
Appendices

A On the Commutativity Assumption

We consider the problem

f(x, θ) = 1
2

(
∥Ax− y∥22 + θ∥x− x̄∥2D

)
,with ∥x∥2D

def
= x⊤Dd ,

which is a generalization of Example 1 for the matrix norm ∥x∥2D with a diagonal matrix D. Contrary
to Example 1, the matrix D is not an identity matrix, but instead a diagonal matrix where the diagonal
entries are generated from a Chi-squared distribution. In this case, Assumption 2 is no longer verified.

To investigate whether the two phases dynamics appear also on this class of problems, we repeat the
same experiment as in Figure 2 with the above objective. We plot the result here below, confirming
the same dynamics of an initial Burn-in-Phase followed by a linear convergence phase observed in
the initial experiment.
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Figure 6: Two-phase dynamics without the commutativity assumption. The two-phase dynamics
predicted by Corollary 1 and Theorem 3 empirically hold for a problem that does not satisfy the
commutativity assumption (Assumption 2).

We also reproduced the same setup as in Figure 4 with this matrix norm, obtaining again comparable
results as in the commutative case. This suggest that results regarding the two-phase dynamics could
potentially be developed without Assumption 2, as we observe similar results as in Figure 4.
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Sobolev Chebyshev Gradient Descent
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B Experiments

B.1 Further experimental details

Hyperparameters. Initialization is always zero, x0 = 0, the regularization parameter θ in the
ridge regression problem is always set to λ = 10−3∥A∥2.
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DATASET n d κ

BREAST CANCER 683 10 7.2 ×107

BODYFAT 252 14 0.021
SYNTHETIC 200 100 0.18

Train-test split. For every dataset, we only use the train set, where the split is given by the
libsvmtools4 project.

Run-time. Given the reduced size of these datasets, the script to compare all methods, which does
a full unrolling for each iteration, runs in under 5 minutes running on CPU.

C Proofs

C.1 Proof of Theorem 1

Theorem 1 (Master identity). Under Assumptions 1, 2, 3, let xt(θ) be the tth iterate of a first-order
method associated to the residual polynomial Pt. Then the Jabobian error can be written as

∂xt(θ)− ∂x⋆(θ) =
(
Pt(H(θ))− P ′

t (H(θ))H(θ)
)
(∂x0(θ)− ∂x⋆(θ))

+ P ′
t (H(θ))∂θ∇f(x0(θ),θ) . (8)

Proof. We differentiate both sides of (4) and use Assumption 2:

∂xt(θ)− ∂x⋆(θ) = Pt(H(θ))(∂x0(θ)− ∂x⋆(θ)) + P ′(H(θ))∂H(θ)(x0(θ)− x⋆(θ)) .

We now differentiate the equation b(θ) = H(θ)x⋆(θ) w.r.t. θ,

∂b(θ) = ∂H(θ)x⋆(θ) +H(θ)∂x⋆(θ).

We first substitute ∂H(θ)x⋆(θ) by ∂b(θ)−H(θ)∂x⋆(θ). After rearrangement, we finally get

∂xt(θ)− ∂x⋆(θ) = (Pt(H(θ))− P ′(H(θ))H(θ))(∂x0(θ)− ∂x⋆(θ))

+ P ′(H(θ)))[∂H(θ)x0(θ) + ∂b(θ) +H(θ)∂x0(θ)]

It suffices to notice that the terms inside the square brackets are the cross-derivative of f :

∂θ∇f(x,θ) = H(θ)∂x(θ) + ∂H(θ)x(θ) + ∂b(θ).

C.2 Proof of Corollary 2

Corollary 2. Assuming G = 0, the bound of Theorem 2 is monotonically decreasing for t ≥ 1 if the
step size h from Theorem 2 satisfies 0 < h <

√
2/L.

Proof. In this proof, we assume that t ≥ 1. Indeed, when t = 0 and t = 1, the worst-case bound do
not guarantee any progress over ∥∂x1(θ)− ∂x⋆(θ)∥F .

First, we notice that when hλ ≤ 1 (i.e., h ≤ 1/L), we have that the rate from Theorem 2 is
monotonically decreasing. Indeed, the derivative over t gives

(1− hλ)t−1((hλ(t− 1) + 1) log(1− hλ) + hλ).

If the following condition is satisfied for all t ≥ 1, the derivative is negative, and therefore the bound
is monotonically decreasing:

log(1− hλ) ≤ hλ

(hλ(t− 1) + 1)
.

4https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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This is always true since the right-hand side is negative, because hλ < 1, and the left-hand side is
always positive since t ≥ 1.

We now assume that there exist some values of λ such that hλ > 1. For those values of hλ, the
expression in Theorem 2 becomes

(hλ− 1)
t−1 {

(1 + (t− 1)hλ)∥∂x0(θ)− ∂x⋆(θ)∥F .
We now compute its maximum value. First, we compute its derivative over t and solve d·

dt = 0. We
obtain the unique solution

t⋆ = 1− 1

log(hλ− 1)
− 1

hλ
.

