Organization of the appendix

We provide a map of the results in the appendix.

1. In section[A]we provide formal statements of theorems[T]and 2] We also discuss the more
general spectral gap condition max; |\;(A)| < 1 instead of the stronger condition || A|| < 1
and its impact on the results.

2. In section [B|we construct the coupled process X; and setup notations used in the rest of
the paper. The coupled process has the additional property that the successive buffers are
independent.

3. In section[C] we show that the SGD — RER iterates generated using the coupled process are

close to ones generated by the actual data. After this, we only deal with the coupled iterates.

In section [D] we provide the bias-variance decomposition

. In section [E| we provide the proof of the parameter error bound of theorem [T} Required

intermediary results are discussed in section [[]

6. In section[F] we present the bounds on the bias and variance terms separately (for last and

average iterates), which are necessary to prove theorem[6] Most of the proofs are relegated

to sections [H} [T 0] [K]and

In section [G| we prove theorem [2]

In section we prove the lower bounds for the prediction error given in theorem []

In section [O| we discuss the scenario of VAR(A*, 1) where A* is sparse with known sparsity

pattern. We provide a proof sketch of the bound on prediction error in terms of sparsity.
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A Formal Results and Proof Sketch

In this Section, we formally state the full results and sketch the outline of our proof. Recall
the definitions of Lo, and L4 from section For all the theorems below, we suppose that
Assumptions [T} 2]and 3| hold. Assume that u,y, B, @ and R are as chosen in section 4}

Lett > a and let /Almt be the tail averaged output of SGD — RER after buffer ¢ — 1. Further let
T°% > cdrk(G).

Theorem 5. Suppose we pick the step size ¥ = min (ﬁ, ﬁ) or some constant C
depending only on C,. Then, there are constants C,c; > 0,0 < i < 4 such that if a >

¢o (d + alog T') then with probability at least 1 — % we have:
A (d+ alog T)omax(X) T? u
Lon(Aar, A%, 1) < Ag — A* A 9
op(Aa,s A, 1) 01\/ (1= a)Bowm(C) + B [l Ao I+ caps A7 ©)
where
By = cgidm(G) IOgTe_CZW (10)

t—a
The techniques for the proof is developed in Section|[]and the Theorem [5is proved in Section [E]

Theorem 6. Let R, B, u, « be chosen as in section Lety = 155 < ﬁfor 0 < ¢ < 1. Then there

are constants c1, ca, c3,cq4 > 0 such that for T2 > c1 V,”{‘*G) the expected prediction loss Lpred is
bounded as

dTr(Y)  d*omax(3) VE(G)
B(t—a) B(t—a) B
%0 max ()
“ [B%t —a)?
By Te(G) || Ao — A*||* +

(55 tary+ 2B L LY 1o

E [ﬁpred(zzla’t; A*,lj,):| — Tr(Z) < ¢y

(k(G))3/?dBlog T+

B R BT
(11)
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where By is defined in (T0).

The above theorem is proven only for the case £ = NN. The proof for general ¢ is almost the same. The
proof follows by first considering E [ﬁpred (A A%, )1 [DOvN*l]] (DYN=1 is defined in D
and using theorem [20]and theorem 2T]along with lemma[T2]in the appendix sections[G.T} [G.2] and[C]
Then noting that if the norm of any of the covariates X, exceed v/R the algorithm returns the zero

matrix we have that E [ﬁpred(ﬁaw; A*, )l [DO’N’LCH < c||A*)| T (G) 7=

Remark.

(1) In theorem@tbe term % v gc) is strictly a lower order term compared to %Ergg

when | A*|| < ¢o < 1. To see this note that oax(G) < fj‘ﬁz(*zu)z and oyin (G) > omin(2).

Hence k(G) < 1_"”(2”2 = O(Tmixk(X)). By the choice of B in the sectionwe see that
VE(G)

Y= = o(1) and it does not depend on condition number of A*.

2) Ifa = (dm(G) (log T)Z) the (3, is a lower order term. Further choosing u and « as in

sectionwe see that the terms depending on || A**|| and —7 are strictly lower order.
(3) Thus for the choice of a as in the previous remark such that a < (1 + ¢)t (for some ¢ > 0),

we get minimax optimal rates: %&Z) for Lpreq and up to log factors, % for Lop

A.1 Spectral Gap Condition

In Assumption (I} we could have used the more general spectral radius condition p(A*) =
sup, |A;(A*)| < 1 rather than the one on the operator norm. We have the Gelfand formula for
spectral radius which shows that limy,_, . [|A*¥||}/* = p(A*). Now, if A* is such that p(A*) < 1
but ||A*|| > 1 (a case studied by [3])), then we need to make w as large as C'd log T' which would lead
to a relatively large buffer size B of dlog T'. To see this, we verify the proof by [50] (by replacing A

with ﬁ and p(A) with 4 in the proof) to show that |A*F|| < (2k| A*|)? p*—¢ whenever k > d.

Therefore, in the worst case, we can pick u = O( (log (Tomax(G)) + dlog d||A]|) /log1/p).

In the case of p < 1 but ||A*|| > 1, k(G) can grow super linearly in d. For instance, consider A*

to be nilpotent of order d (i.e. A*~1 # 0 but A*? = 0). Here Omax(G) can grow like ||A*||d. So
we need exponentially (in d) many samples for bias decay. However, in many cases of interest (ex:
symmetric matrices, normal matrices etc) the spectral radius is the same as the operator norm.

B Basic Lemmas and Notations

Since the covariates {XT}TgT are correlated, we will introduce a coupled process such that we
have independence across buffers and that Euclidean distance between the covariates of the original
process and the coupled process can be controlled.

Remark. Note that the coupled process is imaginary and we do not actually run the algorithm with
the coupled process. We construct it to make the analysis simple by first analyzing the algorithm
with the imaginary coupled process and then showing that the output of the actual algorithm cannot
deviate too much when run with the actual data.

Definition 1 (Coupled process). Given the covariates {X; : 7 =0,1,.---T} and noise {n, : 7 =
0,1,---,T} wedefine {X,:7=0,1,--- , T} as follows:

1. For each buffer t generate, independently of everything else, )N((t) ~ T, the stationary
distribution of the VAR(A*, i) model.
2. Then, each buffer has the same recursion as eq [2):

X = A"X{ 40,0 =0,1,-- 51, (12)
where the noise vectors as same as in the actual process { X }.

With this definition, we have the following lemma:
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Lemma 7. For any buffer t, | X! — Xt|| < ||A**|||XE — X¢|, a.s.. Thatis,

IXEXET - RERET) < 20X 1XE - X< @IX])71AT. (13)
Here || X || denotes sup,. <7 || X-||.
Lemma 8. Suppose . obeys Assumption[2land A* obeys Assumption[I} Suppose X ~ , which is
the stationary distribution of VAR(A*, ). (X, x) has mean 0 and is sub-Gaussian with variance
proxy CﬂxTGm‘

Proof. Suppose n1,...,Mn, ... isasequence of i.i.d random vectors drawn from the noise distribution
p. We consider the partial sums »_"_, A*'n;. Call the law of this to be m,,. Clearly 7,, converges
in distribution to 7 as n — oo since 7, is the law of the n + 1-th iterate of VAR(A*, p)
chain stated at Xo = 0. By Skorokhod representation theorem, we can define the infinite
sequence XM ..., X(™) and another random variable X such that X() ~ m;, X ~ 7 and
lim,, 0 X = X as. Define G,, = 31, A*'S(A*)T. Clearly, G, < G = 372 A*'S(A*)T.
A simple evaluation of Chernoff bound for (X (™), ') by decomposing it into the partial sum of noises

shows that:
2 2

Eexp(MX ™, 1)) < exp ()\ 20“ (x, Gnm>> < exp ()\ 20“ (x, Gm>)

We now apply Fatou’s lemma, since X (") — X almost surely, to the inequality above to conclude

that:
2

Eexp(MX, z)) < exp (A 20“ (z, Gx>) .

O

Hence (z, X;) is subgaussian with mean 0 and variance proxy C},0max(G) |||>. This will provide
uniform variance for all z such that ||z||> = 1.

From subgaussianity and standard e-net argument we have the following lemma.
Lemma 9. For any 8 > 0 there is a constant ¢ > 0 such that

d
P [EIT <T:|X,]?> cTrGlogT] < T8 (14)
Thus as long as d < Poly(T), for every a > 0 there is a ¢ > 0 such that
1
P[3r<T X" > cTeGlogT| < = (15)

B.1 Notations

Before we analyze this algorithm, we define some notations. We work in a probability space (2, F, P)
and all the random elements are defined on this space. We define the following notations:
00 t—1
X', =Xl ) 5 0<i<S—1, G=) AN(AT), G =) ATnA),
s=0 s=0
. o . Iopt <
e R
’ 1 1> ]

y=ay(1-9R), ¢, ={IXL, <R}, € ={I%,)? <R},

B-1
D, ={IXP<R:j<i<B-1}=[)C,
i=j
t B—1
st __ ﬂr:leZO Sgt Nt vt |12 g ; — At
D _{Q L D_j_{||X_i|| §R.]§Z§Bl}—pjc_i,

A

o DT < ~ ~ A~ X ~

Déat:{gr—s —0 8;;, Dl,=D',nD",, D'=D"nD.
S
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Lastly c and ¢; for ¢ = 0,1, - - - denote absolute constants that can change from line to line in the
proofs.

C Initial Coupling

We consider the coupled process introduced in Definition[l|and run SGD — RER with the fictitious
coupled process X instead of X in order to obtain the iterates A! instead of Aﬁfl. Using Lemma
we can show that AL~! ~ A'~!. Tt is easier to analyze the iterates A due to buffer independence.

Lemma 10. Letr v < ﬁ. Under the event DYN~=1, for everyt € [N] and 0 < i < B — 1 we have:
1A; 71|l < 29RT .

