
Supplementary Material

A List of Symbols
⇥,⇥1,⇥c, b1 Model parameters, parameters of the first FC layer in the model, parameters before

the first FC layer in the model, bias of the first FC layer in the model

H/ eH, Ĥ Inputs to the first FC layer by x/ x̂, estimated H through CAFE step II

D, D̂ Real, fake dataset
L(·) Loss function
M,M,m Set, number, index of local clients
r⌅L(⇥,D) Gradients of loss function w.r.t. ⌅. ⌅ represents ⇥,⇥c,⇥1, b1, U
s(st),S Batch index permutation (selected in the tth iteration), batch index permutation sets
U Outputs of the first FC layer before the activation function
V EstimatedrUL(⇥,D) through CAFE step I

x/ x̂,X / X̂ Real/fake training data (images), real/fake training dataset
d1, d2 Inputs, outputs feature dimension of the first FC layer
h(·) Forward function before the first FC layer
K Batch size
N,n Number, index of data points
y, ŷ Real, fake training labels

B CAFE vs DLG

As in [32], assuming K = N = 3, (3) can be rewritten as

D̂
⇤ = argmin

D̂

�����
1

3

3X

n=1

r⇥L(⇥,xn, yn)�
1

3

3X

n=1

r⇥L(⇥, x̂n, ŷn)

�����

2

. (10)

We assume that there is a ground-truth solution for (10) denoted as

D̂
⇤
1 = {{x1, y1}; {x2, y2}; {x3, y3}}. (11)

However, besides the ground-truth solution, there might be other undesired solutions, such as

D̂
⇤
2 = {{x̂⇤1, ŷ1

⇤
}; {x̂⇤

2, ŷ2
⇤
}; {x3, y3}} (12)

whose gradients satisfy
2X

n=1

r⇥L(⇥,xn, yn) =
2X

n=1

r⇥L(⇥, x̂⇤
n, ŷn

⇤)

r⇥L(⇥,xn, yn) 6= r⇥L(⇥, x̂⇤n, ŷn
⇤). (13)

Although the solutions (11) and (12) have the same objective value in (10), the solution (12) is
not the ground-truth solution for data recovery, which needs to be eliminated by introducing more
regularization or constraints. When the number N increases, the number of undesired solutions
increases. It is hard to find the ground-truth solution by purely optimizing the objective function (10).

However, in CAFE, the number of objective functions can be as many as
�N
K

�
. As the case above,

suppose K = 2. Then we can list all the objective functions as8
>>>>>><

>>>>>>:

D̂
⇤
0 = argmin

D̂0

��� 1
2

P2
n=1r⇥L(⇥,xn, yn)�

1
2

P2
n=1r⇥L(⇥, x̂n, ŷn)

���
2

D̂
⇤
1 = argmin

D̂1

��� 1
2

P3
n=2r⇥L(⇥,xn, yn)�

1
2

P3
n=2r⇥L(⇥, x̂n, ŷn)

���
2

D̂
⇤
2 = argmin

D̂2

��� 1
2

P3
n=1,n 6=2r⇥L(⇥,xn, yn)�

1
2

P3
n=1,n 6=2r⇥L(⇥, x̂n, ŷn)

���
2

(14)

14

where D̂
0 = {{x̂1, ŷ1}; {x̂2, ŷ2}}, D̂1 = {{x̂2, ŷ2}; {x̂3, ŷ3}}, D̂2 = {{x̂1, ŷ1}; {x̂3, ŷ3}}. Compar-

ing with (10), (14) has more constraint functions which restrict D̂ and dramatically reduces the
number of undesired solutions. Solution (12) thus can be eliminated by the second and the third
equations in (14). It suggests that CAFE helps the fake data converge to the optimal solution.

C Proof of Theorem 1

The second derivative of F1(V) w.r.t V are denoted by

rvp,q ;vr,sF1(V) =
@rvp,qF1(V)

@vr,s
=

⇢
�(p, r) q = s

0 q 6= s (15)

where vp,q is the entry at the pth row and qth column of V and �(p, r) is defined as

�(p, r) = 2Esi⇠Unif(S)

h
si[p]si[r]

i
. (16)

The Hessian matrix of the F1(V) can be denoted by

r
2
F1(vec(V)) =

2

666664

H(1, 1) H(1, 2) . . . H(1, s) . . . H(1, d2)
H(2, 1) H(2, 2) . . . H(2, s) . . . H(2, d2)
.