This means there is only one maximum in the expression. We now seek a value of hλ where the
bound decrease monotonically for t > 1, i.e.,

∥∂x1(θ)− ∂x⋆(θ)∥F > ∥∂x2(θ)− ∂x⋆(θ)∥F > ∥∂x3(θ)− ∂x⋆(θ)∥F > ...

Since we know there is only one maximum, we compute hλ such that, in the worst case,
∥∂x1(θ)− ∂x⋆(θ)∥F = ∥∂x2(θ)− ∂x⋆(θ)∥F . We therefore have to solve

(hλ− 1)(1 + hλ) = 1 ⇒ hλ =
√
2.

In particular, this means that if hλ <
√
2, the bound decreases monotonically for t = 1, 2, . . ..

C.3 Proof of Theorem 3

Theorem 3 (Jacobian Suboptimality Rate for Chebyshev Method). Under Assumptions 1,2, let

ξ
def
= (1−√

κ)/(1 +
√
κ), and xt(θ) denote the tth iterate of the Chebyshev method. Then, we have

the following convergence rate

∥∂xt(θ)− ∂x⋆(θ)∥F ≤
(

2
ξt+ξ−t

)
︸ ︷︷ ︸

exponential decrease

{ ∣∣∣ 2t2

1−κ − 1
∣∣∣︸ ︷︷ ︸

quadratic increase

∥∂x0(θ)− ∂x⋆(θ)∥F +
2t2

L− ℓ
G

}
.

In short, the rate of the Chebyshev algorithm for unrolling in O(t2ξt). Moreover, assuming G = 0,
the maximum of the upper bound over t can go up to

∥∂xt(θ)− ∂x⋆(θ)∥F ≤ Oκ→0

(
2
κ∥∂x0(θ)− ∂x⋆(θ)∥F

)
at t ≈ 2

√
1
κ .

Proof. First, we recall that the derivative of the Chebyshev polynomial of the first kind can be
expressed as a function of the Chebyshev polynomial of the second kind (written Ũt):

dC̃t(λ)

dλ
= tŨt−1(λ).

Therefore, we replace the polynomial P in Theorem 1 by Ct, and evaluate

Ct(λ)− λ
dCt(λ)

dλ
= Ct(λ)− λ

m′(λ)C̃ ′
t(m(λ))

C̃t(m(0))
= Ct(λ)−

2λtŨt−1(m(λ))

(L− ℓ)C̃t(m(0))
.

This polynomial achieves its maximum in absolute value at the end of the interval [ℓ, L]. Therefore,
after replacement, and using the fact that m(L) = 1, C̃(1) = 1, and Ũt(1) = t, we obtain∣∣∣∣∣

[
Ct(λ)−

2λtŨt−1(m(λ))

(L− ℓ)C̃t(m(0))

]
λ=L

∣∣∣∣∣ = 1

|C̃(m(0))|

∣∣∣∣ 2t2

1− κ
− 1

∣∣∣∣ .
Similarly, for the second term, we have

max
λ∈[ℓ,L]

dCt(λ)

dλ
=

1

|C̃(m(0))|
2t2

1− κ
.

It suffices now to evaluate 1
|C̃(m(0))| . Using (for example) (d’Aspremont et al., 2021, Theorem 2.1),

we finally have
1

|C̃(m(0))|
=

1

ξt + ξ−t
, ξ =

1−√
κ

1 +
√
κ
.

16



C.4 Proof of Proposition 1

Proposition 1. Let xt be the t-th iterate of a first-order method. Then, for all iterations t and for all
θ, there exists a quadratic function f that verifies Assumption 1 such that G = 0, and

∥∂xt(θ)− ∂x⋆(θ)∥F ≥ 2

ξt + ξ−t
∥∂x0(θ)− ∂x⋆(θ)∥F , ξ =

1−√
κ

1 +
√
κ
. (11)

Proof. The proof is based on a reduction to the optimization case. Indeed, consider the specific case
of ridge regression, with a free scaling parameter α > 0,

f(x,θ) =
1

2

(
∥Ax− b∥2 + αθ∥x− x0∥2

)
.

In such a case, for all x0, we have ∥∂θ∇f(x0(θ),θ)∥F = 0. Moreover, this function is [σ2
min(A) +

αθ] strongly convex and [σ2
max(A)+αθ]-smooth, where σmin and σmax are respectively the smallest

and largest singular value of a matrix. Let us write H = A⊤A+ αθI and x⋆ = H−1(θ)AT b.

Now, consider any quadratic function f̃ of the form

f̃ =
1

2
(x− x̃⋆)H̃(x− x̃⋆).

Using the notation θ̄ to be a fixed value of theta θ (i.e., θ̄ = θ but ∂θθ̄ = 0), it is possible to write f
such that it matches f̃ , by setting

A = (H̃ − αθ̄)
1
2 , b = A(A⊤A)−1(A⊤A+ αθ̄I)x̃⋆.

This is possible only if H̃ − αθ̄ ≻ 0, or equivalently, if ℓ > αθ̄. It suffices to set ℓ
θ̄
> α to ensure

that condition. This means we can cast any quadratic function that does not depends on θ into one
that depends on θ, such that ∥∂θ∇f(x0(θ),θ)∥F = 0.

In such a case, the master identity from Theorem 1 reads

∂xt(θ)− ∂x⋆(θ) = (Pt(H(θ))−H(θ)P ′
t (H(θ)))(∂x0(θ)− ∂x⋆(θ)),

where H(θ) = A⊤A + θI . Now, write Qt(λ) = Pt(λ) − λP ′
t (λ). We now have the following

identity,
∂xt(θ)− ∂x⋆(θ) = Qt(H(θ))(∂x0(θ)− ∂x⋆(θ)).

This identity is similar to the one we have in optimization:

xt − x⋆ = Pt(H)(x0 − x⋆), Pt(0) = 1,

and for this identity, we have the lower bound (Nemirovski, 1995, Proposition 12.3.2)

∥xt − x⋆∥F ≥ 2

ξt + ξ−t
∥x0 − x⋆∥F .

However, in the case of unrolling, we have different constraints on Qt, which are the following:

Qt(0) = Pt(0)− 0 · P ′
t (0) = 1, Q′

t(0) = P ′
t (0)− P ′

t (0)− 0 · P ′′(0) = 0.

Therefore, we have more constraints on Q (i.e., on how fast we can decrease the accuracy bound).
Since we have seen that the functional class we work on is at least as large as the one of quadratic
optimization, the lower bound can only be worse than the one for minimizing quadratic function with
a bounded spectrum.

C.5 Proof of Proposition 2

Proposition 2. Assume that ∥∂H(θ)(x0(θ)− x⋆(θ))∥F ≤ η∥∂x0(θ)− ∂x⋆(θ)∥F . Then, under
Assumption 1, 2 and 3, we have the following bound for the average-case rate

EH(θ)∥∂xt(θ)− x⋆(θ)∥2F ≤ 2∥Pt∥2η EH(θ)∥∂x0(θ)− ∂x⋆(θ)∥2F .
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Proof. We first derive both sides of (4) and use Assumption 2, then we use Cauchy-Schwartz and
(a+ b)2 ≤ 2a2 + 2b2:

∥∂xt(θ)− x⋆(θ)∥2F ,
=∥Pt(H(θ))(∂x0(θ)− ∂x⋆(θ)) + P ′(H(θ))∂H(θ)(x0(θ)− x⋆(θ))∥2,

≤
(
∥Pt(H(θ))(∂x0(θ)− ∂x⋆(θ))∥F + ∥P ′(H(θ))∂H(θ)(x0(θ)− x⋆(θ))∥F

)2
,

≤2∥Pt(H(θ))(∂x0(θ)− ∂x⋆(θ))∥F + 2∥P ′(H(θ))∂H(θ)(x0(θ)− x⋆(θ))∥2F ,
≤2∥Pt(H(θ))∥2F ∥∂x0(θ)− ∂x⋆(θ))∥2F + 2∥P ′(H(θ))∥2F ∥∂H(θ)(x0(θ)− x⋆(θ))∥2F ,
≤2
(
∥Pt(H(θ))∥2F + η∥P ′(H(θ))∥2F

)
∥∂x0(θ)− ∂x⋆(θ))∥2F .

=2
(
Trace(Pt(H(θ))2) + ηTrace(P ′(H(θ))2)

)
∥∂x0(θ)− ∂x⋆(θ))∥2F .

Since the trace of a symmetric matrix is the sum of its eigenvalues, after taking the expectation on
both sides, we obtain the desired result:

E
[
∥∂xt(θ)− x⋆(θ)∥2F

]
≤ 2

(∫
R
P 2
t dµ+ η

∫
R
(P ′

t )
2 dµ

)
∥∂x0(θ)− ∂x⋆(θ))∥2F ,

C.6 Proof of Proposition 3

Proposition 3. Let {St} be a sequence of orthogonal Sobolev polynomials, i.e., ⟨Si, Sj⟩ > 0 if
i = j and 0 otherwise, normalized such that Si(0) = 1. Then, the residual polynomial that minimizes
the Sobolev norm can be constructed as

P ⋆
t = argmin

P∈Pt:P (0)=1

⟨P, P ⟩η =
1

At

t∑
i=0

aiSi, where ai =
1

∥St∥2η
and At =

t∑
i=0

ai .

Moreover, we have that ∥P ⋆
t ∥2η = 1/At.