Lemma 11~. Suppose v < ﬁ. Under the event DON—1 e have for everyt € [N]and0 < i < B—1.

14;7 = A7 M| < (16y°R*T? + 8yRT) || A™|

We can now just analyze the iterates A'~' and then use Lemmato infer error bounds for A*~*,
Henceforth, we will only consider A’

Lemma 12. Consider the algorithmic iterates obtained from the actual process and coupled process
(A%) and (A%). Then

E (45— a%)" (a7 = 41 [P Y]| S E {(A;—l - A*)T (At —a)1 [@UMH

+ec <73R3T‘3 | A*"]| + Y2 domax (X)) RT? TM) I (16)

for some constant c. Furthermore, the same conclusion holds for the average iterates. That is let

A 1
A N = § At—l
a, N —a B
t=a-+1
N
it t—1
a,N — N _ B
t=a+1

Then
2 [(de )" (o)1)
N e R

53 e 1
+c(fy‘5R‘3T‘5||A ||+72damax(E)RT2Ta/2>I 17)

Remark. The above lemma holds as is when Azfl, A?fl is replaced by Az-_l’v, fl;_l’v respectively.

We refer to Section [N for the proofs of the three lemmas.

D Bias Variance Decomposition

Now, we can unroll the recursion in @, but for the coupled iterates flﬁfl as

Ao Ar = (Agl’b - A*) + (Agl’“) , (18)

where s
(Afgl”’ - A*) = (4 - A [ Bei-s (19)

s=0
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is the bias term, and the variance term is given by:

t

B—-1 1
(i) =2 S R i T A @

r=1 j:O s=r—1

Here we use the convention that whenever » = 1, the product Hizrq is empty i.e, equal to 1.
The ‘bias’ term is obtained when the noise terms are set to 0, and captures the movement of the
algorithm towards the optimal A* when we set the initial iterate far away from it. The ‘variance’
term (A%” — A*) capture the uncertainty due to the inherent noise in the data. Our main goal is
to understand the performance (estimation and prediction) of the tail-averaged iterates output by
SGD — RER. Here, we consider just the last iterate, but the same technique applies to all the outputs

of SGD — RER. Thatis, A,y = x> Sn . Al! fora = [ON] with 0 < 6 < 1. We can
decompose the above into bias and variance as: A, y = 12127 N T 12127 N> With,

N

2 1 1t—1,v

A= > Aj (21)
t=a+1

A 1 N

Ab Tt—1,b

Aov =~ > AR (22)
t=a-+1

Similarly, we can decompose the final error into ‘bias’ and ‘variance’ as in Lemma[I3]below.
Lemma 13 (Bias-Variance Decomposition). We have the following decomposition:

(1;153—1 _ A*)T (/133_1 B A*) <9 |:(AtB—1,b _ A*)T (AtB_l,b -~ A*) i
(357) (35m)]:

E Parameter Error Bound-Proof of Theorem

In this section, we formally prove the bounds on L, (; A*, 1t), by combining several operator norm
inequalities that we prove in Section[[] As mentioned previously, we will just focus on the algorithmic
iterates from the coupled process (121;_1). Recall the output flgl after the ¢ — 1-th buffer from
Equation (T8). For any initial buffer index a € {0,1,..., N — 1}, the tail averaged output of our

algorithm is:
N

i 1 jt—1
Aa,N.:N_a Z AL
t=a-+1

Recall the quantities A1 and A% as defined in (T9) and (20). We can use this decomposition
to write:

Agn— A = A) y — A"+ AL 5.
Here AZW - A = ﬁZiLLH (A’;l’b—A*) denotes the bias part and AZ,N =

Nl_a Zi\; atl ([lgl’v> denotes the variance part.

E.1 Variance

Note that
20 N 20 a 2.
v = () - v (45.) (23)
Now, we apply Theorem [33|with d in the definition of M%V =1 to be Tlv for some fixed v > 1. We
conclude that conditioned on the event M%~ =1 N DN =1 with probability at least 1 — -, we have:
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2 v(d 4+ vlogT)20max () (d+vlogT)omax(X)
A < +
” O’N” - C\/ N ¢ NBa'min(G)

1

7w conditioned

Similarly, applying Theoremwith N = a shows that with probability at least 1 —
on the event M%N -1 4 DON -1

2 v(d+ vlog T)20max(2) (d+vlogT)omax(X)
<
145,011 < C\/ a ¢ 4B (G)

Here, the constant C' depends only on C),. We also note that when we pick YBR < Cy where
R > Tr(G) + vlog T, the first term in the equations above becomes smaller than the second term.
Therefore, under this assumption we can simplify the expressions to:

2 (d+vlogT)omax(X)
< .
1461 < C\/ N Bowin(G) 4
2 (d+vlog T)omax(2)
< .
1461l < C\/ aBowmin(G) (25)

Applying Equations and to Equation we conclude that conditioned on the event

MON=1 A DON=1 with probability at least 1 — -, we have:

2 N 2 a 2
v < v v
142wl < =1 (A5 ) 1+ 57—l (45.) |

CN [(d4+vlogT)omax(X) n Ca (d+vlogT)omax(2) 26)
~ N-—-a N Bomin(G) N —a aB0omin(G) ’
Choose a < N/2. Since
~ - 1 1
0,N—1 ON=1] 5y _ (2 o 1
P[M nD }_1 (75 + 7a)
we have
2 (d+vlog T)omax ()
P || AY
H a,N” >O\/ (N—a)BO'min(G)
1 3
< — 4= 27
< Ta + To (27
E.2 Bias

We now consider the bias term: A® ,, — A* := T Zi{\ia-‘,—l (A'};l’b — A*). First note that, from

equation (T9), we have

ng,N A 28)

t—1

[7s
I 7.5
s=0

1 N
< A%
<—— 3 - 47
t=a+1

Now from lemma if a > ¢ (d+ log &) then conditional on D%~ with probability at least
1—94,foralla+1<t <N wehave

t—1

s
1145
s=0

Note that in lemma we only condition on DO%t~1 but due to buffer independence and that
P [250’]\’*1} > 1 — -L we can condition on DON-1

< 2(1 — yBomm(G))** (29)

To
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Note that in the proof of lemma@the constant ¢, is actually at most 1 i.e., 0 < co < 1. Hence from

Bernoulli’s inequality, for x < 1
(I-—2)2<1-cox

Thus conditional on D%V~ with probability at least 1 — &

b * ||A0 - A*H - cat
HAG,,N_A S ﬂ Z 2(1_’YBUm1n(G)) 2
t=a+1
_ ol 4o = A (1 = yBowin (&)™
N —a oY Bomin (G)
| Ao — A% e~ €207 Bomin(G)
c
=P N—q YBomin(G)
Hence choosing § = 7 we have for a > ¢; (d + log ')
2 Ay — A*| e~ C20YBomin(G) 1 1
IPHAb — 4| > ) < — 4
[ N STN_a YBomin(G) | — T + TV
Define 3, as
1 e—CQG"{BUmin(G)
Bo = c3

N —a ~yBonin(G)
Thus by union bound and equations and (31)) we get

2 (d+vlog T)omax(2)
P|||A, N — A* Ay — A"
N >O¢(N—@B%m@)+ﬂﬂ 0 |
SRS
— T TV

Now from lemma 11l we see that on the event DON—1
Ao = Ao < ?R2T2 147

Ta»

|

Therefore choosing § = 7 we have for N/2 > a > ¢1 (d +1log &)

Since P [YA)O’N”} > 1— -L, we obtain

. 2 1
(AG,N . Aa,NH < 2 R2T? ||A*“||} >1-—

P |[dox - 47 > c\/ (d(; s ;f;f;g? T ol Ao — A°[| + e RET2|| A
L34
— T Tv

where 3, is defined in (32).

(30)

€1y

(32)

(33)

(34)

(35)

(36)

The theorem follows by adjusting the constants (in choosing §) such the above probability is at most

3 1 ; 3 1
Te t 37w and then choosing v such that 7% < 7.

F Bias Variance Analysis of Last and Average Iterate

In this section, our goal is to provide a PSD upper bound on

E[@gunvf(@;_AﬁyEK@W_AﬁT@gN_mﬂ

using the bias variance decomposition in (I8) and (22)). This bound leads to Theorem [I3] which is

critical for our parameter error proof (Theorem 3).
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F.1 Variance of the Last Iterate

The goal of this section is to bound error due to (fltl;l’v) For brevity, we will introduce the
following notation:

Vo= | (A1) ()1 [po] a7

The following proposition is the main result of this section.
Proposition 1. Ler v < ﬁ. Let the noise covariance be E [nmtT ] = 3. Then,

< ZTT(E) <ﬁ ~(t),BSLT1) (ﬁ ﬁé,};_1> 1 [ﬁo,t—l}

'YR s=1 s=t

t 1
rrt—s [rt—s N0, t— 1
(H Hé,BI) (H Hé,Bl) 1 [DOt 1}” _041720l‘7max(Z)(BtyTa/zI7
s=1 s=t

for some absolute constants ¢; > 0, 1 <1 < 4.

- 1
Viet I-E + cw?damax(z)(Bt)?mL

Vioi =y Te(Z) |I-E

We refer to Section in the appendix for a full proof. Note that we have, W <2
Corollary 1. In the same setting as Proposition[I} we have:
. 1
Vio1 = ey Te(S)T + coy?domax (2)(Bt)? —= 1 (38)

Ta/2 ’
for some constants c1,co > 0. IfT"‘/2 > T2, then Via =X cydomax], for some constant ¢ > 0.

F.2 Variance of the Average Iterate

2 T /2 ~
In this section we are interested in bounding: E [(AZW) (AZ’N) 1 {’DO,N—l} ] , for a = ON with
0 <0 < 1, where,

N

Av _ 1 1t—1,v

Ain=5—> > AR, (39)
t=a+1

and further, recall that T = N(B + ). The main bound in this section is given in Proposition

Note that we have,
5| () (Anw) 1 [ ]]
1 a Tt—1,v T Tt—1,0 N0, N—1
:MtgﬂE[(AB )" ()2 [

T i e t; E {(Ag_l’v)T (Ag_m> L [ﬁO’N_lH (40)

Proposition 2. Let v < min{ 5555} for 0 < ¢ < 1. Then for AZ,N defined in (39), there are

constants c1, co > 0 such that ifTO‘/2 >z V,Af‘é), then:

| (42) ()1 (2]

[ N—t N—t T

Ve (Z H5> + (Z ’H) Viei | +c2dl @1
s=0 s=0

= N_q2 Z -f/;t—l (I- 7'[)_1 + (I - 'HT)_l ‘715—1} +c20l +

)N7t+1 (

ﬁ S Vi =) N (T I-HT)"Via| @)
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and,
1

0= (S(N,B,R) = 72T2Rd0max(2)m (43)
and H is given by,
B-1 o ~
H=E | [ (1- 2%, %00 ) 1 [n25 (IR0, < R}, (44)
Jj=0

with Xo sampled from the stationary distribution  and X, follows the VAR(A*, u).

See section[|in the appendix for the proof.

F.3 Bias of the Last Iterate

In this we will analyze the bias term of the last iterate. That is we want to bound:
T
qt—1.b * qt—1.b * ~0,t—
| (it - ar) (At - an) [

Where (Aglvb - A*) is defined in (T9).

Theorem 14. Let yRB < ¢ for some 0 < ¢ < 1 with B such that YR < % Then there are constants

c1,¢a,c3 > 0 such that if T*/? > 0107% (where My = E {HXQOHﬂ) then

E {(AtBllb - A*)T (Agl’b - A*) 1 [f)ovt—lﬂ < [ 4g — A (1 = c2yBomin(G))' I (45)

See section [J|for the proof.

F.4 Bias of the Tail-Averaged Iterate

We define the tail averaged bias as
N

% 1 ~t—1b
Ay = N_ua Z Ag (46)

t=a+1
Theorem 15. Let yRB < ¢ for some 0 < ¢ < 1 and B such that YR < % There exist constants
c1,¢o > 0 such that if T = N(B + u) satisfies T*/? > ¢y - M4@) then fora = 0N with0 < 6 < 1

Omin (
we have

e [(y - a) " (At - a) [ <

1 67C3B'yamir,(G)a
B(N —a) ~vomin(G)

co | 4o — A*|? (47)

See section [K] for the proof.

G Prediction Error

Recall the definition of the prediction error at stationarity.
Lored(A; A", 1) := Extymr | Xe1 — AX,||? (48)
where 7 is the stationary distribution.

Note that the prediction loss is a function of possibly random estimator A. Hence the expectation
in (@8) is only with respect to the process (X;) (which is considered independent of A). Letting
G =E [X; X, ] as the covariance matrix of the process at stationarity, we can write

Lored(A; A%, 1) = Te(G(A — A")T(A - A%)) + Tx(%) (49)
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We are interested in bounding the expected prediction loss of the estimator which is the average
iterate A, n of our algorithm SGD — RER (with a = N). Note that A, y = AZ,N + AZ,N where
the superscripts b and v correspond to bias and variance respectively (c.f. (22))

Hence

E [ﬁpred(/ia,N; A*, u)} — Te(S) + Tr (GW]E {(AM - A*)T (AG,N - A*)} G1/2>
Te() + 2T (GWE [(Ang)T (Ang)] G1/2>
F2Ty <G1/21E {( - A*) (ALn - A*)] G1/2> (50)

But we will only bound E [ﬁpred (Ag.n; A%, )1 [DQN—l]} so that we have a tight upper bound on

IN

the conditional expectation of Ly.q over a high probability event.

As before we will just focus on the prediction error obtained using the algorithmic iterates from the
coupled process, i.e., we will bound E [Ep,ed (Agn; A%, )1 {ZNDO’N_IH

G.1 Variance of prediction error

In this section we will focus on analyzing the variance part of the expected prediction loss under the

coupled process
= (es |(Ay) ()1 [P o) 61

where T = N (B + u).
We begin with few lemmata which would be useful in bounding LY. Recall the definition of

B—1
H=E | [ (1-27X°,%%7 ) 1102, (52)
j=0
with X, sampled from the stationary distribution 7.

Lemma 16. Ler vy < Then

SHE-
4
H+HT <2 (I — 'yBG) + 73\/ TW (53)
where My = E [||)~(90||4}. For simplicity, we just say that for yRB < § with 0 < ¢ < 1 then

H+H" <2(I — c1vBG) + coyB/M. (54)

T / 2!

for some absolute constants c1,ca > 0.

The proof is similar to the combined proofs of Lemmas 28] and [29] We therefore skip it.
Next we will bound Tr(G(I — H)™1).

Lemma 17. Let yRB < G with 0 < ¢ < 1. Then for T such that T2 > Co VM. (G) we have

T (G - H) ) < C% (55)

for some absolute constant ¢ > 0.
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Proof. First note that
Tr (G(I—H) 1)) = Tr (GW(I - ’H)*IGW))

— Tr ((G—l - G‘1/2HG‘1/2)_1>

<d H (¢ - G1/2HG1/2>_1H

d
" o (G G 1PHG172) (6

Let Q = (G™' - G’l/z'HG*I/Q). Let Sym (Q) = Q + Q. We will relate op,i,(Q) with
Omin (Syn;(Q) ) From AM-GM inequality, for any # > 0, we have
Q'Q
0

+61 = Sym (Q) (57)

Also
o2n(@) = inf 2'QTQx (58)

z:||z]|=1

Further, from lemma[T6] we have

T
Sym (Q) =G~ — G—1/2#G4/2
1 _
> c1vBI — coyBy/ My Ta/QG 1
1 1
= c1yBI — coyB/ My——7——+—-1 59
= ey 2 ATl g (G (39
Hence combining equations (37), (58) and (59) we have:
(@ g oy B e By — 60
TJr = YD — ¢y 4mm- (60)
Now choosing 6 = %clfyB we get:
2 C% 22 C2C1 9.9 1
Omin(Q) > = B* — Y B \% M, (61)

4 2 T2 0in(G)

2
Now choose T" large enough such that €2 vM;;ﬁ ﬁ(G) < & Then, 02, (Q) > csv*B?, for
some constant c3 > 0. Hence from (36),

d
Tr (GI—H)™") < 047—3.

O

Next we bound Tr(A(I — H)~'G) for any symmetric matrix A. Let x(G) = Z‘“:‘“‘((g; denote the
condition number of G.

Lemma 18. Let vRB < % with 0 < ¢1 < 1. Then for T such that T2 > ¢y - V.A/(I‘*G) we have

|Tr (A(I —H)7'G)| < 07% Al VE(G) (62)

for some absolute constant ¢ > 0.

Proof. We have
T (A= 2)76G)| = |Tr (GV2AG2GM (1 = )~ 62|
< dHG1/2AG_1/2H HG1/2(I _ H)—1G1/2H
<dV/r@) 1Al |61 - )6 (©3)
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From the proof of lemma([I7] we know that

1
al/2(r — —1Gl/2H <o 64

|2 -y <cp (64)

for T satisfying the condition the statement of the lemma.

Hence:
- d

|Tr (A(I —H)'G)| < eV/k(G) [|A| B (65)
O

Our goal is to bound Tr(f/t,l (I —H)~*G). From proposition we can decompose V;_ as:
Vier =y Te(D)] + (Viea =y Tr(2)1), (66)
and hence,

Te(Vior (I — H)1G) = v Te(S) Te((I — H)~'G) + T ((f/t_1 A Te(E))(] — ’H)’lG) . (67)
To bound the second term in (67) we want to use lemma([T8] Hence we need to bound the norm of
Vic1 —y Tr(%).

Lemma 19. Let v < min {ﬁ, ﬁ}for 0 < ¢ < 1. Then there are constants c1, ca,c3 > 0 such
that for T*/? > ¢; = Ms_ \ve have

Umin(G)
- 1
‘ Vioy — 7Tr(Z)H < o ydomax {B . cyyBomin(G))t} (68)
for some constant c¢; > 0.
Proof. From proposition [[| we have
- YR
Vil — 7 Ti(S IH <y Ti(D
[V =] <o+
t 1 )
ey Te(2) |[E (HHS;I) <H 3g1>1[povt—1}]“
s=1 s=t
1
2
+ coydomax ()T Tar2" (69)

From lemma 26| equation (ITT) we can show that

t 1
E (H ~éﬁ’?) (H Fféi§1> 1 [150’“]1 < (1-eyBouin(@)'. (70)
s=1 s=t
Hence
- YR t
HVH - fyTr(Z)IH < 4y domax(3) [1 25 (- ey Bowin(@) }

1
< ¢57domax [VR +(1- chomin(G))t] < ¢6YdOmax [

5+ (1-— c;wBamin(G))t] . (71)

O

Now we have all required ingredients for the main theorem of this section
Theorem 20. Let v < min {u%v ﬁ}for 0 < ¢ < 1. Then there are constants c1,ca,c3,cq4 > 0
such that for T*/? > ¢ =¥ M‘é) the variance part of the expected prediction loss LV (defined in (51)))

Omin (

for a = 6N is bounded as

o dTr (D) Poax (D) \/K(G) P ax () 1
Lsagpa-ptevpa-0 B TewEra-02Y "D
+ 0472Rdomax(E)T2ﬁ Tr(G) (72)
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Proof. From (51)) and proposition [ equation (42)) we have

. 2 ZN - o
E S m = ’I‘I‘ (‘/;571([ - H) G) (73)
9 N
¥  apnN—1a/N—t+1
=P t:§a+1Tr (Vt_l(I H)~'H G) (74)
+ 5 Te(G) (75)

where § = v?T? Rdomax(X) 7277 as defined in @3]
For the first term (73) we have from (67), lemma[I7] lemma[I8]and lemma[I9]

~ d
_ -1 < el
Tr (Vt_l(l H) G) < ey T(S) 7 +
d 1
C2 ")/B V K:(G)’Ydo'max(z) E + (1 - CS’YBUInin(G))t

AT() | P omax(2) VK(G)

- B > B B
d2 max E
C4UT” K(G) (1 — c;wBomin(G))t (76)
Therefore
2 dTr(X) A0 max (B) VE(G)

- ZN: ﬁ(Vt,l(.r—H)*G) <e

(N —a)? , &, NB(1—6)  “NB(1-0) B

(1 — ¢37Bomin(G))*F {177)
’)/BO'min (G)

Similarly, for the second term (74)), from corollary lemma lemma and the fact that (I —H)~*
and HV 1 commute, we get

- d -
T (Va1 = 7)1 1416 | < er VRVl

%0 max(X)

“Nzpa g V@)

d —
< C2Em7d0max(2) (1 — c3yBomin (G)) N Y
dZUmax(E)

=e—p k(G) (1 — chomin(G))(N%“) (78)
Therefore
N
2 ) —1q9/N—t+1 dQUmaX(Z)
- _ < o max(=) -
e 2o, T (il = TG | < e g VR
Hence we obtain,
. ATE(Y) Pope(®) /a(G)
v <
Lsagpazptenpai-0 B
%0 max (X)) ) , 1
CBm\/ K(G)WTH(G) + 4y  Rdomax (X)T Taf Tr(G). (80)
O

G.2 Bias of prediction error

In this section we will focus on analyzing the (tail-averaged) bias part of the expected prediction loss
from the coupled process

£h=Tr (G”QE [((fxgw - A*))T ((Ahy—a))1 [ﬁOvN*H G1/2> 81)

where T'= N(B +u) and a = 0N for0 < 6 < 1.
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Theorem 21. Let YRB < g for some 0 < ¢ < 1 and B such that YR < % There exist constants
C1,Co,C3,Cq4 > 0 such that if T satisfies T2 > ¢ Umviiv(l‘é) then for a = ON with 0 < 6 < 1 we have

1 Tr(G)
NB(1 - 0) yomin(G)

Eb < cy e*CSNB’YG'miI,(G)H ||AO o A*”Q (82)

Proof. Proof follows directly from (8) and theorem[T3] O

G.3 Overall Prediction Error

Combining theorem [20] and theorem [21] along with lemma [I2] we obtain the main theorem on
prediction error of SGD — RER

Theorem 22. Let R, B, u, « be chosen as in section Let vy = % < ﬁfor 0 <c< 1 Then

there are constants c1, a2, c3,cq4 > 0 such that for Te/2 > €15 (G) the expected prediction loss L
(defined in (9)) is bounded as

N _ dTI'(E) dQUrnax(Z) H(G)
E re Aa JA* 1 DO’N ! <
{L'p d(Aa,n; A" )1 [ H =C2 B(N—a)+ B(N—-a) B *

dzomax(z) 1

“ [B?(N S VRO et
1 _ ”mm( ) 2

- - Be ¢ 4| Ag — A*

B(N—a)d +(G)RBe |40 1"+

T3 * U dO'max(Z) T2 1
(B3A | + e BQTQ/Q)TdGﬂ

(83)

Hence, if || A*|| < ¢o < 1 then choosing a > Cfnli%GT) such that B(N — a) = O(T) and B, u as in
section[d|we get

E [Cpalchai 4701 [PV]] < 2S5 4o (7) (54)

H Proof of Proposition ]|

Proof of Proposition[I] First note that

] _ t B-1 t B-1
() (1) -2 S e 2 8 G
r=1 j=0 r1,r2=171,j2=0

where

Dg(t r,7) = 472 Hn_ H

r—1 1
t—s, T\ grt—rT ot T Frt—r
(HHO,BS—1> Hi v XOTXU T HE oy ( H )(86)

s=1

T
Cr(t7rlaj17r23j2) = 4’72 ( t—Jz‘lXt—J:h Hjtlj:i B-1 H ‘E[SBS1> :

s=r;—1
1
t—ro vt—7r2, | r7t—1rs rrt—s
—j2 X—J2 HJ2+1B 1 H 0,B—1 87)
s=ro—1

denote the diagonal and cross terms respectively.

. . . At—1,v.
We begin by noting the following two facts about (Ab ) :
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e It has zero mean

E [(Aglw)} =0 (88)

E [Cr(tﬂ“hjl,?“z’jz)} =0 (89)
This follows because, assuming 71 > 79, the term 1’ “Xt_ P H;I J1.p_1 is independent of
everything else in that expression, and that nt " is independent of Xt ”’TH;I ﬁ p_1- A similar
argument can be made for the case when r; = 7“2 but j; # jo.

* Let (r1, 1) # (r2,J2). Then

But we are interested in expectation on the event Do:t-1,
We will bound the expectation of cross terms in the following lemma.
Lemma 23. We have

Cr(t, 71, 1,72, ] pOt=L1 I < ol r
> Cr(tr g rade) | 1 [D ! 1} < 8(Bt)>y?*RTx(%)

T1,72 J1,J2

1
e (90)

Proof. Let
Consider a single cross term: &(t 1, J1, 72, j2) and without loss of generality, assume that either

r1 > T Or 71 = 19 but j1 < jo. In either case, we note that nt " is unconditionally independent

of all other terms present in Cr(t7 71, J1, 72, j2). The main problem here is to bound the expectation

over the event D%*~1. For the sake of convenience, only in this proof, we will define the following
notation:

C\}(t77"17j177’27j2) E nt fl,T,r]t TQE
Where F; and E5 are random matrices defined according to the definition of CNr(t, 1, J1, 72, j2)
and are unconditionally independent of nt "l Let Fip = o(Ey, B, 17:;2) Note that when
conditioned on the event D'~ !, we must have the event M := {|| By || < 4y*>VR}N{||E2|| < VR}
almost surely. Therefore, we conclude:

E (Aj;(tﬂ‘hjlﬂ"mjz)l [@0,#1“ =E >6;(ta7’17j1a7’27j2)1 {ﬁo’tfl} 1 [M]

—E|1[M] ElE[ Ty [150’“}

t
.

—

<& 1M1 o577 [57]|7

\ 5| ||E2|}

Fol | on

In the third step, we have used the fact that under the event M, the norms || E4||, || Ez|| are bounded.
We will now bound E [ = ”’ {@O’t_l}

< 44?RE [H {nt Jvlq, [ﬁo,t 1

F E] . Clearly, due to the unconditional independence, we

must have:

E [nt_ﬁl’ -7:E:| =0

= IE{ et {230’“1}

] -aliripe]

5

=T _
H {7] 371"1 D(],t 1}

fE] H < \/TrE\/]P’ <b0»t—1=0

fE) 92)
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In the last step, we have used Cauchy Schwarz inequality and the fact that nt:j:l T s independent of

Fr. We combine the Equation above with Equation (91) and apply Jensen’s inequality once again to
conclude:

Tr(X)
To/2

HE [E}?(t,rl,jl,rz,jz)l [boﬁtflﬂ H < 472RTH(D), /P {@O,H,c} < 44°R 93)

In the last step, we have used Lemma [9) to bound P (750’“1’0) Summing over all the indices

(r1, 41,72, j2), we conclude the statement of the lemma.

O
Lemma 24. We have:
t B-1 3 t B-1 /r—1 } 3
E |33 Detr i [P ]| 2442 Te(DE |3 < S,Bﬂ) H g X5
r=1 j5=0 r=1 =0 s=1
~ ~ 1 ~ ~
Xt*;T7TH;;;,Bfl ( H 5,151) 1 [Do’t_l} + dpgl (94)
s=r—1
and
t B-1 t B-1 /r—1
E Y3 Deltr i [P 1] | =442 Te(DE |3 (H 5;}) AL X
r=1 j=0 r=1 j=0 \s=1
1
—r, T —r rrt—s -
X5 HiY g ( H 3,31) 1 [Do’t 1} — Opgl ©5)
s=r—1
where
1
6Dg = (SDg(T7 E, R, /1,4) = 472(Bt)R\/M4W (96)

Proof. The evaluation of expectations is clear when there is no indicator 1 [f)o’t*q within the

expectation. We will now deal with it just like in the proof of Lemma Consider ]Sé;(t, r, 7). For
the sake of convenience, only in this proof, we will use the following notation:

~ ‘ 2

Dg(t,r,j) = 47* ||[n"5 || E.
Where the random PSD matrix F is unconditionally independent of nt__f. Let M = {||E|| < R}.
Conditioned on the event D%*~1, the event M holds almost surely. Let F = o (E).

Now consider:
E [Dg(t, 7)1 [D*!]] = E [Dg(t,r, )1 [D!] 1[m]]
= 4’E [HntjerQEl {75‘”‘1} 1 [M]}
=B [E [l |1 [ 1] B ia] o)

It can be easily shown via similar techniques used in Lemma 23] that:

Tr(3) — \/174\/1[" (Po=10|Fg) <B[|[n57(" 1 [B™] 1P| < Te(®)

Using this in Equation (97), we conclude:
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E [Dg(t, 7, )1 [D™!]] = 44 T(D)E [E1[M)]
— 492 Te(S)E [E1IM] 1 [D1] + B1 M1 [DO41€] ]
= 4 Te(D)E [E1 [D™ 1] + BLM] 1 [ D€
< 42 TrSE [El [ﬁ‘”*l” 442 Tr(E)R% (98)
In the third step, we have used the fact that DOt-1 C M. In the last step we have used the fact that

E is PSD and over the event M, E < RI. We have used Lemma@to bound P(D%*~1.¢), Using a
similar technique as above, we can show that:

— . - ViR
E [Dg(t,r,j)l [Do’fflﬂ > 4y Tr SE [El [D‘“*lﬂ 42 T’ij I (99)
1\}110&: thait %? > TR Summing over r, j and combining Equations (99) and (98), we conclude
the result.

