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1 Supplementary Methods and Results

1.1 Training Data

An initial library of 34217 85aa (85 amino acid long) putative modulator peptides from diverse
biological origins were experimentally screened for their ability to activate a synthetic genetic locus
using a nuclease inactive Cas system. In this system the modulator peptide is fused to the Cas
molecule and directed towards the synthetic genetic locus with gRNAs [1].

The 85aa length was chosen because of technical limitations in ordering a large number of sequences
from Twist Biosciences. This was the maximum length that we could obtain in a cost effective manner
after including sequencing primers and barcodes.

In an independent follow-up screen, a subset of these sequences were re-tested, resulting in 173
sequences that we classified as validated gene activators ("positive hits"), giving a hit rate of 0.51%.

The low number of positive examples presents a particular problem for ML-guided engineering
because it is difficult to ensure that the fitness function will extrapolate well outside the small
neighborhood of the positive examples in the training set.

1.2 Featurization

We treat each peptide sequence as a string of 20 unique amino acid characters. Under this char-
acterization, each peptide sequence needs to be numerically featurized to be used as input to train
supervised classification models. We explored several featurizations.

OneHot Encoding The simplest form of peptide featurization, OneHot encoding, transforms each
of the 20 possible amino acid characters into a unique 20-dimensional vector with all values equal to
zero except the amino acid index position with a 1. For our training set, this results in a list of 34217
arrays of size 85x20.
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ESM-2 Embedding Evolutionary Scale Model 2 (ESM-2) is a transformer-based protein language
model trained on over 60M sequences from the UniRef database [2, 3]. Training on such a huge
diversity of protein sequences allows large protein language models (LPLMs) like ESM-2 to implicitly
capture a variety of evolutionary, biochemical, and biophysical features that can be leveraged to
improve functional predictions via transfer learning. In this study we use the 650M parameter
33-layer ESM-2 model which converts each 85aa peptide sequence into an array of size 85x1280.
We additionally tested the larger 3B and 15B ESM-2 models but ultimately decided to use the
650M parameter model embeddings since the lower parameter embedding performed comparably
well. Furthermore, the computational cost of MHMCS and EMCS is dominated by the embeddings,
therefore the smaller model enabled faster exploration.

Mean featurization One transformation of OneHot encoding is to transform them to a "bag of
words", or rather a "bag of embeddings" featurization [4, 5]. For example, an 85x20 amino acid
OneHot encoding will be transformed to a 1x20 encoding of average amino acid content. Similarly,
the 85x1280 ESM-2 embeddings will be transformed to a 1x1280 of average embeddings.

1.3 Model Training

OneHot and ESM-2 protein sequence embeddings were then used as input to train two classification
models: a decision-tree based model (XGBoost) [6], where we flatten the features by taking the mean
featurization; and a 1-dimensional convolutional neural network (CNN) [7]. Due to the extreme
class imbalance, during all training we upsampled our positive hits so they accounted for 30% of
the observations. All models were trained using using AWS Sagemaker Accelerated Computing
P3 instances with NVIDIA V100 Tensor Core GPUs with PyTorch (v1.13). Model training results
(PR-AUC and F1 scores) can be found in Supplementary Table 1 and Supplementary Table 2. For
both XGBoost and CNN models, we observed a significant increase in PR-AUC and F1 scores with
the use of transfer learning with the ESM-2 embeddings compared to OneHot encoding.

XGBoost We performed hyperparameter tuning with a grid search (parameters: "learning_rate",
"n_estimators", "gamma", "subsample", "max_depth", "min_child_weight") and determined the
top model based on PR-AUC score from 5-fold stratified cross-validation. XGBoost models were
trained with tree_method="gpu_hist" and objective="binary:logistic". The top ESM-2 model included
500 trees with a max depth of 4 and was trained with the following parameters: learning_rate=0.1,
gamma=0, subsample=0.75, min_child_weight=0. The top model was then re-trained on the entire
training set with upsampling of the minority class (the positive hits) and used as the XGBoost fitness
function for exploring the fitness landscape.

CNN Model architecture for the 1-dimensional CNN models included 3 convolutional layers with
rectified linear unit (ReLU) activation functions, with batch-normalization, dropout, and max-pooling,
followed by two densely connected layers. We employed hyperparameter tuning with a grid search
(parameters: "n_epochs", "weight_decay", "learning_rate", "batch_size", "dropout", "conv_size")
and determined the top model based on F1 score from 5-fold stratified cross-validation. CNN models
were trained using the AdamW optimizer [8] with "BCEWithLogitLoss" loss function. The top
ESM-2 model was trained for 30 epochs with a batch size of 16 using the AdamW optimizer with
parameters learning_rate=1e-06 and weight_decay=0.05; this resulted in a network architecture
with three convolutional layers containing 100 convolutional filters (kernel_size=10, stride=1) with
batch-normalization and max-pooling followed by two densely-connected layers (200 neurons in
first hidden layer and 10 neurons in second hidden layer). The top model was then re-trained on the
entire training set with upsampled positive hits and used as the CNN fitness function for exploring
the fitness landscape.

We believe that the power of our approach lies in the combination of transfer learning via LPLMs
and EMCS. Since LPLMs are trained on an immense number of diverse protein sequences, modern
LPLM embeddings implicitly contain a wealth of features describing a protein’s biochemical, bio-
physical, evolutionary, and even 3-dimensional structure information [2]; as such, we reason that
LPLM embeddings of novel proposed sequences are capable of capturing the predicted functional
consequences of genetic crossovers from EMCS such that swaps resulting in misfolded or non-active
proteins are assigned low fitness and thus not selected by EMCS. Conversely, potential swaps and
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Model performance by PR-AUC
Embedding Fitness Model PR-AUC (5-fold CV) PR-AUC (30% test set)
OneHot XGB 0.487 0.549
OneHot CNN 0.331 0.303
ESM-2 XGB 0.573 0.629
ESM-2 CNN 0.533 0.576

Supplementary Table 1: PR-AUC scores based on 5-fold cross-validation and testing on 30% holdout
test set for top XGBoost and CNN models with OneHot and ESM-2 embeddings respectively.

Model performance by F1 score
Embedding Fitness Model F1 score (5-fold CV) F1 score (30% test set)
OneHot XGB 0.450 0.472
OneHot CNN 0.457 0.432
ESM-2 XGB 0.590 0.615
ESM-2 CNN 0.562 0.519

Supplementary Table 2: F1 scores based on 5-fold cross-validation and testing on 30% holdout test
set for top XGBoost and CNN models with OneHot and ESM-2 embeddings respectively.

domains that can act synergistically will be assigned a high fitness by our semi-supervised transfer
learning-based model and selected for by EMCS, even if those domains are not evolutionarily related.

In contrast, since GANs and diffusion models sample from a low-dimensional latent space, and then
pass the sample through the model to obtain the proposed sequence, only sequences that are close to
the training data in latent space can be designed by these methods; additionally, there’s no guarantee
that high synergy domains will be close in the latent space (especially if they’re not evolutionarily
related) limiting the potential diversity of sequences that can be proposed by generative algorithms
trained on limited and skewed training data.

1.4 Sampling

All sampling runs were implemented on AWS Elastic Cloud Compute 2 g5.2xlarge instances with
NVIDIA A10 Tensor Core GPU’s. When using the ESM-2_650M parameter model to generate
sequence embeddings, we found that the g5.2xlarge instances could evaluate roughly 50 independent
85aa sequences per second. We verified that the vast majority of the computational time was spent on
sequence featurization.

Metropolis Hastings Monte Carlo Search (MHMCS) Algorithm 1 summarizes our implementa-
tion of MHMCS, with our choice of default parameters given in Supplementary Table 3. In MHMCS,
the search space for a given molecule is explored via the iterative application of a mutation opera-
tor. The mutation operator proposes a new molecule via making a random number of single point
mutations to the current molecule. The fitness of this new molecule is then evaluated, and the new
molecule is accepted with probability min(1, rmh), where rmh is the standard metropolis hasting
criterion.

The Metropolis-Hastings Monte Carlo Search (MHMCS) method [9–11] is the standard method
for the exploration of high-dimensional discrete landscapes, including those generated by machine
learning algorithms [12–14]; however MHMCS suffers from an inability to escape deep local optima.
Other approaches for sampling the sequence space include gradient-based sampling [15, 16], and
modified Gibbs sampling [17]. While powerful, these approaches require significant computation
near the local neighborhood of the fitness landscape and are therefore too computationally intensive
for sequences of any significant length, (e.g. gradient-based methods require 19 ·L computations and
Gibbs requires L computations per iteration).

Evolutionary Monte Carlo Search (EMCS) Algorithm 2 details our implementation of EMC
as a search tool with our choice of default parameters given in Supplementary Table 3. EMCS
is highly versatile and allows for vastly different exploratory behaviors compared to traditional
sampling techniques due to the implementation of a custom temperature ladder, as well as predefined
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crossover, mutation, and swap rates [18]. These parameters can be tuned for more efficient exploration
depending on the specific design problem and the complexity of the discrete high-dimensional fitness
landscape.

Each primary iteration in EMCS can potentially change the state of the algorithm in one of three
ways, namely, point mutations, swaps, and crossovers between different temperature chains. The
possibility of the acceptance of sub-optimal moves for each of these three classes depends on how we
define the acceptance criterion.

We use rmh, the standard Boltzmann Metropolis-Hastings acceptance criterion, for mutation-based
moves, which as described earlier, accepts sub-optimal moves with probability weighted by the ratio
of the proposed fitness to the current fitness. For swaps between two consecutive chains, we use
rre, the standard parallel tempering criterion also used in [18]. Using this criterion, any proposed
swap in which the higher fitness sequence in proposed to move to the lower temperature chain is
accepted. In a swap in which a higher fitness sequence is proposed to move to the higher temperature,
the move is accepted with probability inversely proportional to the magnitude of the difference of the
temperatures of the two chains, as well as the fitness of the two sequences. Finally, the crossover
criterion rc, also adapted from [18], accepts crossover moves taking into account the difference in
fitness between the set of old and new sequences, in addition to the difference of temperatures of the
two chains involved in the crossover.

Crossover Criterion The crossover criterion (min(1, rc)) is used to determine whether the set of
new sequences i2, j2 generated by crossing over two sequences i1, j1 are accepted or rejected. Here,
rc is defined as:

rc = exp

(
f(i2)− f(i1)

Ti
− f(j2)− f(j1)

Tj

)
(1)

With the condition that Ti ≤ Tj , and the sequences i2, j2, and i1, j1 are ordered such that f(i1) ≥
f(j1) and f(i2) ≥ f(j2). The proposed sequences i2, j2 are accepted with probability min(1, rc)
and assigned to temperatures Ti and Tj respectively.

By rearranging the terms in rc, we can see that rc will always be greater than 1 if

f(i2)

Ti
− f(j2)

Tj
>

f(i1)

Ti
− f(j1)

Tj
(2)

This condition always holds true for optimal moves. Including the move in which the fitness of both
sequences improves as in f(i1) < f(i2) and f(j1) < f(j2), thereby moving both sequences to a
region with a higher fitness landscape. If f(i1) < f(i2) but f(j1) > f(j2), that is, the fitness of
one sequence improves while the fitness of of the other sequence is worsened, then the proposed
move is only guaranteed to be accepted if the condition in Supplementary Equation 2 holds. If the
condition in Supplementary Equation 2 does not hold, then the proposed move is sub-optimal and is
only accepted with probability equal to that defined in Supplementary Equation 1. In general, the
likelihood of acceptance of a sub-optimal moves rapidly decreases as the temperature difference
Tj −Ti increases, thereby suggesting that a large temperature difference penalizes sub-optimal moves
more than a smaller temperature difference.

The immensity of the protein sequence space coupled with the computational cost of embedding a
protein using LPLMs like ESM-2 called for an efficient sampling algorithm that could escape local
optima without compromising resolution. The EMC algorithm is ideally suited to this use case, as the
incorporation of a temperature ladder allows for the simultaneous existence of multiple acceptance
ratios. Furthermore, the genetic crossover steps allow for more efficient exploration of the fitness
landscape, as shown by sequence diversity and average entropy change per iteration of MHMCS vs.
EMCS.

This method generalizes well to proteins of any length with one caveat. The changes proposed by the
crossover operator would be too large for proteins of significant length (>150 aa residues), yielding a
set of sequences with edit distances too high from the starting sequences. Given the highly rugged
and sporadically peaked nature of the fitness landscape, the crossover operator is significantly more
likely to propose low fitness sequences that will be rejected, thus effectively reducing the EMCS
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Algorithm 1 Metropolis Hastings Monte Carlo Search (MHMCS)
Initialize a peptide sequence i and assign a temperature Ti.
Set minimum and maximum number of iterations kmin and kmax, respectively.
Set maximum number of mutations µ.
Set convergence condition f(i) ≥ C where f(i) is the fitness of sequence i.
repeat

Make random point mutations at q loci for sequence i to yield a new sequence s′, where
q ∈ {1, . . . , µ} is chosen uniformly at random
Accept or reject sequence s′ using the metropolis hasting criterion i.e. with probability
min(1, rmh), where rmh = exp( f(j)−f(i)

T )
until iterations > kmax or ((fi ≥ C) and iterations > kmin)

algorithm to a parallel tempering (PTP) algorithm. To remedy this problem, we propose replacing the
crossover operator with a segment swap operator, where instead of crossing over entire sequences
we swap randomly chosen segments between two proteins to yield two new sequences. While this
introduces additional tuning parameters (such as length of the segment that is to be swapped, number
of segments to be swapped per iteration), it preserves and improves the critical domain swapping
feature of EMCS. The acceptance criterion for this operator would be the same criterion that we used
for the crossover operator, as in both cases we are evaluating the acceptance of two new sequences i2,
j2 created from i1, j1.

Ablation: EMC-NPT Search (Evolutionary Monte Carlo without Parallel Tempering) This is
the EMCS algorithm with the temperature differences and swap rates set to zero.

Ablation: PTP Search (Parallel Tempering) This is the EMCS algorithm with the crossover rates
set to zero.

Default Sampling Parameters Supplementary Table 3 summarizes the default parameters used for
our sampling runs. Usually, the number of minimum and maximum iterations are determined by first
trying a few numbers and then manually adjusting them to find a set of numbers where the algorithm
is able to converge to a state with an acceptable fitness. This is done by simply plotting the fitness vs.
the number of iterations.

The temperature T decides how liberally non-optimal moves are accepted. A very high temperature
will result in a very large proportion of non-optimal moves being accepted (>50-60%). This would
make it almost impossible for the algorithm to converge, as the algorithm is unable to reject unfavor-
able moves when it is close to an optimum. A smaller temperature makes the MHMCS algorithm
more conservative, thereby only strictly accepting moves that increase the fitness or decrease it by
a very small amount (favoring a higher resolution search). This makes it easier to move towards
an optimum, but restricts the search space to directions where the fitness only increases. Therefore
the selection of the temperature is an important task, defining the tradeoff between the resolution
(depth) and the width (area) of the search. EMCS allows us to search using different temperatures
simultaneously. The temperatures were chosen by a combination of analyzing the fitness distribution
of the training set (where the fitness scores spanned over multiple orders of magnitude between 10−4

and 1), as well as trial and error. The number of chains was set to 4 in order to achieve a good balance
between fitness score coverage and computational cost. The algorithm was set to converge when
one or more sequences were discovered with a fitness score ≥ 0.95 and the maximum number of
iterations was set to 105.

Fitness Evaluation: Ensemble Model When sampling using the ensemble model, each new
proposed sequence was evaluated using both XGBoost and CNN models, where fitness was defined
to be the average of the respective fitness scores of the XGBoost and CNN models. This ’combined’
fitness was then used to accept or reject any proposed moves.
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Algorithm 2 Evolutionary Monte Carlo Search (EMCS)
Select N chains of amino acid sequences [0, 1, .., i, .., N ], with corresponding temperature ladder
[T1, T2, .., Ti, .., TN ] such that Ti ≥ Tj for i > j, with fitness f(i)
Set crossover rate γ such that γ ⊆ [0, 1), and define maximum mutation, crossover, and swap
events as µ, α, β
Set minimum and maximum number of iterations kmin and kmax, respectively
Set convergence condition f(i) ≥ C where f(i) is the fitness of sequence i
repeat

Sample random number p from uniform distribution [0, 1)
if p > γ then

Make random point mutations at q loci for each sequence i to yield new set of proposed
sequences denoted by j, where q ∈ {1, . . . , µ} is chosen uniformly at random
Update each sequence by accepting or rejecting each proposed sequence using the metropolis
hasting criterion i.e. with probability min(1, rmh), where rmh = exp( f(j)−f(i)

T )
else

for number of crossover events α do
Let i1, j1 be two random sequences corresponding to temperatures Ti, Tj . Pick a random
crossover locus between [2, N-1], where N is the length of the peptide.
Propose a set of two sequences i2 and j2 by crossing over i1, j1 at the chosen crossover
locus. This results in i2 being identical to sequence i1 prior to our crossover locus, and
identical to sequence j1 post our crossover locus. Similarly, j2 is identical to sequence j1
prior to the crossover locus, and identical to sequence i1 post the crossover locus.
For two temperatures Ti and Tj such that Ti ≤ Tj , order i2, j2, and i1, j1 such that
f(i1) > f(j1) and f(i2) > f(j2)
Accept the new set of sequences i2, j2 with probability min(1, rc) where rc is defined as
rc = exp

(
f(i2)−f(i1)

Ti
− f(j2)−f(j1)

Tj

)
. If accepted, assign i2, j2 to chains at temperatures

Ti, Tj respectively.
end for

end if
for number of swap events β do

Select two sequences i and j at chains corresponding to Ti, Tj , such that j = i± 1, and swap
their sequence positions such that i → j and j → i with probability min(1, rre), where rre

is defined as rre = exp
(
−(f(i)− f(j))

(
1
Ti

− 1
Tj

))
end for

until iterations > kmax or ((fi ≥ C) for any sequence and iterations > kmin)

1.5 Experimental Screening

Library Synthesis For experimental validation, we designed a library of 4600 novel peptide
sequences (and included 300 previously validated negative control peptides with random sequences)
based on our exploration of the modulator fitness landscape (Supplementary Table 4). The 85aa

Default Sampling Parameters (MHMCS/EMCS)
Model Number

of
Chains

Temperature µ γ α β

MHMCS 1 2.5× 10−3 5 - - -
MHMCS 1 2.5× 10−4 5 - - -
EMCS 4 2.5× [10−4, 10−3, 10−2, 10−1] 5 0.5 1 1
EMC-NPT 4 2.5× [10−4, 10−4, 10−4, 10−4] 5 0.5 1 -
PTP 4 2.5× [10−4, 10−3, 10−2, 10−1] 5 - - 1

Supplementary Table 3: Default sampling parameters for EMCS and MHMCS, and ablations. Key
(as defined in main text): µ (Max. Mutation Events Per Iteration), γ (Crossover Rate), α (Max.
Crossover Events Per Iteration), β (Max. Swap Events Per Iteration)
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peptide sequences were reverse-translated into 255bp nucleotide sequences using randomized codons
to minimize GC bias [19], which were then synthesized as a pooled library by Twist Bioscience.
To ensure that we could accurately identify gene activators in our experimental validation, we also
included 300 previously validated negative controls (random sequences) to the library.

Validation library composition
Algorithm Initialization Total Sequences
EMCS Known 1310
EMCS Random 1290
MHMCS Random 2000
Negative Controls n/a 300

Supplementary Table 4: Overall composition of peptides in validation library sorted by choice of
sampling algorithm. Initialization column denotes the sampling algorithm’s starting sequence as
either randomly initialized ("Random"), or known positive hit ("Known").

Wetlab Screening The library was cloned downstream of dCasMINI in a lentiviral expression
plasmid at high coverage (≈ 300x) and packaged into lentiviral particles (2 lentivirus batches
were produced by transfecting separate dishes of 293T cells). K562 cells bearing a GFP reporter
were infected in quadruplicate (2 biological replicates receiving different lentiviral batches, each
with 2 technical replicates) at 1000x coverage with low multiplicity of infection (MOI = 0.3) to
ensure that each infected cell received only one dCasMINI-modulator fusion construct. Infected
cells were then enriched by Puromycin selection. At 7 days post-transduction, cells were sorted
using fluorescence-activated cell sorting (FACS) to isolate GFP_OFF and GFP_ON populations
(Supplementary Figure 1). For each replicate, ≈ 106 GFP_ON cells were harvested. Genomic
DNA was prepared from GFP_ON, GFP_OFF, and unsorted populations, and barcoded modulator
sequences were amplified using PCR primers to add Illumina i5 and i7 indexed adapter sequences.
Pooled libraries were then sequenced on an Illumina NextSeq (Gladstone Genomics Core).

Supplementary Figure 1: Representative FACS histograms illustrating cell counts within GFP_OFF
(P4) and GFP_ON (P5) gates in un-infected cells (a) and cells infected with the validation library (b).
FITC-A is a readout for GFP levels.

Bioinformatic Analysis Raw sequencing reads were first aligned to a list of DNA barcodes (each
putative modulator peptide is associated with a unique 12bp DNA barcode) in order to generate
a count matrix. Read counts of technical replicates were then summed by barcode resulting in 2
biological replicates of GFP_ON and GFP_OFF libraries respectively. DESEQ2 [20] was used to
determine which peptides were differentially enriched in the GFP_ON bins vs the GFP_OFF bins
resulting in 357 positive hits (FDR<0.05 and log2FC>0) that were capable of activating the synthetic
gene locus ((Supplementary Figure 2a, Supplementary Table 5, Supplementary Table 6). As expected,
negative controls were depleted from the GFP_ON bin as these randomly encoded peptides were
unable to activate the synthetic fluorescent reporter (Supplementary Figure 2b).

Principal Component Analysis (PCA) In order to visualize how the library of 4600 novel proposed
sequences compared to the original training data, we performed principal component analysis (PCA)
with Scikit-learn in Python (v3.9). Briefly, we combined peptide sequences from our trianing data
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Supplementary Figure 2: Volcano plots illustrating statistical signficance (adjusted p-value) and
activation strength (Log2FoldChange) of experimentally screened modulator peptides colored by
sampling method (a) and highlighting negative controls (b).

Experimental Results: Sampling Algorithm
Algorithm Initialization Total Sequences Number of Hits Hit Percentage
EMCS All 2600 338 13%
MHMCS All 2000 18 0.9%
EMCS Known 1310 270 20.6%
EMCS Random 1290 68 5.3%
MHMCS Random 2000 18 0.9%
Negative Controls n/a 300 1 0.33%

Supplementary Table 5: Final hit percentage of novel sequences sorted by choice of sampling algo-
rithm. Initialization: Notes the sampling algorithm starting sequence as either randomly initialized,
or known positive. Total Sequences: Number of sequences that were identified as high fitness by the
machine learning model. Number of Hits: Number of sequences that validated experimentally.

Experimental Results: Model Choice
Fitness Model Total Sequences Number of Hits Hit Percentage
Ensemble
(XGB+CNN)

1000 135 13.5%

XGB 1800 145 8.06%
CNN 1800 76 4.2%
Negative Controls 300 1 0.33%

Supplementary Table 6: Final hit percentage of novel sequences sorted by choice of machine learning
model. Total Sequences: Number of sequences that were identified as high fitness by the machine
learning model. Number of Hits: Number of sequences that validated experimentally.

with the 4600 sequences in the validation library, represented each sequence with OneHot encoding
and then flattened the encoding by taking the mean. Features were scaled using StandardScaler()
prior to calculating and visualizing principal components.

1.6 In-Silico Experiments

To compare sequence proposals and convergence efficiency between EMCS and MHMCS, we
performed an in silico sampling experiment where we explore the fitness landscape a minimum of
1000 times with each algorithm using identical and controlled initial conditions. For ablation studies,
we also considered in silico sequence proposals generated by a parallel tempering setup (PTP: EMCS
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Supplementary Figure 3: Principal Component Analysis (PCA) of original training set (grey and
orange points) with novel sequences designed by EMCS (blue) and MHMCS (red) using OneHot
encoding.

without crossovers), as well as those generated by a non-parallel tempered EMCS which we refer to
as EMC-NPT (EMCS with crossovers, but with all chains run at the same temperature).

Convergence With default parameters, we achieved convergence for 1171 EMCS runs where we
obtained at least one sequence per run that had a fitness ≥ 0.95. In addition, due to the inclusion of 4
chains, EMCS yielded an average of 2.322 sequences per run that had fitness ≥ 0.5, thereby giving
us a total of N = 2720 sequences of fitness ≥ 0.5 for 1171 runs. For MHMCS, chains that started at
temperatures greater than 2.5× 10−2 had a minimum failure rate of 50%, and were dropped from the
experiment. When excluding those sequences, we obtained a total of N = 2571 sequences from 2571
runs. 2361 of those sequences had fitness ≥ 0.95. The remaining 210 failed to reach convergence, but
still had final fitness ≥ 0.5. In supplementary table 10 we show that the average number of primary
iterations to convergence for EMC based methods is significantly lower than MHMCS or PTP.

Entropy Calculations The change in entropy for a given iteration gives us a measure of the change
in information observed for that iteration. Fig. S4 shows the entropy change distribution of two
simulated MHMCS and EMCS runs under default parameters. However, the number of iterations was
preset to 107 to average over a sufficiently large number of iterations (for reference, Supplementary
Table 10 shows the convergence times of a general run under default parameters to be < 104).

The information entropy of a given sequence is defined as:

S = −
∑
i

pilog(pi), (3)

where i runs over the 20 possible amino acid residues, and pi is the ratio of the count of a given amino
acid residue divided by the length of the peptide. For example, a peptide sequence of ’AAASST’
would have pi equal to 3

6 , 2
6 , 1

6 for residues ’A’, ’S’, and ’T’ respectively, and zero for all other residues.
For MHMCS, the entropy change for a given iteration is defined as ∆S = Sproposed − Sinitial.
Where Sinitial is the entropy of the sequence at the beginning of the iteration, i.e. prior to the
application of a mutation operator.

For EMCS, EMC-NPT and PTP, the entropy change is first independently calculated for each of the
chains (Nchains = 4 for default parameters). Then, the value of the maximum entropy change is
retained and recorded for a given iteration. It is important to note that the entropy changes in each of
the chains occur due to the application of the mutation and/or the crossover operator, which in turn
depends on the choice of parameters we use. This is also why EMCS and EMC-NPT have identical
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Supplementary Figure 4: a. i) Iterations to convergence (f ≥ 0.95) starting from random pre-defined
sequences for 2361 sequences from 2571 MHMCS runs, ii) 617 sequences obtained from 617 PTP
runs, iii) 1387 sequences obtained by 1387 EMC-NPT runs, iv) 1171 sequences obtained by 1171
EMCS runs, and v) number of iterations to convergence and/or positive hits (f ≥ 0.5) for 2720
sequences obtained by 1171 EMCS runs under default parameters, yielding an average of 2.32
positive hits per EMCS run of 4 chains. In i), 210 sequences failed to reach convergence within 105

iterations, yet their final fitness was greater than 0.5. b. Entropy change distribution for 107 MHMCS,
PTP, and EMCS primary iterations using default parameters. From an information perspective, EMCS
amd EMC-NPT explore a larger region of the fitness space per iteration compared to MHMCS and
PTP.

entropy change calculations, as the choice of mutation rate and crossover operators chosen were
identical. In Fig. S4, we only show this difference for the default parameters given in Supplementary
Table 3. Supplementary Table 9 provides additional data for Supplementary Figure 4.

Sequence diversity to training dataset To ensure that our sequences were sufficiently different
from the training data when initialized from known positive sequences, we calculated the minimum
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Entropy Change Distribution for 107 iterations using default parameters (Fig.5)
Model Mean Standard Deviation 25th 50th 75th
EMCS/EMC-NPT 0.334 0.229 0.146 0.252 0.437
PTP 0.202 0.114 0.118 0.18 0.26
MHMCS 0.092 0.101 0.013 0.061 0.133

Supplementary Table 7: Additional data for Supplementary Figure 5

edit (Levenshtein) distance of all high fitness sequences to the full set of sequences in the training
dataset, thereby giving us a measure of sequence diversity. The average minimum edit distance of the
entire set of sequences generated by a given algorithm can also be interpreted as a measure of novelty
[21].

Supplementary Figure 5 summarizes this result. We note that, in general, EMC based methods yield
sufficiently diverse sequences compared to MHMCS when starting from positive examples. While
high temperature MHMCS runs yielded slightly more diverse sequences, they also failed to converge
the majority of the time (275/500 runs).

Even with initialization from known positive hits, the sequences proposed by EMCS were highly
dissimilar from anything in the training set, which suggests that EMCS is capable of escaping deep
local optima to efficiently traverse the fitness landscape and identify diverse high fitness peptides.

Sequence Diversity measured by edit distance when starting from known positives
Model Number of

Sequences
Mean Standard De-

viation
25th 50th 75th

i. EMCS 1500 61.10 1.25 60 61 62
ii. EMC-NPT 1500 62.46 0.65 62 62 66
iii. PTP 1500 57.89 3.57 55 58 61
iv. MHMCS 500 49.21 5.96 38 42 46
v. MHMCS 500 57.4 4.21 55 58 61
vi. MHMCS* 225 61.82 1.43 61 62 63

Supplementary Table 8: Additional data for Figure S5. The mean of the edit distance from the
training dataset is also reported as the novelty score of a generative sequence algorithm [21].

Sequence diversity amongst discovered sequences To evaluate the diversity of sequences discov-
ered by a given algorithm, we calculated the diversity score as defined in [21], and described here as
follows.

Diversity(D) =

∑∑i ̸=j
i,j d(xi, xj)

|D||D − 1|
(4)

Where D is the set of sequences discovered by a given algorithm, and |D| is the number of sequences
in that set.

We postulate that the increased proposed sequence diversity and increased entropy per iteration seen
with EMCS is due to the genetic crossover steps, where functionally beneficial protein domains can
be exchanged between known sequences which are then further refined via point mutations. Escape
from local minima is further encouraged by the incorporation of a temperature ladder, which allows
for an increase in the search radius. In contrast, MHMCS is restricted to a single temperature and can
only access domains in the fitness function that are accessible via point mutations alone. This hinders
the ability of MHMCS to converge at a domain that corresponds to a diverse sequence when starting
from a known positive sequence because it will require many sub-optimal moves to escape for the
local optima of the initial sequence.

We believe our framework has a number of advantages over both prior ML-guided protein design
approaches with traditional sampling techniques as well as the classic laboratory protein engineering
approach. Firstly, assays that screen diverse, natural proteins for peptides of specific function typically
have extremely low hit rates whereas novel sequences proposed by our approach had significantly
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Diversity Score
Algorithm Initialization Number of Se-

quences
Diversity
Score

EMCS Known 1500 68.548
EMC-NPT Known 1500 69.898
PTP Known 1500 70.032
MHMCS Known 500 54.885
MHMCS* Known 500 67.695
MHMCS** Known 225 71.794
EMCS Random 1171 74.522
EMC-NPT Random 1387 74.399
PTP Random 617 74.033
MHMCS Random 2361 73.399

Supplementary Table 9: Diversity score: Mean pairwise edit distance of sequences discovered by a
given algorithm. *MHMCS run at T = 2.5× 10−3. **MHMCS run at T = 2.5× 10−2.

Supplementary Figure 5: Minimum edit distance of converged sequences to the original training
dataset initialized from known positive hits when using i-iii) EMCS, EMC-NPT, and PTP under
default parameters (N = 1500), iv) MHMCS with T = 2.5 × 10−4 (N = 500), v) MHMCS with
T = 2.5× 10−3 (N = 500), and vi) T = 2.5× 10−2 (N = 500). Although the average edit distance
of the sequences obtained with vi) were slightly higher than i), the failure rate at vi) exceeded 50%.
Refer to Table S8 for additional data.

higher hit rates in the validation experiment. Additionally, the small number of positive hits in the
training data of protein engineering problems inherently limits the accuracy and generalizability of
the fitness function; by leveraging information from LPLMs and incorporating multiple positive hits
in the proposal of novel sequences through EMCS domain swapping, we believe our approach is
capable of attenuating these disadvantages.

The approach described here should be of benefit to the wider scientific community, especially those
involved in protein engineering challenges, and has the potential to accelerate the design and testing
of novel proteins for a variety of purposes including therapeutic medicines.
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Additional Data: Number of Iterations to Convergence (Fig. S4
Model Inclusion

Criteria
Number
of
Runs

Number of
Sequences

Mean Standard
Devia-
tion

25th 50th 75th

EMCS f > 0.95 1171 1171 3950 4172 1500 2825 4985
EMC-NPT f > 0.95 1387 1387 3457 2752 1529 2736 4709
PTP f > 0.95 617 617 4402 7052 1466 2644 4641
MHMCS f > 0.95 2571 2361 8837 14409 1509 3501 8892
EMCS f > 0.5 1171 2720 2453 3822 35 1075 3546
EMC-NPT f > 0.5 1387 1495 3510 2791 1564 2762 4775
PTP f > 0.5 617 1062 4974 8541 1601 2839 5262
MHMCS f > 0.5 2571 2571 15990 28159 1629 3960 12534

Supplementary Table 10: Additional data for Supplementary Figure 4
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