H(q, 1) H(q, 2) . . . H(q, s) . . . H(q, d2)
.

H(d2, 1) H(d2, 2) . . . H(d2, s) . . . H(d2, d2)

3

777775

(N⇥d2)⇥(N⇥d2)

(17)

where vec(V) 2 R(N⇥d2) vectorizes V.

When q 6= s, we have H(q, s) = 0. When q = s

H(q, s) =

2

666664

�(1, 1) �(1, 2) . . . �(1, r) . . . �(1, N)
�(2, 1) �(2, 2) . . . �(2, r) . . . �(2, N)
.

�(p, 1) �(p, 2) . . . �(p, r) . . . �(p,N)
.

�(N, 1) �(N, 2) . . . �(N, r) . . . �(N,N)

3

777775

N⇥N

(18)

It is obvious that 8q1 6= q2, H(q1, q1) = H(q2, q2).
Therefore, we have

r
2
F1(vec(V)) =

2

666664

H(1, 1) 0 . . . 0 . . . 0
0 H(1, 1) . . . 0 . . . 0
.
0 0 . . . H(1, 1) . . . 0
.
0 0 . . . 0 . . . H(1, 1)

3

777775

(N⇥d2)⇥(N⇥d2)

. (19)

For any vector p = [p>
1 , . . . ,p

>
q , . . . ,p

>
d2
]> 6= 0 2 R(N⇥d2), where pq 2 RN , we have

p
>
r

2
F1(vec(V))p =

d2X

q=1

p
>
q H(q, q)pq

=
d2X

q=1

p
>
q H(1, 1)pq. (20)

If H(1, 1) is positive definite, then we have r2
F1(vec(V)) is positive definite. Since 8si, p, si[p] 2

{0, 1}, when p = r, we have

�(p, r) = �(p, p) = 2Esi⇠Unif(S)

h
si[p]

i
=

2K

N
; (21)

when p 6= r, we have

�(p, r) = 2Esi⇠Unif(S)

h
si[p]si[r]

i
= 2

�K
2

�
�N
2

� =
2K(K � 1)

N(N � 1)
(22)

15

As the results, we have

H(1, 1) = 2

2

666666664

K
N

K(K�1)
N(N�1) . . . K(K�1)

N(N�1) . . . K(K�1)
N(N�1)

K(K�1)
N(N�1)

K
N . . . K(K�1)

N(N�1) . . . K(K�1)
N(N�1)

.
K(K�1)
N(N�1)

K(K�1)
N(N�1) . . . K

N . . . K(K�1)
N(N�1)

.
K(K�1)
N(N�1)

K(K�1)
N(N�1) . . . K(K�1)

N(N�1) . . . K
N

3

777777775

N⇥N

. (23)

If K = 1, we have

Est [H(1, 1)] = 2

2

666664

K
N 0 . . . 0 . . . 0
0 K

N . . . 0 . . . 0
.
0 0 . . . K

N . . . 0
.
0 0 . . . 0 . . . K

N

3

777775

N⇥N

=
2K

N
IN⇥N (24)

where IN⇥N is the N dimensional identity matrix. Hence, H(1, 1) is positive definite. If 1 < K < N ,
we have

H(1, 1) = 2
K(K � 1)

N(N � 1)

2

6666664

N�1
K�1 1 . . . 1 . . . 1
1 N�1

K�1 . . . 1 . . . 1
.
1 1 . . . N�1

K�1 . . . 1
.
1 1 . . . 1 . . . N�1

K�1

3

7777775

N⇥N

. (25)

The eigenvalues of H(1, 1) in (25) are denoted by

�1 = · · · = �N�1 =
N � 1

K � 1
� 1 > 0

�N =
N � 1

K � 1
+N � 1 > 0 (26)

which implies that F1(vec(V)) is strongly convex.

Notably, when K = N , we have

H(1, 1) = 2
K(K � 1)

N(N � 1)
JN , (27)

where JN is the N ⇥N dimensional matrix of ones which is not positive definite.

D Proof of Theorem 2

Similar as the term in (15), the second derivative of F2(Ĥ) w.r.t Ĥ can be defined as

rĥp,q ;ĥr,s
F2(Ĥ) =

@rĥp,q
F2(Ĥ)

@ĥr,s

=

⇢
!(p, r) q = s

0 q 6= s . (28)

where ĥp,q is the element at the pth row and qth column in Ĥ and !(p, r) is defined as

!(p, r) = 2Esi⇠Unif(S)

h d2X

k=1

si[p]si[r]vp,kvr,k
i

= 2Esi⇠Unif(S)

h
si[p]si[r]

i d2X

k=1

vp,kvr,k

= �(p, r)
d2X

k=1

vp,kvr,k. (29)

16

The Hessian matrix of the F2(Ĥ) can be denoted by

r
2
F2(vec(Ĥ)) =

2

666664

G(1, 1) G(1, 2) . . . G(1, s) . . . G(1, d1)
G(2, 1) G(2, 2) . . . G(2, s) . . . G(2, d1)
.

G(q, 1) G(q, 2) . . . G(q, s) . . . G(j, d1)
.

G(d1, 1) G(d1, 2) . . . G(d1, s) . . . G(d1, d1)

3

777775

(N⇥d1)⇥(N⇥d1)

. (30)

When q 6= s, we have G(q, s) = 0. When q = s

G(q, s) =

2

666664

!(1, 1) !(1, 2) . . . !(1, r) . . . !(1, N)
!(2, 1) !(2, 2) . . . !(2, r) . . . !(2, N)
.

!(p, 1) !(p, 2) . . . !(p, r) . . . !(p,N)
.

!(N, 1) !(N, 2) . . . !(N, r) . . . !(N,N)

3

777775

N⇥N

. (31)

It is obvious that 8q1 6= q2, G(q1, q1) = G(q2, q2).
Therefore, we have

r
2
F2(vec(Ĥ)) =

2

666664

G(1, 1) 0 . . . 0 . . . 0
0 G(1, 1) . . . 0 . . . 0
.
0 0 . . . G(1, 1) . . . 0
.
0 0 . . . 0 . . . G(1, 1)

3

777775

(N⇥d1)⇥(N⇥d1)

(32)

for any p = [p>
1 , . . . ,p

>
q , . . . ,p

>
d1
]> 6= 0 2 R(N⇥d1), where pq 2 RN , we have

p
>
r

2
F2(vec(Ĥ))p =

d1X

q=1

p
>
q G(q, q)pq

=
d1X

q=1

p
>
q G(1, 1)pq. (33)

Therefore, if G(1, 1) is positive definite,r2
F2(vec(Ĥ)) is positive definite. We can rewrite G(1, 1)

as

G(1, 1) = H(1, 1)�R (34)

where � is the Hadamard product and R is defined as

R =

2

666666666666664

d2P
k=1

v1,kv1,k
d2P
k=1

v1,kv2,k . . .
d2P
k=1

v1,kvr,k . . .
d2P
k=1

v1,kvN,k

d2P
k=1

v2,kv1,k
d2P
k=1

v2,kv2,k . . .
d2P
k=1

v2,kvr,k . . .
d2P
k=1

v2,kvN,k

.
d2P
k=1

vi,kv1,k
d2P
k=1

vi,kv2,k . . .
d2P
k=1

vi,kvr,k . . .
d2P
k=1

vi,kvN,k

.
d2P
k=1

vN,kv1,k
d2P
k=1

vN,kv2,k . . .
d2P
k=1

vN,kvr,k . . .
d2P
k=1

vN,kvN,k

3

777777777777775

N⇥N

. (35)

According to Schur Product Theorem, since H(1, 1) has been proved to be positive definite in
Appendix C, G(1, 1) is positive definite if R is positive definite. In addition, since R = V(V)>,
when N < d2 and Rank(V) = N , R and G(1, 1) are positive definite.

17

E Theoretical Guarantee on Data Recovery for CAFE

E.1 Performance Guarantee for CAFE step I

We assume the stopping criterion for CAFE step I is denoted by

F1(V; si) =
���V>si �rb1L(⇥,D(si))

���
2

2
< �1, 8si. (36)

Then we have

F1(V) = Esi⇠Unif(S)F1(V; si) =
K

N
kV� V⇤

k
2
F  �1, (37)

where V⇤ is the ground truth.

For a given recovery precision for V as ✏1 denoted by kV� V⇤
k
2
F := ✏1. We have

✏1 
N

K
�1. (38)

As the result the recovery of V is guaranteed.

E.2 Performance Guarantee for CAFE step II

We assume the stopping criterion for CAFE step II as �2 denoted by

8i,F2(Ĥ; si) =
���

NX

n=1

si[n]ĥnv>n �r⇥1L(⇥,D(si))
���
2

F
< �2. (39)

Then we define

� =
NX

n=1

ĥnv>n �r⇥1L(⇥,D) = (Ĥ)>V� (Ĥ⇤)>V⇤. (40)

According to (39), we have

F2(Ĥ) = Esi⇠Unif(S)F2(Ĥ; si) =
K

N
k�k

2
F < �2. (41)

We assume that for V and V⇤, N < d2 and Rank(V) = Rank(V⇤) = N . Then there exist V�1 and
(V⇤)�1 such that

VV�1 = IN , V⇤(V⇤)�1 = IN . (42)

We assume that kr⇥L(⇥,D)k2F , kV�1
k
2
F and k(V⇤)�1

k
2
F are upper bounded by constants �⇥, �V

and �⇤ respectively. For stopping criterions �1 and �2, the recovery precision of Ĥ is bounded by

kĤ� Ĥ
⇤
k
2
F  2

N

K
(�⇥�V�⇤�1 + �V�2). (43)

Proof: First, we have

kĤ� Ĥ
⇤
k
2
F = k(Ĥ)> � (Ĥ⇤)>k2F

= k(Ĥ)>VV�1
� (Ĥ⇤)>V⇤(V⇤)�1

k
2
F

= k((r⇥L(⇥,D) +�)V�1
� (r⇥L(⇥,D))(V⇤)�1

k
2
F

= k(r⇥L(⇥,D))(V�1
� (V⇤)�1) +�V�1

k
2
F

 2kr⇥L(⇥,D)k2F k(V
�1
� (V⇤)�1)k2F + 2k�k2F kV

�1
k
2
F (44)

Since

kV�1
� (V⇤)�1

k
2
F = kV�1(V⇤

� V)(V⇤)�1
k
2
F

 kV�1
k
2
F k(V

⇤)�1
k
2
F kV

⇤
� Vk2F (45)

we have

kĤ� Ĥ
⇤
k
2
F  2kr⇥L(⇥,D)k2F kV

�1
k
2
F k(V

⇤)�1
k
2
F kV

⇤
� Vk2F + 2k�k2F kV

�1
k
2
F . (46)

18

F Defense Algorithm Based on Fake Gradients

In this section, we list the pseudo-code of our defense strategy in Section 3.4.

Algorithm 5 VFL with fake gradients (in the t-th iteration)

Require: training dataset D = {xn, yn}Nn=1, number of local clients M , model parameters ⇥t, loss
function L(D,⇥t), number of fake gradients ⌫, L2 distance threshold ⌧

1: construct ⌫ gradients with entries being i.i.d. drawn from N (0,�2)
2: For each gradient in , we sort its elements in descending order
3: Generate batch indices st
4: for m = 1, 2, . . . ,M do
5: Worker m takes real batch data
6: Worker m exchanges intermediate results to compute local gradientsr⇥L(D(st),⇥t).
7: sort-indexes ⇣ argsort

���r⇥L(D(st),⇥t)
��� (descending order)

8: while argmin 2

��� �r⇥L(D(st),⇥t)[⇣]
���
2
> ⌧ do

9: construct ⌫ gradients with entries being i.i.d. drawn from N (0,�2)
10: For each gradient in , we sort its elements in descending order
11: end while
12: argmin 2

��� �r⇥L(D(st),⇥t)[⇣]
���
2

13: initialize fake gradients g 0 {g has the same dimension as r⇥L(D(st),⇥t)}
14: for i = 1, 2, . . . , |⇣| do
15: initialize gradients index ` 0
16: for k in ⇣[i] do
17: g[i][k] = min([i][`],max(r⇥L(D(st),⇥t)[i][k],� [i][`]))
18: ` = `+ 1
19: end for
20: end for
21: Upload g to the server.
22: end for

G Additional Details on Experiments

In this section, we will provide additional details on the experiments that cannot fit in the main paper.

G.1 Choices of hyper-parameters

Table 9: Choice of hyper-parameters on CAFE
(M = 4, K = 40, batch ratio = 0.05, Nested-loops)

Method
Hyper-parameter Terms

lr of Step I, II, III ↵,�, �, ⇠

CIFAR-10 5⇥ 10�3, 8⇥ 10�3, 2⇥ 10�2 10�2, 10�4, 10�3, 90
MNIST 10�2, 10�2, 10�2 10�2, 10�4, 10�3, 25

Linnaeus 5 5⇥ 10�3, 5⇥ 10�3, 10�2 10�2, 10�4, 10�3, 110
Yale dataset 32⇥ 32 10�2, 10�2, 10�2 10�2, 10�4, 10�3, 32

We list the choice of hyper-parameters on CAFE (M = 4,K = 40, Nested-loops) in Table 9. The
hyper-parameters of other experiments such as ablation study are adjusted based on these settings.

G.2 Experiments of CAFE PSNR via epoch

In Table 3, we fixed the number T for each dataset and it shows that large batch size indeed helps the
CAFE algorithm to approximate H, especially in MNIST. We also conducted an experiment using
the same number of epochs on Linnaeus 5 (same setup in Table 3) and reported the results in Table
10. The results suggest that increasing batch size K and number of iterations T both contribute to the

19

Table 10: Effect of T
(Linnaeus 5, 800 data samples in total)

Epoch

PSNR K

10 20 40 80 100

100 12.30 14.76 15.33 11.84 11.79
150 15.83 17.92 16.26 14.28 13.21
200 17.63 19.38 17.20 16.24 14.46
250 21.80 21.49 19.09 18.11 16.14
300 22.92 24.00 21.14 19.83 17.29
350 24.86 25.86 22.62 21.05 18.90

Table 11: Training loss via DP

of iterations

Training loss DP

DP
✏ = 10

DP
✏ = 5

DP
✏ = 1

DP
✏ = 0.1

Fake
gradients

True
gradients

0 2.78 2.77 2.77 2.77 2.77 2.77

1000 2.69 2.69 2.69 2.69 1.95 1.08

2000 2.85 2.85 2.85 2.85 1.38 0.54

3000 2.85 2.85 2.85 2.85 0.65 0.23

4000 2.92 2.92 2.92 2.92 1.09 0.38

6000 2.69 2.69 2.69 2.69 0.62 0.31

8000 2.69 2.69 2.69 2.69 1.15 0.46

attack performance. When we fix the number of epochs, the attacker with a smaller batch size needs
more iterations to recover data, leading to a better performance.

G.3 Comparison with DP-based defense

The results in Table 11 show the training loss of no defense (true gradients), differential privacy (DP)
defense, and our defense (fake gradients). For DP, we followed the gradient clipping approach [1]
to apply DP to the gradients from workers. In particular, the gradient norm was clipped to 3, as
suggested by [1]. As shown in Table 11, the training loss cannot be effectively reduced using DP.
This is also consistent with the result in [32] which adds noise to gradients as a candidate defense.
However, to avoid information leakage from gradients, the noise magnitude needs to be above a
certain threshold which will degrade the accuracy significantly. As the noise magnitude required by
DP is even stronger than the one needed for the ad hoc privacy in [32], it is inevitable to lead to a
similar conclusion. In our fake gradients defense, all of the gradients will be projected to a set of
predefined gradients before being sent to the server, with the purpose of restricting the attacker’s
knowledge from gradients leakage. Our defense is still deterministic in its essence and therefore does
not satisfy the DP. In sum, our experiments demonstrate that the attacker is unable to recover the
worker’s data and at the same time the training loss can be reduced effectively.

G.4 Experiments on human face dataset

Real data image 1-5

Recovered data image 1-5

Real data image 6-25

Recovered data image 6-25

20

Real data image 26-45

Recovered data image 26-45

Real data image 46-65

Recovered data image 46-65

Real data image 66-85

Recovered data image 66-85

Real data image 86-105

Recovered data image 86-105

Real data image 106-125

Recovered data image 106-125

Real data image 126-145

Recovered data image 126-145

Real data image 146-165

Recovered data image 146-165

Figure 8: Visualization of CAFE on Yale 32⇥ 32 human face dataset

21

	Introduction
	Related Work
	CAFE: Catastrophic Data Leakage in Vertical Federated Learning
	Preliminaries
	Why large-batch data leakage attack is difficult?
	CAFE implementation
	Defense strategy: Leveraging fake gradients as a countermeasure to CAFE

	Experiments
	Comparison with the state-of-the-art
	Ablation study
	Tests for attacking while training scenarios
	Mitigation of CAFE data leakage attack via fake gradients
	Recover human face data

	Conclusions
	CAFE vs DLG
	Proof of Theorem 1
	Proof of Theorem 2
	Theoretical Guarantee on Data Recovery for CAFE
	Performance Guarantee for CAFE step I
	Performance Guarantee for CAFE step II

	Defense Algorithm Based on Fake Gradients
	Additional Details on Experiments
	Choices of hyper-parameters
	Experiments of CAFE PSNR via epoch
	Comparison with DP-based defense
	Experiments on human face dataset