Proof. We have that the sequence {Si}i=0...t is a orthogonal basis for Pt. Therefore, we can write
any polynomials as a weighted sum of Si. Also, since Pt(0) = 1 and Si(0) = 1, we have to enforce
that the linear combination sums to one. This means that

Pt =

t∑
i=0

aiSi,

t∑
i=0

ai = 1 .

We now minimize over α.

min
P∈Pt:P (0)=1

⟨P, P ⟩η = min
α:

∑t
i=0 ai=1

⟨
t∑

i=0

aiSi,

t∑
i=0

aiSi⟩η

= min
α:

∑t
i=0 ai=1

t∑
i=0

a2i ⟨Si, Si⟩η +
t∑

i=0

t∑
j=0̸=i

aiαj ⟨Si, Sj⟩η︸ ︷︷ ︸
=0

= min
α:

∑t
i=0 ai=1

t∑
i=0

a2i ∥Si∥2η .

The Lagrangian of the optimization problem reads

L(α, λ) =
t∑

i=0

a2i ∥Si∥2η + λ(1−
t∑

i=0

ai).

Taking its derivative to zero gives the desired result:

2ai∥Si∥2η − λ = 0 ⇒ ai =
λ

2∥Si∥2η
, λ =

1∑t
i=0 ai

.
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Injecting the optimal solution into ∥P∥2η gives

∥P∥2η =

t∑
i=0

a2i ∥Si∥2η

=

 1∑t
i=0

1
∥Si∥2

η

2
t∑

i=0

1

∥Si∥4S
∥Si∥2η

=

 1∑t
i=0

1
∥Si∥2

η

2
t∑

i=0

1

∥Si∥2η

=
1∑t

i=0
1

∥Si∥2
η

=
1∑t

i=0 ai
.
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D Optimal Sobolev algorithm

We recall the Sobolev algorithm:

yt = yt−1 − ht∇f(yt−1) +mt(yt−1 − yt−2)

zt = c
(1)
t zt−2 + c

(2)
t yt − c

(3)
t yt−2

xt =
At−1

At
xt−1 +

at
At

zt,

parametrized by:

• [ℓ, L], lower and upper bound on the eigenvalues of H(θ),

• α, parameter of the Gegenbaueur distribution (12), supposed to be the expected spectral
density (6). Note: α = 0 leads to a sequence of Chebyshev polynomials for yt.

• η, assumed to satisfy the inequality ∥∂H(θ)(x0(θ)−x⋆(θ))∥F ≤ η∥∂x0(θ)−∂x⋆(θ)∥F .
Intuitively, this parameter is the balance between ∥P∥ and ∥P ′∥.

D.1 Initialization (required for t = 0 and t = 1)

D.1.1 Side parameters

y0 = z0 = x0

δ1 = −L− ℓ

L+ ℓ
κ1 = 1

κ2 = 1

d0 = ξ0

d1 =
3

2(α+ 2)(α+ 1)(1 + 2η(α+ 1))
,

d2 =
3

(α+ 3)(α+ 2)
(
1 + η 8(α+2)(α+1)

2α+1

) ,

D.1.2 Main parameters

h1 = − 2δ1
L− ℓ

m1 = −
(
1 + δ1

L+ ℓ

L− ℓ

)
c
(1)
1 = 0

c
(2)
1 = 1

c
(3)
1 = 0

a1 =
d1

ξ1K1

(
L+ ℓ

L− ℓ

)2

,

A1 = A0 + a1
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D.2 Recurrence (for t ≥ 2)

D.2.1 Side parameters

γt =
t(t+ 2α− 1)

4(t+ α)(t+ α+ 1)

δt =
1

−L+ℓ
L−ℓ + δt−1γt

ξt =
(t+ 2)(t+ 1)

4(t+ α+ 1)(t+ α)

dt =
ξtγtγt−1

γt−1(ηt2 + γt) + ξt−2(ξt−2 − dt−2)

∆P
t =

1 + δt
L+ℓ
L−ℓ

γt
,

κt =
1

1 +
(

dt−2

κt−2
− ξt−2

)
∆P

t

,

τt =
1

dt−2

κt−2
+ 1

∆P
t
− ξt−2

,

∆S
t =

1

dt−2 +
(

1
∆P

t
− ξt−2

)
κt−2

Kt =
t(t− 1 + 2α)

4(t+ α− 1)(t+ α)
,

D.2.2 Main parameters

ht = − 2δt
L− ℓ

mt = −
(
1 + δt

L+ ℓ

L− ℓ

)
c
(1)
t = dt−2∆

S
t

c
(2)
t = κt

c
(3)
t = −τtξt−2

at =
dtξt−2

ξidt−2KtKt−1∆2
i

at−2,

At = At−1 + at
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E Derivation of the Sobolev algorithm

E.1 Notations

In this section, we use the following notations. We denote by µ the Gegenbaueur density 12 defined
in [ℓ, L], µ̃ the Gegenbaueur density defined in [−1, 1]:

µ(λ) = µ̃(m(λ)), µ̃(x) = (1− x2)α−
1
2 and m : [ℓ, L] → [0, 1], m(λ) =

2λ− L− ℓ

L− ℓ
.

where

m(λ) =
2

L− ℓ︸ ︷︷ ︸
=σ1

λ+

(
−L+ ℓ

L− ℓ

)
︸ ︷︷ ︸

=σ0

(19)

We also denote by Gt and G̃t the sequence of Gegenbaueur polynomials that are orthogonal respec-
tively w.r.t. the measure µ and µ̃, that it, for all i, j ≥ 0, we have∫ L

µ

Gi(λ)Gj(λ) dµ(λ)

{
> 0 if i = j

= 0 otherwise

∫ 1

−1

G̃i(x)G̃j(x) dµ(x)

{
> 0 if i = j

= 0 otherwise

In terms of normalization, we have that Gt is a residual polynomial, and G̃t is a monic polynomials.
In other terms,

G(λ) = 1 + ...λ1 + . . .+ ...λt, G̃(λ) = ...x0 + ...x1 + . . .+ 1xt

In such a case, by using the linear mapping m(λ) from [ℓ, L] to [−1, 1], see (19), we have the
following relation:

Gt(λ) =
G̃t(m(λ))

G̃t(m(0))
. (20)

Similarly, we define St and S̃t the sequence of orthogonal Sobolev polynomials w.r.t. the Sobolev
product involving the Gegenbaueur density, i.e.,∫ L

µ

Si(λ)Sj(λ) dµ(λ) + η

∫ L

µ

S′
i(λ)S

′
j(λ) dµ(λ)

{
> 0 if i = j

= 0 otherwise
,

and ∫ 1

−1

S̃i(x)S̃j(x) dµ(x) + η̃

∫ 1

−1

S̃′
i(x)S̃

′
j(x) dµ(x)

{
> 0 if i = j

= 0 otherwise
.

Originally, they are called Gegenbaueur-Sobolev polynomials (Marcellán et al., 1994) because µ is
a Gegenbaueur density, but for conciseness, we simply call them Sobolev polynomials. As for the
Gegenbaueur polynomials, St is a residual polynomial while S̃t is a monic polynomial. Finally, we
have that

St(λ) =
S̃t(m(λ))

S̃t(m(0))
if and only if η̃ = σ2

1η. (21)

Note that we make a distinction between plain symbols and tilde˜ symbols, where the tilde˜notation
is used for polynomials that are defined on [−1, 1], while the plain notation is the counterpart defined
on [ℓ, L].

E.2 Monic Sobolev polynomial

We now describe the construction of S̃, detailed in (Marcellán et al., 1994). The monic Gegenbaueur
polynomial is constructed as

G̃0 = 1, G̃1 = x, G̃t+1(x) = xG̃t(x)− γtG̃t−1(x), γt =
t(t+ 2α+ 1)

4(t+ α)(t+ α− 1)
. (22)

Then, the Sobolev polynomials are defined as a simple recurrence involving G̃t and G̃t−2,

S̃0 = G̃0, S̃1 = G̃1, S̃t = dt−2S̃t−2 + G̃t − ξt−2G̃t−2, (23)
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where

ξt =
(t+ 2)(t+ 1)

4(t+ α+ 1)(t+ α)
,

d0 = ξ0,

d1 =
3

2(α+ 2)(α+ 1)(1 + 2η(α+ 1))
, (24)

d2 =
3

(α+ 3)(α+ 2)
(
1 + η 8(α+2)(α+1)

2α+1

) ,
dt =

ξtγtγt−1

γt−1(ηt2 + γt) + ξt−2(ξt−2 − dt−2)
.

Note that the following property will be important later:

dt = ξt
∥G̃t∥
∥S̃t∥η̃

, (25)

where

∥G̃t∥2 =

∫ 1

−1

G̃2
t (x) dµ(x), ∥S̃t∥η̃ =

∫ 1

−1

S̃2
t (x) dµ(x) + η̃

∫ 1

−1

[S̃′
t(x)]

2 dµ(x).

E.3 Shifted, normalized Sobolev polynomials

We now shift and normalize the Sobolev polynomials, that it, instead of being defined in [0, 1] and
being monic, we make them defined in [ℓ, L] (evaluate the polynomial at x = m(λ)) and residual
(divide the polynomial by S̃t(m(0))).

We begin by doing it to the Gegenbaueur polynomials. By applying the technique from (Pedregosa
et al., 2020, Proposition 18) on the polynomial G̃t(m(λ)),

G̃t(m(λ)) = σ0G̃t−1(m(λ)) + σ1λG̃t−1(m(λ))− γt−1G̃t−2(m(λ)).

We obtain the recurrence

Gt(m(λ)) = σ0δtGt−1(m(λ)) + σ1δtλGt−1(m(λ)) + (1− σ0δt)G̃t−2(m(λ)), (26)

where

δt =
G̃t−1(m(0))

G̃t(m(0))
=

1

σ0 − δt−1γt−1
. (27)

This expression can be cast into a recurrence that involves a step size and a momentum,

Gt(λ) = Gt−1 − htλGt−1(λ) +mt(Gt−1(λ)−Gt−2(λ)),

where

δ1 = −L− ℓ

L+ ℓ
,

h1 = − 2δ1
L− ℓ

,

m1 = −
(
1 + δ1

L+ ℓ

L− ℓ

)
,

δt =
1

−L+ℓ
L−ℓ + δt−1γt−1

,

ht = − 2δt
L− ℓ

,

mt = −
(
1 + δt

L+ ℓ

L− ℓ

)
.
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We now show how to shift and normalize the Sobolev polynomial. The shifting operation is not
complicated, as it suffice to evaluate the polynomial S̃t at x = m(λ). The difficult part is the
normalization. Using the relations (20), (21) and (23), we obtain

St =
S̃t−2(m(0))

S̃t(m(0))
dt−2︸ ︷︷ ︸

=c
(1)
t

St−2 +
G̃t(m(0))

S̃t(m(0))︸ ︷︷ ︸
=c

(2)
t

Gt −
G̃t−2(m(0))

S̃t(m(0))︸ ︷︷ ︸
=c

(3)
t

Gt−2.

Therefore, we have to compute those quantities that involves ratio of polynomials evaluated at λ = 0,
whose recurrence is detailed in the next Proposition.

Proposition 4. Let

∆P
t =

G̃t−2(m(0))

G̃t(m(0))
, ∆S

t =
S̃t−2(m(0))

S̃t(m(0))
κt =

G̃t(m(0))

S̃t(m(0))
, τt =

G̃t−2(m(0))

S̃t(m(0))
.

Then,

∆P
t = δtδt−1 =

σ0δt − 1

γt−1
, (28)

κt =
1

1 +
(

dt−2

κt−2
− ξt−2

)
∆P

t

, (29)

τt =
1

dt−2

κt−2
+ 1

∆P
t
− ξt−2

, (30)

∆S
t =

1

dt−2 +
(

1
∆P

t
− ξt−2

)
κt−2

(31)

Proof. We now show, one by one, each terms of the recurrence. We begin by ∆P
t . Indeed,

G̃t(m(λ)) = σ0G̃t−1(m(λ)) + σ1m(λ)G̃t−1(m(λ))− γt−1G̃t−2(m(λ)).

Therefore, using (27), we obtain

Gt(m(λ)) = σ0δtG̃t−1(m(λ)) + σ1δtm(λ)G̃t−1(m(λ))− γt−1∆
P
t G̃t−2(m(λ)).

After comparing this expression with (26), we deduce that

−γt−1∆
P
t = (1− σ0δt).

In other words,

∆P
t =

σ0δt − 1

γt−1
.

To show the other recurrences ,we will often use the fact that

S̃t(m(0)) = dt−2S̃t−2(m(0)) + G̃t(m(0))− ξt−2G̃t−2(m(0)). (32)

We now show how to form τt. Indeed, using (32),

τ−1
t =

S̃t(m(0))

G̃t−2(m(0))

=
dt−2S̃t−2(m(0)) + G̃t(m(0))− ξt−2G̃t−2(m(0))

G̃t−2(m(0))

=
dt−2

κt−2
+

1

∆P
t

− ξt−2.
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Using the same technique, we have for κt:

κ−1
t =

S̃t(m(0))

G̃t(m(0))

=
dt−2S̃t−2(m(0)) + G̃t(m(0))− ξt−2G̃t−2(m(0))

G̃t(m(0))

= dt−2
S̃t−2(m(0))

G̃t(m(0))
+ 1− ξt−2∆

P
t

However,
S̃t−2(m(0))

G̃t(m(0))
=

S̃t−2(m(0))

G̃t−2(m(0))

G̃t−2(m(0))

G̃t(m(0))
=

∆P
t

κt−2
.

Therefore,

κ−1
t = dt−2

∆P
t

κt−2
+ 1− ξt−2∆

P
t = 1 +

(
dt−2

κt−2
− ξt−2

)
∆P

t

Finally, it remains to show the recurrence for ∆S
t . As usual,

(∆S
t )

−1 =
S̃t(m(0))

S̃t−2(m(0))

=
dt−2S̃t−2(m(0)) + G̃t(m(0))− ξt−2G̃t−2(m(0))

S̃t−2(m(0))

= dt−2 +
G̃t(m(0))

St−2(m(0))
− ξt−2κt−2

We have seen before that
S̃t−2(m(0))

G̃t(m(0))
=

∆P
t

κt−2
,

which finally gives

(∆S
t )

−1 = dt−2 +
κt−2

∆P
t

− ξt−2κt−2 = dt−2 +

(
1

∆P
t

− ξt−2

)
κt−2.

E.4 Norm of Sobolev Polynomials

Now that we can build the shifted, normalized Gegenbaueur and Sobolev polynomials, we still need
to compute the norm of the Sobolev polynomial to compute P ⋆

t .

First, for simplicity, we write

∥Gt∥2 =

∫ L

ℓ

G2
t (λ) dµ(λ)

∥G̃t∥2 =

∫ 1

−1

G̃2
t (x) dµ̃(x)

∥St∥2η =

∫ L

ℓ

S2
t (λ) + η[S′

t(λ)]
2 dµ(λ)

∥S̃t∥2η̃ =

∫ 1

−1

S̃2
t (x) + η̃[S̃′

t(x)]
2 dµ̃(x), η̃ = σ2

1η

Indeed, to obtain the optimal method, we need to compute the coefficients

at =
1

∥St∥2η
.
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To do so, we will use the property (25):

dt = ξt
∥G̃t∥2
∥S̃t∥2η̃

.

We begin by the explicit expression of the norm of the shifted, normalized Sobolev polynomials, and
express it as a function of the norm of the plain, monic Sobolev polynomial. Indeed,

∥St(λ)∥2η =

∫ L

ℓ

S̃2
t (m(λ))

S̃2
t (m(0))

+ η
[m′(λ)S̃′

t(m(λ))]2

S̃2
t (m(0))

dµ(λ)

Since m′(λ) = σ1, and since η̃ = σ1η, we have

∥St(λ)∥2η =
1

S̃2
t (m(0))

∫ L

ℓ

S̃2
t (m(λ)) + η̃[S̃′

t(m(λ))]2 dµ(λ)

=
1

S̃2
t (m(0))

∫ L

ℓ

S̃2
t (m(λ)) + η̃[S̃′

t(m(λ))]2 dµ̃(m(λ))

=
1

S̃2
t (m(0))

∫ 1

−1

(
S̃2
t (x) + η̃[S̃′

t(x)]
2 d
) µ̃(x)

m′(x)

=
σ1

S̃2
t (m(0))

∫ 1

−1

(
S̃2
t (x) + η̃[S̃′

t(x)]
2 d
)
µ̃(x)

=
σ1

S̃2
t (m(0))

∥S̃t∥2η̃ (33)

Note that, by definition of ∆S
t , we have the recursion

S̃2
t (m(0)) =

S̃2
t−2(m(0))

[∆S
t ]

2
. (34)

Let Ḡt be defined as

Q̄t =
1

t

[
2x(t+ α− 1)Q̄t−1 − (t+ 2α− 2)Q̄t−2

]
,

i.e., Ḡt is a scaled version of Gt, which is the classical definition of Gegenbaueur polynomials. Then

∥Ḡt∥2 =
π2(1−2α)

[Γ(α)]2
Γ(t+ 2α)

t!(t+ α)
.

Since Γ(x+ 1) = xΓ(x), we can deduce a recurrence equation. Indeed,

∥Ḡt∥2 =
π2(1−2α)

[Γ(α)]2
Γ(t+ 2α)

t!(t+ α)

=
π2(1−2α)

[Γ(α)]2
(t− 1 + 2α)Γ(t− 1 + 2α)

t(t− 1)!(t+ α)

=
π2(1−2α)

[Γ(α)]2
(t− 1 + 2α)

t

t− 1 + α

t+ α

Γ(t− 1 + 2α)

(t− 1)!(t− 1 + α)

=
(t− 1 + 2α)(t− 1 + α)

t(t+ α)
∥Ḡt−1∥2. (35)

with the initial condition

∥Ḡ0∥2 =
π2(1−2α)

[Γ(α)]2
Γ(2α)

0!α
=

π2(1−2α)Γ(2α)

α[Γ(α)]2
.

However, there is a factor between Ḡt and the monic polynomial G̃t. Indeed,

G̃t =
Ḡt∏t

i=0
2(i+α−1)

i

. (36)
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This factor can be computed recursively. Let kt = 1∏t
i=0

2(i+α−1)
i

. Then,

kt =

t∏
i=0

i

2(i+ α− 1)

=
t

2(t+ α− 1)

t−1∏
i=0

i

2(i+ α− 1)

=
t

2(t+ α− 1)
kt−1. (37)

Therefore, using successively (35), (37), then (36), we have

∥G̃t∥2 = k2t ∥Ḡt∥2

=
t2

4(t+ α− 1)2
k2t−1∥Ḡt∥2

=
t2

4(t+ α− 1)2
(t− 1 + 2α)(t− 1 + α)

t(t+ α)
k2t−1∥Ḡt−1∥2

=
t

4(t+ α− 1)

(t− 1 + 2α)

(t+ α)
k2t−1∥Ḡt−1∥2

=
t(t− 1 + 2α)

4(t+ α− 1)(t+ α)︸ ︷︷ ︸
=Kt

∥G̃t−1∥2, (38)

with the same initial condition

∥Ḡ0∥2 = ∥G̃0∥2 =
π2(1−2α)Γ(2α)

α[Γ(α)]2
.

We now compute the recursion for ∥St∥2η. Indeed, by using successively (33), (34), (25), (38)×2,
(25) then (33),

∥St∥2η =
σ1

S̃2
t (m(0))

∥S̃t∥2η̃

=
σ1[∆

S
t ]

2

S̃2
t−2(m(0))

∥S̃t∥2η̃

= [∆S
t ]

2 σ1

S̃2
t−2(m(0))

ξt∥G̃t∥2
dt

= [∆S
t ]

2 σ1

S̃2
t−2(m(0))

KtKt−1
ξt∥G̃t−2∥2

dt

= [∆S
t ]

2 σ1

S̃2
t−2(m(0))

KtKt−1
ξtdt−2

dtξt−2

ξt−2∥G̃t−2∥2
dt−2

= [∆S
t ]

2 σ1

S̃2
t−2(m(0))

KtKt−1
ξtdt−2

dtξt−2
∥S̃t−2∥2η̃

= [∆S
t ]

2KtKt−1
ξtdt−2

dtξt−2
∥St−2∥2η.

We finally have the desired recurrence for the at’s since

ai =
ā

∥St∥2η
,

where ā is a nonzero multiplicative constant. We can arbitrarily decide that ā = 1, which gives us
a0 = 1. Given that S1 = G1, and after using (38), (25) and (33), we have

a1 =
d1

ξ1K1

(
L+ ℓ

L− ℓ

)2

.
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F Asymptotic algorithm

F.1 Asymptotics of Sobolev-Gegenbaeur polynomials

From (Scieur et al., 2020b), we know that the parameters converges asymptotically to

ht → h =

(
2√

L+
√
ℓ

)2

, mt → m =

(√
L−

√
ℓ√

L+
√
ℓ

)2

, δPt → 2
√
m, δPt → 4m.

In addition, it is easy to see that

ξ∞ =
1

4
, γ∞ =

1

4
.

Therefore,

d∞ = lim
t→∞

ξtγtγt−1

γt−1(ηt2 + γt) + ξt−2(ξt−2 − dt−2)
=

1
16

ηt2 + 1
2 − d∞

= O(1/t2) → 0.

Thus, the recurrence simplifies into (after replacing d∞ by 0)

κ∞ =
1

1− ξ∞∆P
∞

=
1

1−m
, (39)

τ∞ =
1

1
∆P

∞
− ξ∞

=
4m

1−m
, (40)

∆S
∞ =

1(
1

∆P
∞

− ξ∞

)
κ∞

= 4m (41)

This means that the asymptotic recurrence for S reads

St = dt−2∆
S
t St−2 + κtGt − τtξt−2Gt−2 → Gt −mGt−2

1−m
.

Moreover, we have

at =
diξi−2

ξidi−2KiKi−1∆2
i

at−2,

Kt =
t(t− 1 + 2α)

4(t+ α− 1)(t+ α)
,

a0 = 1

a1 =
d1σ

2
0

ξ1K1

When t → ∞, we have that Kt → 1/4, ξt → 1/4, ∆t → 4m. Therefore,

lim
t→∞

at
at−2,

= lim
t→∞

dt
dt−2m2

Moreover, di

di−2
→ 1. So, we have in the end that

lim
t→∞

at
at−2,

=
1

m2
,

or more simply,

lim
t→∞

at
at−1,

=
1

m
.

Therefore, when t → ∞, we have

lim
t→∞

At

at
= lim

t→∞

t∑
0

mt =
1

1−m
. (42)

This means that the asymptotic dynamic for P ⋆ reads

P ⋆
t =

At−1

At
Pt−1 +

at
At

St → mPt−1 + (1−m)St.
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G Asymptotic algorithm and asymptotic rate

The asymptotic recurrence of the polynomials reads

Gt = (1 +m)Gt−1 + h∇xGt−1 −mGt−2,

St =
Gt −mGt−2

1−m
,

P ⋆
t = mP ⋆

t−1 + (1−m)St.

This can be simplified into

Gt = (1 +m)Gt−1 + h∇xGt−1 −mGt−2,

P ⋆
t = Gt +m(P ⋆

t−1 −Gt−2).

Translated into an algorithm, we finally have a weighted average of HB iterates:

yt = yt−1 + h∇f(yt−1) +m(yt−1 − yt−2), (43)
xt = yt +m(xt−1 − yt−2). (44)

Note that the asymptotic rate reads

lim
t→∞

∥P ⋆
t ∥

∥P ⋆
t−1∥

=
At−1

At
= m.

Therefore, when t → ∞,

∥∂xt(θ)− ∂x⋆(θ)∥2F ≤ O(mt∥∂x0(θ)− ∂x⋆(θ)∥2F ).
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