O

. B—1 7s,T S5 8T
For convenience, define K° := ijo H;_H B_lXini’j H: gy

Claim 1. Suppose v < %. Under the event f?o’t_l,for every s <t — 1 we must have:

(75, | [7s
I— HO,B—lHO,B—l

I—HS) HS,
0,8—1%0,B-1 SRS <

4y 0

Where 4 = 4v(1 — vR)

Proof. In the entire proof, we suppose that the event DOt=1 holds. Consider:

rrS, T 211 vs 2 s vS, [7s r7S, 1 s vS,| Irs
=H; g (I - (47 —4y ||X7jH )ijX—j )Hj+1,B—1 FAVH G p X2 XD HE L By
r7s, T s s YS 1\ fTs
=H}\ gy <I+472||X—j||2X—ijj )Hj+1,Bfl
irB—1Hi 1B (100)

Using the recursion in Equation (T00), we show that:
He'p oy H5 g+ 49K = 1
This establishes the lower bound. To establish the upper bound, we consider
s T 7 ~ s T I
Hip Hjp o +9H g X2 X2 HY gy

Following similar technique used to establish Equation (T00), using the fact that under the event
DY=1 we have HXin2 < R we show that:

7S, T [7s AT, T vs VS| 1Ts 7S, 1 r7s
Hip Hip 1 +7H g X2 X7 HE gy 2 H G g Hi g
Using a similar recursion as before, we establish that:

ﬁg,’gqﬁg,Bq +AK® =1
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We are now ready to bound the first term in (94):

t r—1 1
() (1 s e] o
r=1 s

s=1 s=r—1

E

It is easy to show via. telescoping sum argument that:

¢ fr—1 1 ¢ 1
rrt—s, T rrt—r, T rrt—r rrt—s _ rrt—s, T rrt—s
Z <H H0,31> (I - HO,Ble(t),Bfl) ( H é,Bl) =1- (H H0,31> <H H(t),B1>
r=1 s=1 s=r—1 s=1 s=t
) (102)
We then use Claim [1{to show that under the event D%¢~!, we must have:

1 (I ) (I i)

47 r=1 s=1 =r—1
And:
g t rrt—s, T 1 oy
: o rrt—s, T t—r ! St—s I— (Hs:l O,B—l) (Hs:t HS,BS—1>
Y ITHs | & I &5 = 5 (104)
r=1 \s=1 s=r—1

Finally, combining Lemma 23] Lemma [24] claim [} Equations (I03), (I04) and the bound on ju4
(stated after assumption [3|in section [2)) along with % = 4+(1 — yR) we get the statement of the
proposition.

O
I Proof of Proposition 2]
Before delving into the proof, we note some useful results below.
Lemma 25. For any random matrix B € R4*¢ we have that
E[B'|E[B] <E[B'B] (105)
Hence
IE Bl < \/IE[BTB| (106)
Proof. Note that for any vector € R? we have
v E[BT|E[B]x = |E[Ba)|” <E[|Bz|?] =« E [BT B (107)
O
Lemma 26. Let yRB < ¢ for 0 < ¢ < 1. The there are constants ci,co > 0 such that for
T2 > c1 U%) we have
1]l < VI = 27Bomin(G) < 1= 2Bowin(G) (108)

with 1 — coyBomin(G) > 0.

Proof. Note that H can be written as H = E {f]& B_ll[ﬁgo}] . First we use Lemmato get

1) < \/ | 285 A8 s 1P| (109)
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Then, from Lemma[29 we can show that there are constants ¢y, ¢ > 0 such that

. _ . 1
| [958 1P| < (1 — 17 Bowin(G) + 0273*/M4w) (110)

Now choosing 7" such that 7%/2 > 2;;7 an\f[(G) we get

B (A5 8 5 11D°)]|| < (1 = es7Bowin(©)) (111)
where c3 is such that the RHS in (ITT) is positive. Hence the claim follows.
O

Proof of Proposition|2] We will prove the proposition only for a = 0. The arguments for general a
are exactly the same.

For simplicity, we denote
Ay = (435) (112)

From recursion (6) we have the following relation between (Agfl’v) and ([lg 71’”) forty >t

(52 = (i) (TT e ) +

s=to—1;
to— tlB 1 1
r r, T 7 to—s
2y Y R TXETTHE T, ( 11 H3f3_1> . (113)
r=1 7=0 s=r—1

Hence we have

(70) () = () () ((T1 ) +

S=t2—t1
~ th*tlB 1 1 ~
2y (A7) X0 Dt RE T, 1< 11 Hé?gil)- (114)
r=1 j=0 s=r—1

The second term in (TT4) is bounded in claim 2]

The first term in (TT4) can be analyzed using independence as follows.

(quv (Atl 11)) [ﬁo,th} ( ﬁ I:IS?E;:) 1 {btl,N1H

) =ty—t
s=t2—1l1
— f/tl_ﬂE [( HéZBS1> 1 [ﬁtl7N_1}]
s=to—t;
~vw[(T1 )1 o] o o)
= Vi ( ﬁ E [ﬁégfll {25“7“‘1”) E {1 [25“’]\’*1” =V, HPHE [1 [{)tz,NﬂH

S:tg _tl

_ f/tl_lthrn _ f/tl_lHtrtlE [1 [@tQ,NfLCH _ (115)
Note that,

~ T - —
(ag) (A37) sw*n) zz
r=1 j=0
r—1 B 1 B
(HH&BT> HE L XX T, 1< II Hé}?l)- (116)

=r—1
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From equation (TT6), we have:

Vi || < e?(Bt1)? R, (117)

and further, ||| < 1 from Lemma[26] Hence,

For brevity, given a matrix @) € R4xd e,

Sym(Q) =Q+Q". (118)

Combining everything so far, we have, for t5 > t1:

sy (2] ()" (457) 1 [p 1))

- B 1
< Sym (Vi M2~ ) + 1 (Bt) R 7 1 +

1
(C3V2B2t1t2RdUmaXm) I (119)

1 1
— < ¢y*(Bt1)*Rdomax —

‘/vt171,}-1t2_t1 Ta TOL :

ez <] <

Since Bts < T we get:

Sym (E [(ﬁ%‘l’”)T (4 ) [ﬁO’N”]D < Sym (¥, H=7) +

1
37" T* Rdomax o5 1. (120)

Therefore we have,

N—
v () (157 < s X s (s (T w0

th#ts 1=1 ta>t
+e37 T2 Rdo max ﬁ].

Next observe that,

1 N _ 1 N—-1 ~
722 o1+ ﬁ Sym (th—l (Z thtl))

ta>t1

1 N _ 1 N—t1
=32 Vi1t 5 D Sym <w11<ZH5>>
L R
o i (5
t=1 s=0

Hence, substituting in [@0), we obtain:
T, ) | X ) N—t
E {(A}Jv) (A”N) 1 [DOJVlH < 55 2 Sym (14_1 (Z H)) + (121)
t=1

1
37V T? Rdomax 75 1. (122)

From Equations (T21)-(T22) we obtain (@T).

Now SN F s = (I — )~ (I — HN 1) since from Lemma we know that ||#|| < 1 for large
T. Thus we get [@2).

O
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I.1 Claims

Claim 2. For~y < 5 we have

fz t1 B—1 1
B |2y (A7) X SR A ( 11 H) o]
r=1 35=0 s=r—1
< 17’ B2ty Rdo e oo (123)
> Y 102 UmaxTa/2
for some constant c¢; > 0.
Proof. The proof is similar to the proof of Lemma [23]
O

J Proof of Theorem [14

Proof of Theorem We start with the following
. T, to
(A;—“’ - A*) (A;—“’ - A*) - (H HS};E) (Ao — AT (Ao — (H i 1)
t ~
| Ao — A*|? (H ) (H ngBS_1> (124)
=1 s=t

From Lemmawe can show that there are constants ¢y, co > 0 such that

#| () (T ) )

1 \!
< (1 — c17Bomin(G) + c2vBy/ M4T‘1/2) . (125)

IA

Now choosing T such that 7%/2 > 26‘3,“]7 VM(G) we get,

#| (1) (T )

Thus we get the theorem.

< (1= esyBomm(@))". (126)

K Proof of Theorem

Proof of Theorem[I5] We use the following inequality that is obtained from Lemma 23]

A ooa) (A ar) <t 3 A g ) (A aY) 27
(A= a) (A —4) 2 5y X0 (450 -a) (At -a) a2

t=a+1

2 (it - )" (it -1
“xie 2 ) ()

t=a-+1
N

st S E[-a) @] o

t=a+1
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Now using theorem[T4] we get

K [(zgw —a) (A - a1 [@w—ﬂ <

. a+1
< 1 (1 -c1yBomin(G)) ) | 4g — A*H2 I (129)

N —a c1YBomin(G)

Hence using 1 — z < e™* we get

| (At - a7) (At - a)1 [ ]|

co L AP 130
S BN —a) qomm@ oAl (130

L. Operator Norm Inequalities

In this section, we develop the concentration inequalities necessary to obtain bounds on L. Consider
Equation (20)

t B-1 1
r T r [7t—s
(At M) =2y > 0 XUHE o [ His (131)
r=1 j=0 s=r—1
Splitting the sum into r = 1 and r = 2,.. ., t, it is easy to show the following recursion:

B—1

(A™) =29 3w R T o+ (A5™) Y5 (132)
j=0

We will consider the matrix A;_1 := 2 ZB ! t 1X -1, TH; _& p—1- Recall the sequence of

events Dijl forj =0,1,..., B —1 asdefined in SectlonE We will pick R as in Sectionso that
P(D'!) is close to 1.

For the sake of clarity, we drop the dependence on ¢ while stating and proving some of the technical
results since the events and random variables considered there are identically distributed for every ¢.

That is, consider D_; instead of @t:jl and
T
A =2y Z n—jX—jHj+1,B—1

We will bound the exponential moment generating function of A:

Lemma 27. Suppose Assumptionholds and that YR < 1. Let \ € R and x,y € R are arbitrary.
Then, we have:

1.
E [exp(:ACue, Sa)ly, B p_y Hy p1y) + Ma, Ay))D_o]
< &P (PN Cu, Xa) y]*)
P(D—o)
: (YACufz, Sa)ly]1?)
= exp (Y Yy
E [exp(A(z, Ay))[D-o] < 5

Where C,, is as given in Assumption
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Proof. We will just prove item 1 since item 2 follows from it trivially as
7)\2Cu<5f7 ) (y, HJB—1H0,3—1?J> = 0.
For the sake of clarity, we will take:
Eo := YA Culz, Sz)(y, B(IB—ll:IO,B—ly>
and more generally,

Bk = YA’ Cpx, Xa) <y»ﬁ1;r,3—1gk,3—1y>

Consider A_j := 27 Zf;kl n_ jX' Ij H j41,5—1- We will first prove the following claim before

bounding the exponential moment:
Claim 3. Whenever | X_,||> < Rand yR < 1/2, we have:
ke + 29° N Cule, Sy, Hi g p oy X o XD Hypy po1y) < S

Proof. We use the fact that fI;—’B_lfIk,B_l = fI,LLB_l(I — 27X_k)~(;rk)2ﬁk+173_1 to conclude
that: /

Ek + 29°XCpu(z, ) (y, H}L—l,B—lX—kXIkﬁk+1,B—ly>

= ’Y)\zcu@a Ez)(y, f[;+1,3—1 (I - 27X—kXIk + 472“X_k||2)~(—k)~(jk) ﬁk—i—l,B—ly)

< ANCule, Sa)(y, Hl 1 g1 Hyyr po1y) = Bt (133)
In the second step we have used the fact that when || X _, ||2 < 1/2, we have that

I—29X (X7 + 497X IPX  XT =T

First note that A = 277)0)2(]—1;{1’3_1 + A_;. Now,

= D - 1 = D

E [exp(Z0 + Ma, Ay))[D-o| = O [exp(20 + M, Ay))1 (Do)

= 251, E :eXp o + 2>\’Y<53777—0><X—07ﬁ1,3—1y> + /\<CC, A—1y> 1 @—0

P(D-o)

1 - _ N o .

< P(ﬁ_O)E oxp (:0 + 29°NCpla, Sa) (y, H p_1 X (X T Hy p_1y) + M, A,1y>) 1 (D,O
1 S .

< IE”(fD,O)E °Xp (E1+ Mz, Aqy)) 1 (D—o)}
1 - ~

<t [exp (B1 + Mz, A_ip)) 1 (D,l)} (134)

In the first step we have used the definition of conditional expectation, in the third step we have
used the fact that 7)_g is independent of D_o, A 1, X T H 1,5—1- and A_; and have applied the sub-

Gaussianity from Assumption 2| In the fourth step, using the fact under the event D_g, || X_o||?> < R

we have applied Claim In the final step, we have used the fact that D_oCD_q. We proceed by
induction over Equation (T34) to conclude the result.

O

We now consider the matrix H,, 5, under the event D_.

Lemma 28. Suppose that yYRB < % Then, under the event D_o, we have:

B-1 B-1

29BR c wT <~ AT A 29BR S oT

I—4y (1 + 1,1733) § X X i 2Hyp Hyp 1 2 1T—-4y (1 - 1,1733) E X_ X
i=0 =0
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Proof. By definition, we have: ﬁ07 B_1 = Hf;ol (I —2vX_ jX' Ij). Expanding out the product, we
get an expression of the form:
B-1
Hip (Hyp  =1-4y) X X7, +(29)? ZX_iXIiX_jXIj +... (135
i=0 i
Here, the summation Z . is over all possible combinations poss1ble when the product is expanded
and ... denotes higher order terms of the form X_; X', ... X_, X

i
Claim 4. Assume k > 2 and iy, ... i, € {0,...,B — 1}. Under the event D_, for any x € R%,
we have:

L k—1
o' X X1 . X X1,z

72k

<

[:Z:TX; XI x+mT)~(7» Xj :17}
11 71 (23 23

Proof. This follows from an application of AM-GM inequality. It is clear by Cauchy-Schwarz
inequality that [(X; , X, )| < R, which implies:

L1

k—1

2 X XD, X KT 0 < R 0T X, KT, o] < [z, X2 + (X

Where the last inequality follows from an application of the AM-GM inequality. O

From Claim ] we conclude that:
B—1
X X1, X, X1, 2@B)RMY X XT
e

—i1
=0

Plugging this into Equation (T33), we have that under the event D_g:

2B B—1
Hip (Hyp 14y X XL+ 2B 'R Y X XT,
P i k=2 =0
B—1 B—1B-1
o 4B
<1 — 4y X XTI+ 275 74 ZR S XX (136)
=0 =0 =0 =0

Here we have used the fact that 4yBR < 1 to convert the finite sum to an infinite sum. Using the
bound on ~, we conclude the upper bound. The lower bound follows with a similar proof.

O
Lemma 29. Suppose vyBR < %. Let G := IEX?ZXL and My := ]EHX?Z-HZL. Then, we have:

E [H(IBleO,Bfl‘ID—

| 21 gy (- ) 6+

4B/ My(1 - P(D_y)) (1 B
P(D_)

2yBR_\ 1
1—4vBR

Proof. The result follows from the statement of Lemma 28] once we show the following inequality
via Cauchy Schwarz inequality and the definition of conditional expectation:

E[X XT[D] - 7 VEIEY R
S P(D_o)

P(D—-o)
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Now we will show that 0.5_1 contracts any given vector with probability at-least py > 0. For this
we will refer to lemmawhere it is shown that if X ~ 7 then (X, x) has mean 0 and is sub-Gaussian

with variance proxy CMxTGx. Using this will show that the matrix H ;_; operating on a given
vector x contracts it with a high enough probability.

Lemma 30. Suppose YRB < é and that | obeys Assumption |2| There exists a constant ¢y > (
which depends only on C,, such that whenever 1 — IP’(@_O) < cq, then for any arbitrary x € R?

P (|1 Hy prol > lall® = Bra T Ga|D—o) <1—po < 1.
Where po > 0 depends only on C,,.

Proof. Initially we do not condition on D_,. Consider the quantity: Y := Zf:ol (z, X D2

Claim 5.
P (Y > 1/QB$TGJJ) > qo

where qo > 0 depends only on sub-Gaussianity parameter C|,

Proof. We consider the Payley-Zygmund inequality which states that for any positive random variable
Y with a finite second moment, we have:

1 (EY)?
P(Y > 1EY) > - .
( > 2 ) — 4 EY?2
Note that EY = Bz " G. The statement of the lemma follows once we lower bound the quantity
2
EY)". Clearly, (EY)? = Bz Gz. Now,

EY?2 = ZE(x,Xi>2<a;,Xj>2 < Z JWM - B’E(z, X;)*

< B?¢1C(z" Gx)? (137)

Here, the second step follows from Cauchy-Schwarz inequality. The third step follows from the fact
that X; are all identically distributed. The fourth step follows from Lemma 8]and Theorem 2.1 from
[51]]. The statement of the claim follows once we apply Payley-Zygmund inequality. O

Now, by definition of conditional probabililty and Claim 5} we have:

B-1
e 2. B 7 A (1 —q)
P (;<%X_i> s 57 Gz Do) < P(D_o)

Now the statement of the lemma follows from an application of Lemma [2§] O

Now we want to bound the operator norm of [
ma+b2§s

s=at" —0"
Lemma 31. Suppose the conditions in Lemma @] hold. Let owin(G) denote the smallest eigenvalue
of G. We also assume that P(D*") > 1/2. Conditioned on the event D%*,

:Z H 0.5—1 With high probability under the event

1| Hg:a INJ&BAH < 1 almost surely
2. Whenever b — a + 1 is larger than some constant which depends only on C,,, we have:

b
P <|| 1 &5 511l = 200 — 7 Bowin(G))e+ 0o+

s=a

15‘1717) <exp(—c3(b—a+1)+csd)
Where c3, c4 and c5 are constants which depend only on C),

Proof.
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1. The proof follows from an application of Lemma [28]
2. We will prove this with an € net argument over the sphere in R? dimensions.

Suppose we have arbitrary z € R? such that ||z|| = 1. Conditioned on the event D%?,
the matrices Hj 5, are all independent for a < s < b. We also note that Hj 5, is

independent of D* for t # 5. Let K, := Hi:v ﬁ&Bfl. When v > b+ 1, we take

this product to be identity. Consider the set of events G, := {||FI§ p 1 Koizl]? <
| Kpr12]|?(1 — YBomin(G)}. From Lemma we have that whenever v € (a,b):
P(GID Hy g 5 #v) <1—py (138)

Where py is given in Lemma
Let D C {a,...,b} such that |D| = r. It is also clear from item 1 and the definitions above
that whenever the event N, pG, holds, we have:

b
I TT A6 512l < (1 = vBowin(G))% - (139)
Therefore, whenever Equation (T39) is violated, we must have a set D¢ C {a, ..., b} such

that |D¢| > b — a — r and the event N,c p-G¢ holds. We will union bound all such events
indexed by D¢ to obtain an upper bound on the probability that Equation (T39) is violated.
Therefore, using Equation (I38) along with the union bound, we have:

b
P (I II #5512l = (1 = vBowin(G))#

S=a

Whenever b — a + 1 is larger than some constant depending only on C),, we can pick
r = co(b — a + 1) for some constant ¢ > 0 small enough such that:

b
P (ll 1 #5512l = (1 = vBowin(@))#

s=a

’15“’1’> <exp(—c3(b—a+1))

Now, let A be a 1/2-net of the sphere S?~!. Using Corollary 4.2.13 in [52], we can choose
|NV| < 6. By Lemma 4.4.1 in [52] we show that:

b b
ITT #spoull <2 sup | 11 46512 (140)

s=a S=a

By union bounding Equation (T40) for every 2 € N, we conclude that:

S=a

b
: <l| T 5511l = 2(1 — 4 Bowin(G))c 0o+ D) < [Nexp(—cs(b—a+1))

=exp(—cs(b—a+ 1) + cs5d) (141)
O

Now we will give a high probability bound for the following operator:

T

N-—1
Fa,N:=Y_ [ His (142)

r=a s=a+1

Here, we use the convention that [[_, nHip1=1

Lemma 32. Suppose c4yBomin(G) < i for the constant c4 as given in Lemma Suppose all the
conditions given in the statement of Lemma hold. Then, for any § € (0, 1), we have:

N 1 >
. . . 1 N o Da’N_l <
<| a,NH >C (d+ 08 ) + ’}/Bamin(G)) ‘ ) =

Where C is a constant which depends only on C,,
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Proof. We consider the triangle inequality: || Fy, n| < Zi\:ll

. -
Tt 3. |- By Lemmalpi]
we have that whenever t — a > o + o

t
P (H H H3’371|| >2(1— VBo'min(G))C4(t—a)
s=a+1

~ )
DCL,N—l <
)<%

Using union bound, we show that when conditioned on D®~ 1, with probability at least 1 — § the
following holds:

N
1. ForauagtgN—1suchthatt—az%M‘)ﬂ:

c3
N

ITT S 51l < 200 = Y Bomin(G)) =)

s=t
N .
2. Forall ¢ such thatt — a < ¢ + 10'5735, we have: || Hivzt H§ 51|l < 1. For this, we use
the almost sure bound given in item 1 of Lemma [31]

Therefore, when conditioned on DN -1 with probability at least 1 — § we have:

N > caj
1ol < Cld+1og =) + 23 (1= ¥Bomin(G))*?

Jj=0

N oo
< C(d + log K) +2 Z exp(—c4jvBomin(G))
=0
2
1 — exp(—c4yBomin(G))
2

c37° Bomin(G)
4y Bomin(G) — %

N

N

N 1
< d+log — 4+ ——m—— 143
B O( o 4 * ’YBUrnin(G)> (149

In the first step, we have used the event described above to bound the operator norm via. the infinite
geometric series. In the second step, we have used the inequality (1 — 2)® < exp(—ax) whenever

x € [0,1] and @ > 0. In the fourth step, we have used the inequality exp(—z) < 1—z+ ”’2—2 whenever
x € [0, 1]. In the last step, we have absorbed constants into a single constant C O

We will now consider the averaged iterate of the coupled process as defined in Equation ZI) with
a=0.

R N
Ay = }V; (451) (144)

We recall the definition of A;_; from the beginning of the Section [[] and the recursion shown in
Equation (I32). We combine these with Equation (I44) to show:

N
2 1
b= D AiFiy (145)
t=1
Where Fj, y is as defined in Equation (I42). Using the results in Lemma and a similar
proof technique we show the following theorem. We define the following event as considered
in Lemma (32):

o N
et {IFan) < € (4108 + o ) |

Define the event M~ ~1 = NN 51 M and recall the definition of the event DN =1,
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Theorem 33. We suppose that the conditions in Lemmas 27 32| and 28| hold. We also assume that
P(MON=IADON=L) > 1 Define a := C(d+log % + ﬁ) as in the definition of the event
Mt

. ] ~ 2N
AY 0,N-1 0.N-1) < — b :
P (' O,NH > B’M nD = &P cd 16')/O,u0—max(2)(1 + 20[)

Proof. Recall the events D*NV=1 and define MHN—1 .= NN I M!. We recall that A, is

independent of F;_; x and DN~ Now consider arbitrary z,y € R? such that ||z| = |jy|| = 1.
Define I';_; ny—1 = % Zi\’:t As_1Fs_1 . For any A > 0, consider the following exponential
moment:

B [exp (Ao (4500 |20 9052

)

E [exp (A(a& (foN)iU)) 1 (M()’N_l M @O,N_l)}
P (MO,NA n @0,N71)

E [exp (% (z, AoFo ny) + Mz, D1 n_1y)) 1 (MO,N—l n @071\7_1)}
P (/\;IO,N—I N 150,1\1—1)

(146)

Here, we note that Ay is independent of M%N=1 Fy y and DYN~1. We integrate out A in
Equation (T46) using item 2 of Lemmanby using the fact that DON—1 = DLN=1 DO to show:

B [exp (Ao (45 )0)) |10 D051

E {exp (7/\12\/6;“ (z,Sz) || Fo,nyl|* + Mz, F17N71y>) 1 <M0>N—1 A 151,1\1_1)}

<
B P (MO,NA N @O,NA)

(147)

We use the fact that Fy y = I+H{ 5, Fi, v to conclude: || Fo nyl|® = [|lyl|>+2(y, H} 5_ Finy)+
{y, FENﬁé,’gf1ﬁ6,B—1F1,Ny>~ Under the event MY ~1 N DN we have: ||H} 5_,|| < 1and

| F1 || < . Therefore, || Fo x| < [lyll?(1 + 2a) + (y, Fijﬁg7=;_1Hg7B_1F1,Ny>. Using this
in Equation (147), we conclude:

P (MO,NA mﬁo,z\pl) {exp ( Ao v) )

<E [exp (@ + A, T1noay) T(MOV DY)

MO,N*l n ﬁO,N71:|

gE[exp(QJrA(x,rLN,ly (M“V 'n 75““1)], (148)

2 ~ ~
where © := 20k (2, ) (1 4 20) ||yl|? + 7505 (, S (y, FL g HL g Y 5 Fivy). Tn the
last step we have used the fact that MON=1 A pLN=-1 C pMLN=L A DLN=1 " We continue

just like before but use item 1 of Lemma [27|instead of item 2 to keep peeling terms of the form
(x, Ar_1Fi_1 ny) to conclude:

2 - - A2C
E [exp (Mes (A5 500 ’M‘”N‘l n DO’N*] < 2exp <v z

(e, 5) (1 +2a>|y||2)

2

< 2exp (’y Cu Omax(2)(1 + 2a)> (149)
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Where 0yax (%) is the maximum eigenvalue of the covariance matrix ¥.. Here we have used the
assumption that P (./\;IO’N*1 N ﬁO’Nﬂ) > 1 and the fact that ||z|| = ||y|| = 1. We apply Chernoff

bound to (z, (/137 ~)Y) using Equation (T49) to conclude that for any 8, A € R*
2

N

P <(x, (fxg,N)y> > 5‘/\?10»“1 N ﬁOaN*) < 2exp (v L max () (1 + 2a) — m) (150)

_ NB .
Choose \ = o () (1720) to conclude:

2 - - 2N
P (<x, (A8 N )y) > ﬁ]w”‘l n DO’N‘I) < Zexp (—470 - ﬁ(z)(l n 2a>>
pY max

‘We now apply an € net argument just like in Lemma Suppose N is a 1/4-net of the sphere in R?.
By Corollary 4.2.13 in [52]], we can choose |N| < 12¢. By Exercise 4.4.3 in [52]], we conclude that:

|48 NIl <2 sup (z, (A5 n)y)-
z,yeN

Therefore,
P (g vl > 8|10 0 5031

<2 sup (0. (A5 ) > 50t 50 )
z,yeN ’ 2

<N sup P (, (;18 Ny > B‘MO,N—l m150,1\/4)
zyeN ’ 2

52N BQN
- < d— 151
167Comn (D1 +20) ) = P\ 15 o+ 20)) P

< 2(12)* exp (
O

M Lower Bounds

Consider the notations as defined in Sectiond] The idea behind the proof is to consider an appropriate
Bayesian error lower bound to the minimax error. To construct such a prior distribution, we consider

binary tuples M = (M;; fori,j € [d],i < j) € {0,1}4(4=1)/2 and € € (0, &;). We construct the
symmetric matrix corresponding to M, denoted by A(M) as:

1 . . .
AM);; = {2 ifi= (152)

1q — €My ifi <j

For the sake of clarity, we denote Lyreq(-; A(M),N(0,0%1)) by Lpred(+; M). We use 7y to denote
the stationary distribution of VAR(A (M), N'(0,5%I)) and the data co-variance matrix at stationarity
tobe Gas == Exuny, XX . By (Z;) ~ M, we mean (Zy,...,Zr) ~ VAR(A(M),N(0,021)).
We will first list some useful results in the following Lemmas:

Lemma 34. Suppose Assumption|l|holds for VAR(A*, 1) and let its stationary distribution be .
Let G :=Ex...XXT. Then,

»Cpred(A) - ['pred(A*) =Tr [(A - A*)T(A — A*)G}
Lemma 35. For every M € {0,1}4=1/2 we have:

o’ < Gy =< 3021
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Proof. First we note by Gershgorin circle theorem that || A(M)|| < 3. Given a stationary sequence
(Zo, ..., Zr) ~ M and the corresponding noise sequence 7o, . .., 7 ~ N(0,02I) i.i.d, we have by
stationarity definition: Z;11 = A(M)Z; + n; and Z;11, Z; are both stationary. Therefore:

Gu =EZ1Z) = AM)EZZ] AIM)" +Enn = AM)GyAM)T +0°1.
From this we conclude that G; > o21. Now, expanding the recursion above, we have:
G =0’ iA(MY(A(M)W <o i ERWE U (153)
i=0 a i=0 16 7

In the second step we have the fact that || A(M)|| < 2 to show that A(M)*(A(M)")* < (l—gﬁ)i I O

Suppose M and M’ are such that their Hamming distance is 1 (i.e, A(M) and A(M’) differ in
exactly two places). We want to bound the total variation distance between the corresponding
stationary sequences (Zo, Z1,...,Zr) ~ VAR(A(M),N(0,0%I)) and (Z},2},...,25) ~
VAR(A(M'),N(0,02I)).

Lemma 36. Let the quantities be as defined above. For some universal constant c, whenever

€< len(%, 1), we have:

TV ((Zoy. .. Z1), (Zy ..., Zh)) <

DO =

By the existence of maximal coupling (see Chapter I, Theorem 5.2 in [53|]), we conclude that we can
define (Zy, ..., Zr) and (Z}), ..., Z}) on a common probability space such that:

1
B((Zos-- -, Zr) = (Zhy- . 27)) 2 5

Proof. We will first bound the KL divergence between the two distributions and infer the bound on
TV distance from Pinsker’s inequality. Consider p,s,7 and pys 7 to be the respective probability
density functions of (Zy, ..., Zr) ~ M and (Z|, ..., Z}) ~ M’ respectively. In this proof, we will
use Z;,_ to denote the tuple (Z, ..., Z;). Now, by definition of KL divergence, we have:

pm,r(Zo, ..., Zr)

KL(par,rlloaer 1) = Ezepy o log

pyv7(Zo,- .. Z1)
oy, (Zr|Zr-1,—) pm,r—1(Zos -+ Zr—1)
=Ez. log : +Ez lo ’
ZpmT pyver 0 (Zp|Zr—1,-) ZrpmT gpM',T—1(Zo,---,ZT—1)
pyvr(Zr|Zr-1,-)
=Ezpr rlog oot (2 2 ) + KL(par,r—1llpaer m—1)

pym,r(Zr|Zr—1)
py (2| Zr—1)

=Ezpy rlog + KL(par,r—1llpar m=1) (154)

The first 3 steps above follow from the definition of KL divergence and conditional density. In the
last step we have used the Markov property of the sequence Zy, ..., Zr which in this case shows
that the law of Zr|Z7_1 is the same as the law Zp|Zy_1 . Using Equation (T54) recursively and
noting that (Z;, Z;_1) are identically distributed for every t € {1,...,T}, we conclude:

Py (Z1|20)

= L KL(ms||mas 155
SNCAS (mal|maar) (155)

KL(pM,T||pM'7T) = TE(ZO,Z1)~Z7M,1 1Og

We will first bound E(z, 7,)~pa 1 108 % Conditioned on Zy, the law of Z; under the

model M is N(A(M)Zy,o%I). Similarly, the conditional law of Z; under the model M’ is
N(A(M")Zy,0*I). Therefore, a simple calculation shows that:
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P (Z1|20)
pumr1(Z1|Zp)

|| (A(M) — A(M")) Zo|?
202

]E(Z(MZI)NPIM,l log =Ezy~nun

— By Tt ((A(M) — AQ)T (AQM) = A(M) ZQUZT)

= oo T (AN — AT (AQM) — A G
< gT (A = A" (@) — A
= 5||A(M) — A(M")||E = 36~ (156)

In the first step, we have used standard KL formula for Gaussians with different mean but same
variance. In the third step we have used the fact that Zy ~ 7. In the fourth step, we have used the
upper bound on G, from Lemma In the last step we have used the definition of A(M) and the
fact that the Hamming distance between M and M’ is 1. Now we consider: KL(ms||7as/)

Clearly, 7p; = N(0, Gyr). By standard formula for KL divergence between Gaussians,
detG s :|

detG (157)

First we consider Tr(G Gar). Clearly, G = 0(I — A(M)?)~ ' and Gy = 0?(1 — A(M')?) 1
Therefore, G]_Wl, = GX; + w. We have:

A(M)? — A(M')?
2

1
KL(mar||marr) = 3 [TF(GMIIGM) —d+log

Tr(Gyf Gar) = Tr(I) + Tr ( GM) < d 4 d||ACDZAOT ¢

<a+ N a2 - Ay <+ sajan)? - aQry)

— a4 3d](AQM) — A AQM) + AQF) A — AGI)|

< d+ 3d [ AQM) — AL A + [ A AM) — A

<d+ gde. (158)

In the second step we have used the fact that ¢r(B) < d||B||. In the future steps, we have made use
of the sub-multiplicativity of the operator norm and the upper bound on |G| given by Lemma
We have also used the fact that by Gershgorin theorem [|A(M)| < 2 and ||A(M) — A(M")| = e

Next, we will bound log (tht%f{' . Suppose pt1 > -+ > g be the eigenvalues of A(M) and pf >

- > i/, be the eigenvalues of A(M’). We conclude that:
detGM/ — ,u
1 2
& detG s Z ©8 ( AE )

Now, ||A(M) — A(M")|| < e. Therefore, we conclude by Weyl inequalities that |u; — p}| < e. By
Gershgorin circle theorem, we also conclude that % <pi < %

Plugging this into the equation above, we have:

detG]u/ —Zd:] Z] Zl /—62
8 detG s o P 8 °8 o8 (/Lz)
d
<) log (14 4e) < ded (159)

i=1
Combining Equations (T38) and (T539) along with Equation (I57) we conclude:
KL(WM||7TJ\4/) S 5€d
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Using this along with Equations (T36) and (I53), we conclude:

KL(par,rllpar 1) = 36T + 5ed. (160)
From this we conclude that when ¢ is as given in the statement of the lemma, we have:
1
KL(par, |l 1) < 5 (161)

By Pinsker’s inequality, which states that TV < +/2KL, we conclude the result of the lemma. O

TheoremH We first note that when we choose o2 such that do? = /3, we have
VAR(A(M),N(0,0°1)) € M

for every M € {0, 1}44=1)/2 We pick ¢ = cmin(ﬁ, 1) so that Lemmais satisfied.

We draw M randomly from the uniform measure over {0, 1}%(¢=1)/2 and lower bound the minimax

error by Bayesian error.

Eminmax(M) Z }Q;EME(Zt)NJ\I‘CPred(f(ZOa ceey ZT), M) - £pred(A(M); M) (162)

We will now uniformly lower bound En/E(z,)nrLored(f(Zo, - Z1); M) — Lpred(A(M); M)
for every fixed choice of f € F to conclude the statement of the theorem from Equation (162).
Henceforth, we will denote f(Z, ..., Zr) by A(M) whenever (Z;) ~ M. By Lemma
conclude that:

Lorea(A(M): M) = Loreg (A(M); M) = Tr [(A(M) = AM))T(A(M) = A(M))Gt]

(A(M) — A(M))T (A(M) — A(M)) is a PSD matrix and by Lemma G > 0?1 for every M.
Therefore, we conclude that with probability 1 we have:

Lorea (A(M); M)—Lorea(AM); M) > 02 Tr [(A(M) = A(M))T (A(M) — A(M))]

= o?|AM) = AM)|IE = 20% Y (A(M)i; — A(M)y;)*. (163)
i,5€[d]
1<g
Therefore, we conclude that:
]E]VIEZtNM‘Cpred(A(M)§ M) - Lpred (A(M), M) >2 Z ]E]ME(Zt)N]W(A(M)ij - A(M)lj)Q
i,5€[d]
1<J

(164)
We will now lower bound every term in the summation in the RHS of Equation (164)). Fix (7, 7). Let
M...;; denote all the co-ordinates of M other than (i, j). We define M+, M~ € {0,1}44=1/2 g0

that MY, ; = M.;; and M;; = 1. Similarly, let M_,; = M.;; and M;; = 0. Therefore, we have:
. 1 X
ErE(z)n (A(M )i — A(M)5)? = SEM Bzt (A(M™*);; — A(M™);;)?
1 .
+ 5B, Eqzyon- (AM )i — AM™)i5)% (165)

Now, M ™ and M~ differ in exactly one co-ordinate. We invoke Lemma to show that there
exists a coupling between (Z;7) ~ M™ and Z; ~ M~ such that P(Z;" = Z;) > 1. Call this
event I' (we ignore the dependence on M. ;; for the sake of clarity). In this event, we must have
A(M*) = A(M~) since our estimator f € F is a measurable function of the data. For any fixed
M_;;, we have:

E(zymrr+ (AM )iy = AMY)i5)? + Ezyans- (AM )iy — A(M ™))
> Bz 1(T) [(A(M )5 — A(MT);;)% + (A(MT);; — A(Mf)ij)z}

62

> P(T)(AM™)ij — A(M™)i5)% > S (AM )iy — A(M);;)? = 5 (166)

DN | =
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In the second line we have used the fact that under event T', A(M ™) = A(M ™). In the third line, we
have used the inequality (z — )% + (z — 2)? > 3(y — 2)2. In the fourth line, we have used the fact
that P(T") > 1/2. Using Equation (T66) along with Equations (I63) and (T64)), we conclude that for
every estimator f € F the following holds:

- d(d —1)e*c?
ErrE, o [Lpea (A(): M) — Lopea( AM); M)] > W= DT
Using above equation with Equation (T62)), we conclude the statement of the theorem. O

Remark. We can show a similar lower bound by considering a discrete prior over the space of
orthogonal matrices. In particular taking A* to be an orthogonal matrix scaled by p, we can endow
the orthogonal (or special orthogonal) group with metric induced by the Frobenius norm. Then from

[54) Proposition 7], we can construct an e-cover of cardinality 4“7 But then from the proof of
[55] Proposition 3], for a € (0, 1), there exists a local packing of the space with packing distance «e
and cardinality at least ¢*4=1)/2 where ¢ > 1. Further the diameter of this local packing is at most
2¢ (in Frobenius norm). Now using standard arguments from Fano’s inequality (c.f.[55] Proposition
3]) or Birge’s inequality (c.f.[l5) