
Implicit Zoo: A Large-Scale Dataset of Neural Implicit
Functions for 2D and 3D Scene

Supplementary Material

Qi Ma1,2 Danda Pani Paudel2 Ender Konukoglu1 Luc Van Gool1,2

1Computer Vision Lab, ETH Zurich 2INSAIT, Sofia University

In this supplementary material, we first detail the data generation process in Section 1 and provide1

more information on the implementation of the learnable tokenizer in Section 2. Next, we present2

additional details and experimental results on the benchmarks in Section 3. Finally, we provide3

information needed in checklist in Section 4. To gain a better understanding of our dataset and4

proposed benchmarks, please refer to the introductory video in the supplementary materials or the5

one available on our project page, which offers an overview of our dataset and its applications.6

1 Additional details of Dataset Generation7

Figure 1: Additional examples on CIFAR-10-INRs dataset We present additional data examples,
where the left side of each image pair shows the ground truth and the right side displays the results
queried from the INRs.

Speed up Training In [1], the authors propose meta-learning and implicit function modulation to8

accelerate the training process. Similarly, [2] and [3] reduce training time by employing smaller9

models and optimizing the number of iterations. In our 2D dataset, we observed that normalizing10

images before training implicit functions significantly speeds up training iterations. Therefore, we11

chose to normalize images and get rid of Sigmoid activation function in the final layer. In the 3D12

cases, we use a small model with 4 layers and a width of 128, without any skip connections. During13

training to enhance the performance with limited iterations, we propose an adaptive sampling method14

that focuses more on rays corresponding to 2D RGB values that are not white (likely to be the15

background). This approach is particularly beneficial for handling light-colored cases and tiny objects16

as shown in Fig 4. We observed that the training loss converged at 20k steps with learning rate 5e-4.17

More Examples of data We provide more examples of data on 1, 2, 1, 4. Note that if you zoom18

in, you may notice some artifacts in the CIFAR-10 dataset. For example, in the bottom row of the19

dog category in Fig 1 , the dogs appear slightly blurry. For a 32x32 image, a PSNR of 30 results20

in more noticeable visual differences compared to larger images, as seen in Fig 2. To address this21

issue, we refined the CIFAR-10 data as described in the main paper, increasing the average PSNR to22

approximately 35 and resulting in a smaller standard deviation across different classes, as shown in23

Submitted to the 38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets
and Benchmarks. Do not distribute.



Fig 9. Additional experiments on the refined dataset, reported in Table 2, align with the findings in24

the main paper.25

Figure 2: Additional examples on ImageNet dataset We present additional animal images from the
ImageNet dataset, which is one of the motivations behind naming this work Implicit Zoo. Comparing
with the ground truth images on the left, the reconstructions are of very high quality.

Figure 3: Additional examples on Cityscapes dataset We present additional data samples from
Cityscapes-INRs. Notably, fine details such as pedestrians in (c) and significant illumination changes
in (d) are well-preserved in the reconstructions.

Data statistics We report PSNR across classes of dataset in Fig 9, 10. For Cityscapes-INRs results26

please refer to main page. Note that the PSNR differences in 2D cases are minimal due to the quality27

control and further refinement we implemented. Some of the classes in ImageNet results are higher28

than others, indicating better performance achieved during the initial phase of training.29

Scene filtering As shown in Fig 11 the rendering PSNR for novel view changes a lot cross different30

classes (180 claases) with standard deviation 3.87. This is mainly because the various objects the31

dataset include. As shown in Fig 4, we observe that PSNR tends to be higher for light-colored objects32

because their colors align with the white-background assumption [4]. A similar trend is observed33

for small objects. During data filtering, we first exclude cases with a PSNR below 25. For classes34

with fewer than five scenes, we ignore the entire scene in this class. Ultimately, we retain 5,287 valid35

scenes for our experiments.36

Data releasing. We uploaded CIFAR-10-INRs, ImageNet-10-INRs Omniobject3D to Kaggle and37

can be found in project page. The Cityscapes-INRs dataset will be released shortly on the Cityscapes38

team’s official after this paper is published publicly. Additionally, we are working on a refined version39

of ImageNet with PSNR > 35 and training a larger NeRF model on Omniobject3D, utilizing a coarse40

and fine model with 8 layers and a width of 256. The benchmark code will also be released on the41

above webpage.42

2

https://www.cityscapes-dataset.com/


Figure 4: Additional examples on Omniobject3D dataset We present additional examples on
Omniobjecct3D. We observe that when objects are large, have rich colors, and relatively simple
surfaces, our reconstruction performs very well (a). However, in more challenging cases such as (b)
shallow-colored objects, (c) complex surfaces with text information, and (d) small or thin objects, the
reconstruction quality is less satisfactory.

Figure 5: Differential Augmentation We propose geometric augmentation in weights-space and
color augmentation in RGB-space.Following [5] we propose 15 differentiable transforms which
enhance our dataset application.

2 Additional details of Learnable tokenizer43

2D implementation We provide more detailed information on learnable tokenizer and different44

RGB grouping on 2D implementation here. We first map the coordinates to (−1, 1) and then divide45

them uniformly with patch size P to N patches, each containing P 2 coordinates. We calculate46

the center coordinate ci for each patch i ∈ {1, 2, ...N} and determine the coordinate difference of47

each coordinates to the center coordinate dij , where j ∈ {1, 2, ...P 2}. Thus, all coordinates xij48

can expressed as xij = ci + dij . For (b) Learnable Scaling, we introduce a learnable scaling factor49

si for each patch. The queried coordinate is then given by x′
ij = ci + sidij . For (c) Learnable50

Centers we make ci themselves also learnable. Both method (b) and (c) keep the grid shape. For51

(d) Learnable pixels instead of learning a coordinate difference we directly make all coordinate xij52

learnable. Finally in (d) we divide at beginning the coordinates randomly.Furthermore, to stabilize the53

training and ensure the learnable scale remains non-negative and the learnable pixels stay within the54

range (−1, 1) a extra Tanh(.) activation is applied on scaling factor and Sin(.) is added on learnable55

coordaintes.56

3



Augmentation Rotate Translate ShearX

Implementation Wt =
[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
bt = W△b Wt =

[
1 s
0 1

]
, bt = W

[
s
0

]
Table 1: Implantation of geometric augmentation on weight-space: We implement geometric
transformation by modifying the weight W and bias b in first layer of INRs

Differential augmentation As discussed in the main paper, differential augmentation is crucial to57

ensure that gradients can backpropagate to the learnable tokenizer. Unlike previous works [6, 7] hat58

train more INRs on augmented data, we implement [5] in a differential manner. Note that we propose59

to implement non-differential geometric augmentations in weight-space to make them differentiable.60

As shown in Fig 5, we first implement geometric augmentation such as Rotate, ShearX, ShearY,61

TranslateX, TranslateY, Cutout in by modifying the first layer of INRs. Specifically, we adjust the62

weights and biases as W ′ = W +Wt and b′ = b+ bt. This is calculated by W ′(x′) + b′ = Wx+ b63

where x′ is the corresponding coordinates after transformation.64

Next, we implement color augmentations such as AutoContrast, Equalize, Solarize, Color Balance,65

Invert, Contrast, Brightness, and Sharpness in RGB space. Two main challenges arise: first, some66

color augmentations are non-differentiable, such as the Equalize operation, which creates a uniform67

distribution of grayscale values in the output image, and the Posterize operation, which reduces the68

number of bits for each color channel. To address that we first calculate the transform T outcome of69

these two operation and add the residual to our rgb value. △v = T (v)−v and v′ = v+△v. Note that70

we do not apply this residual addition to all color transformations because we want proposed learnable71

tokenizer to remain learn from color augmentations. Secondly some out-of-range RGB values can72

appear due to geometric augmentations x′ /∈ (−1, 1), as illustrated in the Fig 6. These values73

can significantly impact downstream tasks such as segmentation and can also interfere with RGB74

augmentations process. To address this, we propose applying the same geometric transformations to75

a binary mask M with zero padding for out-of-range values. Before performing Color augmentations,76

we first apply the mask operation vmask = Mv. We adopt some operations from [8].77

Figure 6: Masking out-of-range values: We implement zero-padding by applying same geometric
transformation for a binary mask and we show examples for (a)rotation, (b)translation and (c)shear
operation. Out-of-range RGB values are clearly visible in the bottom right corner of the transformed
image.

3D implementation To lift up the learnable tokenizer to 3D volume tokenization we make following78

modification. Firstly we uniformly divide the space to N volumes and each include P 3 3D sample79

points. Then similarly for Learnable Centers + Learnable Scale we calculate the center points ci for80

each volume i ∈ {1, 2, ...N}. The remaining operations are similar to 2D process.81

4



Figure 7: Illustration of Proposed 3D Volume Encoder pretraining mechanismWe randomly
mask out 80% of the volume tokens, allowing the encoder to operate only on the visible tokens. A
small decoder processes the full set of encoded visible patches and masked tokens to reconstruct the
input color volume and density volume. For qualitative results, please refer to Fig 8

3 Additional details of Benchmark82

We provide detailed information on the implementation of our experiments and benchmarks. Ad-83

ditionally, we introduce our proposed pretraining mechanism, which has proven to be effective, as84

demonstrated in the main paper.85

3.1 Implementation details86

CIFAR-10-INRs We use ViT-tiny [9] with a depth of 12 and 3 heads for multi-head self-attention.87

The patch size is set to 4, and we employ a convolution layer with a kernel size of 4 as the embedding88

layer. For optimization we use Adam optimizer [10] with learning rate is 0.0001 for classify model89

and learnable tokenizer. Additionally, we apply CosineAnnealing leraning rate scheduler [11]. For90

regularization,we use regularize weight of wreg = 1.91

ImageNet-100-INRs: We utilize ViT-base [12, 9] with pretrained model 21k-1k and fine-tuned on92

our ImageNet-100 dataset.Our experiments are conducted with a batch size of 32, using distributed93

training on GeForce RTX 4090 GPUs. We employ the AdamW optimizer [13] with a learning rate94

of 1e-5 for the main model and the learnable tokenizer. A WarmupCosineAnnealingLR scheduler95

with one warmup epoch is used for learning rate adjustment.96

Cityscapes-INRs: Similar to above we use AdamW optimizer [13] with learning rate 1e-4 for97

segmentation model and 1e-5 for learnable token. This is because in segmentation task we do not98

want misalignment between supervision area and tokenizaiton area too large. Following [14] we use99

PolynomialLR scheduler with power of 1.0.100

Omniobject3D-INRs: We first introduce the pretraining mechanism, by following [15] we random101

masking the volume tokens as shown in Fig 7. The volume encoder operates only on the unmasked102

tokens. The proposed volume encoder operates only on the unmasked tokens and consists of 12103

layers, each with 3 heads and an embedding feature dimension of 192. For the decoding process, we104

utilize 8 layers transformer-based decoder with same head numbers and embedding dimension as105

encoder. We use a shared and learnable masked token to fill in the originally masked-out positions106

and apply the positional encoding of the original tokens. The decoder then predicts the original RGB107

and density values, using mean squared error (MSE) as the loss function.108

Next, we use the pretrained encoder for INRs pose regression, demonstrating its effectiveness with109

improved results across all proposed learnable tokenizers. We train the model for 100 epochs with a110

batch size of 8, where each batch includes 24 sampled views of a given scene. For non-pretrained111

experiments, we use a learning rate of 1e-4, while for the pretrained volume encoder, we use a112

learning rate of 1e-5.113

5



3.2 Additional experiments114

We conducted weight-space-only experiments and additional experiments on refined CIFAR-10-INRs,115

training for 500 epochs. We selected DWSNet [16] and HyperRepresentation [17] for benchmarking,116

as they represent two primary approaches: one proposes a permutation-invariant network structure to117

process trained INRs, while the other learn strong encoder to tokenizes the network weights to latent118

feature.119

For DWSNet, we used a 4-layer model with a hidden dimension of 64. For HyperRepresentation,120

we employed an 8-layer transformer with a hidden dimension of 512. Notably, DWSNet performed121

poorly on the CIFAR-10 experiments, likely due to the lack of additional information from the input122

coordinate domain for the RGB 3D higher dimension output [16]. HyperRepresentation performed123

better but still yielded unsatisfactory results compared to other RGB space-based methods.124

Figure 8: Visualization on validation set of Omniobject3D reconstruction We present four batches
of reconstruction results in panels (a), (b), (c), and (d). The top row displays the input RGB volumes
and density volumes. The middle row shows the masked volumes, while the bottom row illustrates
our reconstruction results. Each sample contains 32x32x32 sampled points, and with a volume size
of 4, it generates 512 tokens, of which only 102 are visible. Note that the output in known patches
location may exhibit some artifacts.

Method Acc ↑ Precision ↑ F1 ↑
ViT[12] 84.28±0.41% 84.17± 0.44 % 84.25± 0.42 %
ViT[12] + LC 85.11± 0.33% 85.03± 0.38% 85.09± 0.34%
ViT[12] + LP + Reg 85.35± 0.35% 85.33± 0.37% 85.34 ± 0.35%
DWSNet[16] 38.12±1.32% 36.33±1.54% 37.11±1.33%
Hyper[17] 63.14± 1.12% 61.22± 1.45% 62.45± 1.34%

Table 2: Refined CIFAR-10-INRs Classification. We conduct additional experiments using refined
CIFAR with 500 epochs.We report results from the weight-space-only method and observe that a
performance gap still exists between the weights-only method and the RGB-based image method.

6



Figure 9: PSNR for each class in CIFAR-10-INRs We report the PSNR for all classes of CIFAR-10
INRs. Before refinement, the standard deviation across different tasks is 0.013, and after refinement,
it is 0.005.

Figure 10: PSNR for each class in ImageNet-100-INRs We report PSNR on ImageNet-100 with
standard deviation 0.157.

4 Additional information for Checklist125

Potential negative societal impacts While our work on proposing a large-scale INRs dataset for126

2D and 3D tasks offers significant advancements in the field of implicit neural representations, it127

is important to consider potential negative societal impacts such like (1) Privacy Concerns: The128

proposed dataset use other popular public dataset and share the same risk for privacy violations129

of other dataset. (2) Our work limit only to natural images and more diverse modality should130

be considered. (3) Environmental Impact: Training large-scale INRs models requires significant131

computational resources, which can contribute to high energy consumption and increased carbon132

footprint. This environmental impact is a growing concern with the proliferation of large-scale AI133

models.134

References135

[1] Emilien Dupont, Hyunjik Kim, SM Eslami, Danilo Rezende, and Dan Rosenbaum. From data to functa:136

Your data point is a function and you can treat it like one. arXiv preprint arXiv:2201.12204, 2022.137

[2] Ziya Erkoç, Fangchang Ma, Qi Shan, Matthias Nießner, and Angela Dai. Hyperdiffusion: Generating im-138

plicit neural fields with weight-space diffusion. In Proceedings of the IEEE/CVF International Conference139

on Computer Vision, pages 14300–14310, 2023.140

[3] Luca De Luigi, Adriano Cardace, Riccardo Spezialetti, Pierluigi Zama Ramirez, Samuele Salti, and141

Luigi Di Stefano. Deep learning on implicit neural representations of shapes, 2023.142

7



Figure 11: PSNR for each class in Omniobject3D-INRs-INRs We report PSNR on Omniobject3D
with standard deviation 3.87.

[4] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren143

Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications of the ACM,144

65(1):99–106, 2021.145

[5] Ekin D. Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V. Le. Randaugment: Practical automated data146

augmentation with a reduced search space, 2019.147

[6] Allan Zhou, Kaien Yang, Yiding Jiang, Kaylee Burns, Winnie Xu, Samuel Sokota, J Zico Kolter, and148

Chelsea Finn. Neural functional transformers. Advances in Neural Information Processing Systems, 36,149

2024.150

[7] Allan Zhou, Kaien Yang, Kaylee Burns, Adriano Cardace, Yiding Jiang, Samuel Sokota, J. Zico Kolter,151

and Chelsea Finn. Permutation equivariant neural functionals, 2023.152

[8] D. Ponsa E. Rublee E. Riba, D. Mishkin and G. Bradski. Kornia: an open source differentiable computer153

vision library for pytorch. In Winter Conference on Applications of Computer Vision, 2020.154

[9] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric155

Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara156

Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin157

Lhoest, and Alexander M. Rush. Huggingface’s transformers: State-of-the-art natural language processing,158

2020.159

[10] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.160

[11] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts, 2017.161

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas162

Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and163

Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale, 2021.164

[13] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.165

[14] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, and Ping Luo. Segformer:166

Simple and efficient design for semantic segmentation with transformers, 2021.167

[15] Christoph Feichtenhofer, Yanghao Li, Kaiming He, et al. Masked autoencoders as spatiotemporal learners.168

Advances in neural information processing systems, 35:35946–35958, 2022.169

[16] Aviv Navon, Aviv Shamsian, Idan Achituve, Ethan Fetaya, Gal Chechik, and Haggai Maron. Equivariant170

architectures for learning in deep weight spaces, 2023.171

[17] Konstantin Schürholt, Dimche Kostadinov, and Damian Borth. Hyper-representations: Self-supervised172

representation learning on neural network weights for model characteristic prediction, 2022.173

8


	Additional details of Dataset Generation
	Additional details of Learnable tokenizer
	Additional details of Benchmark
	Implementation details
	Additional experiments

	Additional information for Checklist

