Tomczak et al., 2015; Wissel et al.,
2022) aims to predict cancer patients’ survival time based
on their physical and physiological indicators, playing a
critical role in patient risk management and boosting treat-
ment selection. One of the significant challenges in survival
prediction datasets is the huge volume of features (e.g.,
there are around 20,000 gene expression features in the
TCGA (Tomczak et al., 2015) dataset). While previous stud-
ies performed data-driven feature selection methods such
as principal component analysis (PCA) to address this is-
sue (Wissel et al., 2023), as we mentioned in Section 1, It
would cause serious privacy concerns for both patients and
hospitals.

Impressed by the competitive performance and sample-free
nature of text-based feature selection with LLMs, here we
adopt it in the survival prediction application. In our prelim-
inary experiments, we found LL.Ms have difficulties in di-
rectly understanding the domain-specific feature name (e.g.,
gene ID). Therefore, we borrow insights from retrieval-aug-
mented generation (RAG) with LLMs (Gao et al., 2023;
Chen et al., 2024; Li et al., 2024b) and propose Retrieval-
Augmented Feature Selection (RAFS) to efficiently handle

these biomedical-specific feature names. Specifically, we
retrieve meta information about each feature name from the
National Center for Biotechnology Information (NCBI)?
and provide this information to LLMs as the support docu-
ment for a better feature selection.

5.1. Experiment Settings

We conduct experiments using the Lung Adenocarcinoma
(LUAD) dataset in The Cancer Genome Atlas (TCGA)
benchmark (Tomczak et al., 2015). Akin to (Wissel et al.,
2023), we use clinical indicators and gene expression as the
full feature set and fix the feature selection ratio to be 30%.
We use PriorityLasso (Klau et al., 2018) as our machine
learning backbone and report three metrics: Antolini’s Con-
cordance (Antolini’s C) (Tomczak et al., 2015), Integrated
Brier score (IBS) (Graf et al., 1999) and D-Calibration (D-
CAL) (Haider et al., 2020), all of which are commonly-used
metrics for survival prediction.

5.2. Result Analysis
Antolini’s Ct IBS] D-CALJ
PriorityLasso 0.6306 0.1863  1.8518
w/ random 0.6516 0.1833  2.0255
w/ RAFS 0.6566 0.1830 1.7666

Table 3. Experiment results in TCGA-LUAD. We add random se-
lection as the baseline to compare our RAFS with.

As the results show in Table 3, we find that even training
the model on a randomly selected subset yields slightly bet-
ter performance than training on the full feature set. This
implies the huge volume of features in TCGA-LUAD neg-
atively impacts model performance, highlighting the im-
portance of feature selection. Moreover, we notice feature
selection with our RAFS leads to significant performance
improvements and consistently outperforms the random se-
lection baseline. These findings suggest that RAFS is an
effective approach for handling privacy-sensitive and large-
scale biomedical datasets.

6. Outlook

In this section, we discuss potential opportunities for LLMs
in feature selection, aiming to provide guidelines and hints
for future works.

Synergy of LLMs-based and traditional feature selec-
tion. As we discuss in Section 1 and 4.2, text-based feature
selection with LLMs is competitive and resource-efficient
compared with traditional feature selection methods. How-
ever, each approach relies on different sources of informa-
tion—specific samples or context descriptions—to perform

>https://www.ncbi.nlm.nih.gov/
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feature selection. This diversity in information utilization
makes them complementary. It would be valuable to explore
how to combine text-based and traditional feature selection
methods to create more effective and robust feature selection
systems across various data availability scenarios.

Data-driven analysis with Agentic LLMs. In Section 4.2,
we conclude that poor statistical inference capabilities in
long-sequence input hinder LLMs in data-driven feature
selection. While this finding implies the sole adaptation
of LLMs may not be enough for performing data-driven
feature selection, the introduction of agent-based LLMs
should be considered as an alternative (Xi et al., 2023; Wang
et al., 2024a). These methods equip LLM with various
tools (Paranjape et al., 2023; Yang et al., 2024; Schick et al.,
2024) and APIs (Patil et al., 2023; Liu et al., 2024c), en-
abling them to execute actions and plans to solve complex
and multi-step problems. However, there are only a few
works that focus on the development of agentic LLMs as
data engineers and analytics (Hong et al., 2024; Fang et al.,
2024), for actively performing various features or data pro-
cessing with the assistance of statistical tools or software.
Research in this direction will be valuable for enhancing
and evaluating LLMs from analytical and statistical perspec-
tives.

Foundation models for feature/data engineering. Many
recent works have developed various foundation models
in many data mining and machine learning fields, such as
graph learning (Liu et al., 2023; Mao et al., 2024; Xia et al.,
2024) and time series prediction (Rasul et al., 2023; Jin et al.,
2023). A large foundation model for feature/ data engineer-
ing should be able to understand different types of informa-
tion from the datasets and perform efficient manipulation
and processing (Cui et al., 2024) to prepare appropriate data
for downstream models/ applications. Developing such a
foundation model would greatly benefit the data mining
and machine learning communities by providing a unified,
easy-to-use interface for complex data processing tasks.

7. Conclusion

In this study, we explore feature selection methods based
on LLMs from a data-centric perspective. We categorize
existing LLM-based feature selection approaches into two
main types: data-driven, which relies on statistical infer-
ence from specific samples, and text-based, which utilizes
the extensive knowledge of LLMs for semantic association.
Our experiments and analyses reveal that text-based feature
selection with LLMs outperforms data-driven methods in
terms of effectiveness, stability, and robustness. Based on
these findings, we introduce a Retrieval-Augmented Feature
Selection (RAFS) method designed to manage large vol-
umes of domain-specific feature candidates in the context
of cancer survival time prediction. Additionally, we provide

a comprehensive analysis of the current challenges and po-
tential opportunities at the intersection of LLMs and feature
selection/engineering, aiming to offer deeper insights and
guidance for future research in this area.

References

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, L.,
Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Asuncion, A., Newman, D., et al. Uci machine learning
repository, 2007.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:

1877-1901, 2020.

Chandrashekar, G. and Sahin, F. A survey on feature selec-
tion methods. Computers & electrical engineering, 40
(1):16-28, 2014.

Chang, Y., Wang, X., Wang, J., Wu, Y., Yang, L., Zhu, K.,
Chen, H., Yi, X., Wang, C., Wang, Y., et al. A survey on
evaluation of large language models. ACM Transactions
on Intelligent Systems and Technology, 2023.

Chen, J., Lin, H., Han, X., and Sun, L. Benchmarking large
language models in retrieval-augmented generation. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38, pp. 17754-17762, 2024.

Choi, K., Cundy, C., Srivastava, S., and Ermon, S. Lmpriors:
Pre-trained language models as task-specific priors. In
NeurIPS 2022 Foundation Models for Decision Making
Workshop, 2022.

Cui, L., Li, H., Chen, K., Shou, L., and Chen, G. Tabular
data augmentation for machine learning: Progress and
prospects of embracing generative ai. arXiv preprint
arXiv:2407.21523, 2024.

Dash, M. and Liu, H. Feature selection for classification.
Intelligent data analysis, 1(1-4):131-156, 1997.

Ding, C. and Peng, H. Minimum redundancy feature se-
lection from microarray gene expression data. Journal
of bioinformatics and computational biology, 3(02):185—
205, 2005.

Dong, Z., Tang, T., Li, J., Zhao, W. X., and Wen, J.-R.
Bamboo: A comprehensive benchmark for evaluating
long text modeling capacities of large language models.
arXiv preprint arXiv:2309.13345, 2023.



Exploring Large Language Models for Feature Selection

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. Least
angle regression. The Annals of statistics, 32(2):407—451,
2004.

Fang, X., Xu, W., Tan, F. A., Zhang, J., Hu, Z., Qi, Y. J,,
Nickleach, S., Socolinsky, D., Sengamedu, S., Falout-
sos, C., et al. Large language models (Ilms) on tabular
data: Prediction, generation, and understanding-a survey.
Transactions on Machine Learning Research, 2024.

Feng, J. and Simon, N. Sparse-input neural networks for
high-dimensional nonparametric regression and classifi-
cation. arXiv preprint arXiv:1711.07592, 2017.

Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y.,
Sun, J., and Wang, H. Retrieval-augmented generation
for large language models: A survey. arXiv preprint
arXiv:2312.10997, 2023.

Golovenkin, S., Shulman, V., Rossiev, D., Shesternya,
P, Nikulina, S., Orlova, Y., and Voino-Yasenetsky,
V. Myocardial infarction complications. UCI
Machine Learning Repository, 2020. DOI:
https://doi.org/10.24432/C53P5M.

Graf, E., Schmoor, C., Sauerbrei, W., and Schumacher, M.
Assessment and comparison of prognostic classification
schemes for survival data. Statistics in medicine, 18(17-
18):2529-2545, 1999.

Gruver, N., Finzi, M., Qiu, S., and Wilson, A. G. Large
language models are zero-shot time series forecasters.
Advances in Neural Information Processing Systems, 36,
2024.

Gu, Q., Li, Z., and Han, J. Generalized fisher score for
feature selection. In Proceedings of the Twenty-Seventh
Conference on Uncertainty in Artificial Intelligence, pp.
266-273, 2011.

Guyon, I. and Elisseeff, A. An introduction to variable and
feature selection. Journal of machine learning research,

3(Mar):1157-1182, 2003.

Guyon, 1., Weston, J., Barnhill, S., and Vapnik, V. Gene
selection for cancer classification using support vector
machines. Machine learning, 46:389-422, 2002.

Haider, H., Hoehn, B., Davis, S., and Greiner, R. Effective
ways to build and evaluate individual survival distribu-
tions. Journal of Machine Learning Research, 21(85):
1-63, 2020.

Han, S., Yoon, J., Arik, S. O., and Pfister, T. Large language
models can automatically engineer features for few-shot
tabular learning. In Forty-first International Conference
on Machine Learning, 2024.

Hart, P. E., Stork, D. G., Duda, R. O., et al. Pattern classifi-
cation. Wiley Hoboken, 2000.

Hong, S., Lin, Y., Liu, B., Wu, B., Li, D., Chen, J., Zhang,
J., Wang, J., Zhang, L., Zhuge, M., et al. Data inter-
preter: An llm agent for data science. arXiv preprint
arXiv:2402.18679, 2024.

Jeong, D. P, Lipton, Z. C., and Ravikumar, P. Llm-select:
Feature selection with large language models. arXiv
preprint arXiv:2407.02694, 2024.

Jin, M., Wang, S., Ma, L., Chu, Z., Zhang, J. Y., Shi, X,
Chen, P--Y,, Liang, Y., Li, Y.-F,, Pan, S., et al. Time-llm:
Time series forecasting by reprogramming large language
models. arXiv preprint arXiv:2310.01728, 2023.

Kadra, A., Lindauer, M., Hutter, F., and Grabocka, J. Well-
tuned simple nets excel on tabular datasets. Advances in
neural information processing systems, 34:23928-23941,
2021.

Klau, S., Jurinovic, V., Hornung, R., Herold, T., and
Boulesteix, A.-L. Priority-lasso: a simple hierarchical
approach to the prediction of clinical outcome using multi-
omics data. BMC bioinformatics, 19:1-14, 2018.

Kohavi, R. and John, G. H. Wrappers for feature subset
selection. Artificial intelligence, 97(1-2):273-324, 1997.

Lazar, C., Taminau, J., Meganck, S., Steenhoff, D., Co-
letta, A., Molter, C., de Schaetzen, V., Duque, R., Bersini,
H., and Nowe, A. A survey on filter techniques for fea-
ture selection in gene expression microarray analysis.
IEEE/ACM transactions on computational biology and
bioinformatics, 9(4):1106-1119, 2012.

Lembhadri, 1., Ruan, F., Abraham, L., and Tibshirani, R.
Lassonet: A neural network with feature sparsity. Journal
of Machine Learning Research, 22(127):1-29, 2021.

Lewis, D. D. Feature selection and feature extraction for
text categorization. In Speech and Natural Language:
Proceedings of a Workshop Held at Harriman, New York,
February 23-26, 1992, 1992.

Li, D., Tan, Z., Chen, T., and Liu, H. Contextualization
distillation from large language model for knowledge
graph completion. In Findings of the Association for
Computational Linguistics: EACL 2024, pp. 458-477,
2024a.

Li, D., Yang, S., Tan, Z., Baik, J. Y., Yun, S., Lee, J.,,
Chacko, A., Hou, B., Duong-Tran, D., Ding, Y., et al.
Dalk: Dynamic co-augmentation of 1lms and kg to an-

swer alzheimer’s disease questions with scientific litera-
ture. arXiv preprint arXiv:2405.04819, 2024b.



Exploring Large Language Models for Feature Selection

Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P,,
Tang, J., and Liu, H. Feature selection: A data perspective.
ACM computing surveys (CSUR), 50(6):1-45, 2017.

Li, Y., Dao, A., Bao, W., Tan, Z., Chen, T., Liu, H., and
Kong, Y. Facial affective behavior analysis with instruc-
tion tuning. arXiv preprint arXiv:2404.05052, 2024c.

Liang, P., Bommasani, R., Lee, T., Tsipras, D., Soylu, D.,
Yasunaga, M., Zhang, Y., Narayanan, D., Wu, Y., Kumar,
A., et al. Holistic evaluation of language models. arXiv
preprint arXiv:2211.09110, 2022.

Liu, J., Yang, C., Lu, Z., Chen, J., Li, Y., Zhang, M., Bai,
T., Fang, Y., Sun, L., Yu, P. S., et al. Towards graph
foundation models: A survey and beyond. arXiv preprint
arXiv:2310.11829, 2023.

Liu, N. F, Lin, K., Hewitt, J., Paranjape, A., Bevilacqua,
M., Petroni, F., and Liang, P. Lost in the middle: How
language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157-173,
2024a.

Liu, S., Lvu, F, Liu, X., et al. Ice-search: A language
model-driven feature selection approach. arXiv preprint
arXiv:2402.18609, 2024b.

Liu, X., Li, Z., Li, P, Xia, S., Cui, X., Huang, L., Huang,
H., Deng, W., and He, Z. Mmfakebench: A mixed-
source multimodal misinformation detection benchmark
for Ivlms. arXiv preprint arXiv:2406.08772, 2024c.

Luo, S. and Chen, Z. Sequential lasso cum ebic for fea-
ture selection with ultra-high dimensional feature space.
Journal of the American Statistical Association, 109(507):
1229-1240, 2014.

Mao, H., Chen, Z., Tang, W., Zhao, J., Ma, Y., Zhao, T.,
Shah, N., Galkin, M., and Tang, J. Graph foundation
models. arXiv preprint arXiv:2402.02216, 2024.

Moro, S., Cortez, P., and Rita, P. A data-driven approach
to predict the success of bank telemarketing. Decision
Support Systems, 62:22-31, 2014.

OpenAl. Introducing chatgpt. OpenAl, 2022.

Pan, S., Luo, L., Wang, Y., Chen, C., Wang, J., and Wu, X.
Unifying large language models and knowledge graphs:
A roadmap. IEEE Transactions on Knowledge and Data
Engineering, 2024.

Paranjape, B., Lundberg, S., Singh, S., Hajishirzi, H., Zettle-
moyer, L., and Ribeiro, M. T. Art: Automatic multi-step
reasoning and tool-use for large language models. arXiv
preprint arXiv:2303.09014, 2023.

Patil, S. G., Zhang, T., Wang, X., and Gonzalez, J. E. Gorilla:
Large language model connected with massive apis. arXiv
preprint arXiv:2305.15334, 2023.

Rasul, K., Ashok, A., Williams, A. R., Khorasani, A.,
Adamopoulos, G., Bhagwatkar, R., Bilo§, M., Ghonia, H.,
Hassen, N. V., Schneider, A., et al. Lag-llama: Towards
foundation models for time series forecasting. arXiv
preprint arXiv:2310.08278, 2023.

ucl
DOI:

Redmond, M. Communities and Crime.
Machine Learning Repository, 2009.
https://doi.org/10.24432/C53W3X.

Schick, T., Dwivedi-Yu, J., Dessi, R., Raileanu, R., Lomeli,
M., Hambro, E., Zettlemoyer, L., Cancedda, N., and
Scialom, T. Toolformer: Language models can teach
themselves to use tools. Advances in Neural Information
Processing Systems, 36, 2024.

Song, L., Smola, A., Gretton, A., Bedo, J., and Borgwardt,
K. Feature selection via dependence maximization. Jour-
nal of Machine Learning Research, 13(5), 2012.

Tan, Z., Beigi, A., Wang, S., Guo, R., Bhattacharjee, A.,
Jiang, B., Karami, M., Li, J., Cheng, L., and Liu, H. Large
language models for data annotation: A survey. arXiv
preprint arXiv:2402.13446, 2024a.

Tan, Z., Peng, J., Chen, T., and Liu, H. Tuning-free account-
able intervention for llm deployment—a metacognitive
approach. arXiv preprint arXiv:2403.05636, 2024b.

Tibshirani, R. Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society Series B:
Statistical Methodology, 58(1):267-288, 1996.

Tomczak, K., Czerwiniska, P., and Wiznerowicz, M. Review
the cancer genome atlas (tcga): an immeasurable source
of knowledge. Contemporary Oncology/Wspétczesna
Onkologia, 2015(1):68-77, 2015.

Tong, Y., Li, D., Wang, S., Wang, Y., Teng, F., and Shang,
J. Can llms learn from previous mistakes? investigat-
ing llms’ errors to boost for reasoning. arXiv preprint
arXiv:2403.20046, 2024.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P,,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Wadhwa, S., Amir, S., and Wallace, B. C. Revisiting rela-
tion extraction in the era of large language models. In
Proceedings of the conference. Association for Compu-
tational Linguistics. Meeting, volume 2023, pp. 15566.
NIH Public Access, 2023.



Exploring Large Language Models for Feature Selection

Wang, L., Ma, C., Feng, X., Zhang, Z., Yang, H., Zhang, J.,
Chen, Z., Tang, J., Chen, X., Lin, Y., et al. A survey on
large language model based autonomous agents. Frontiers
of Computer Science, 18(6):186345, 2024a.

Wang, S., Tan, Z., Guo, R., and Li, J. Noise-robust fine-
tuning of pretrained language models via external guid-
ance. arXiv preprint arXiv:2311.01108, 2023a.

Wang, X., Wei, J., Schuurmans, D., Le, Q. V., Chi,
E. H., Narang, S., Chowdhery, A., and Zhou, D. Self-
consistency improves chain of thought reasoning in lan-
guage models. In The Eleventh International Conference
on Learning Representations, 2023b.

Wang, X., Chen, Z., Wang, H., Li, Z., Guo, W., et al.
Large language model enhanced knowledge representa-
tion learning: A survey. arXiv preprint arXiv:2407.00936,
2024b.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E.,Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837,
2022.

Wissel, D., Janakarajan, N., Grover, A., Toniato, E.,
Martinez, M. R., and Boeva, V. Survboard: standardised
benchmarking for multi-omics cancer survival models.
bioRxiv, pp. 2022-11, 2022.

Wissel, D., Rowson, D., and Boeva, V. Systematic compari-
son of multi-omics survival models reveals a widespread
lack of noise resistance. Cell Reports Methods, 3(4),
2023.

Xi, Z., Chen, W., Guo, X., He, W., Ding, Y., Hong, B.,
Zhang, M., Wang, J., Jin, S., Zhou, E., et al. The rise and
potential of large language model based agents: A survey.
arXiv preprint arXiv:2309.07864, 2023.

Xia, L., Kao, B., and Huang, C. Opengraph: To-
wards open graph foundation models. arXiv preprint
arXiv:2403.01121, 2024.

Yang, R., Song, L., Li, Y., Zhao, S., Ge, Y., Li, X., and
Shan, Y. Gptdtools: Teaching large language model to use
tools via self-instruction. Advances in Neural Information
Processing Systems, 36, 2024.

Yuan, M. and Lin, Y. Model selection and estimation in
regression with grouped variables. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 68
(1):49-67, 2006.

Zhang, T., Zhu, T., Xiong, P., Huo, H., Tari, Z., and Zhou,
W. Correlated differential privacy: Feature selection
in machine learning. IEEE Transactions on Industrial
Informatics, 16(3):2115-2124, 2019.

10

Zhu, Y., Yuan, H., Wang, S., Liu, J., Liu, W, Deng, C., Dou,
Z., and Wen, J.-R. Large language models for information
retrieval: A survey. arXiv preprint arXiv:2308.07107,
2023.



Exploring Large Language Models for Feature Selection

A. Detailed Instruction

/* Main System Prompt */
For the given feature, your task is to provide a feature importance score (between 0 and 1; larger value indicates greater
importance).

/* Specific Sample Vlaues */

Here are some data points in the format of (feature value, target value), please refer to this to determine how informative
the feature is in predicting the target value:
(<0, no)

(no checking, no)

(<0, no)

(<0, no)

(0<=X<200, no)

(<0, no)

(>=200, no)

(<0, no)

(no checking, yes)

(no checking, yes)

(0<=X<200, yes)

(0<=X<200, yes)

(no checking, yes)

(0<=X<200, yes)

(0<=X<200, yes)

(<0, yes)

/* Output Format Instruction */

Here is an example:

Question: What is the importance score for the given feature
Answer: The importance score is 0.9

333

/* Main User Prompt™*/
Question: What is the importance score for the given feature
Answer: The importance score is

Table 4. Detailed instruction for data-driven method in Credit-g dataset.
You can have as much text here as you want. The main body must be at most 8 pages long. For the final version, one more
page can be added. If you want, you can use an appendix like this one.

The \onecolumn command above can be kept in place if you prefer a one-column appendix, or can be removed if you
prefer a two-column appendix. Apart from this possible change, the style (font size, spacing, margins, page numbering, etc.)
should be kept the same as the main body.
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/* Dataset-specific Context */

Context: Using data collected at a German bank, we wish to build a machine learning model that can accurately predict
whether a client carries high or low credit risk (target variable). The dataset contains a total of 20 features (e.g., credit
history, savings account status). Prior to training the model, we first want to identify a subset of the 20 features that

are most important for reliable prediction of the target variable.

/* Main System Prompt */

For each feature input by the user, your task is to provide a feature importance score (between 0 and 1; larger value
indicates greater importance) for predicting whether an individual carries high credit risk and a reasoning behind how
the importance score was assigned.

/* Output Format Instructions */
The output should be formatted as a JSON instance that conforms to the JSON schema below.

99, 9 99 93 99, 99

As an example, for the schema “properties”: ’foo”: “title”: “Foo”, “description”: “a list of strings”, ’type”: “array”,
99, 99 99, 99 99 99

“items”: “type”: “’string”, “required”: [’foo”] the object ”foo”: [’bar”, "baz”] is a well formatted instance of the schema.
The object “properties”: "foo”: [’bar”, "baz”] is not well-formatted.

Here is the output schema:

{"description”: "Langchain Pydantic output parsing structure.”, ”properties”: {’reasoning”: {title”: “Reasoning”,

93 99, 93, 9

”description”: ”Logical reasoning behind feature importance score”, “type”: “string”}, “score”: {"title”: ”Score”,

93 99, 93, 9

”description”: ”Feature importance score”, “type”: “number”}}, “required”: [’score”]}

/* Demonstration */

Here is an example output:

-Variable: Installment rate in percentage of disposable income

{”reasoning”: ”The installment rate as apercentage of disposable incomeprovides insight intoa person’s financial
responsibility and capability.This percentage can be seen as a measure of how much of a person’s available income
is committed to repaying their debts. If this rate is high, it might indicate that the person is taking more debt than
they can comfortably repay and may hint a talack off inancial responsibility, implyinghigher credit risk. If this rate
is low, it likely indicates that the person can manage their current financial obligations comfortably, implying
lowercredit risk. Thus, the score is 0.9.”, ’score”: 0.9}

/*Main User Prompt*/
Provide a score and reasoning for Status of existing checking account, in Deutsche Mark.” formatted according to the
output schema above:

Table 5. Detailed instruction for text-based method in Credit-g dataset.

12



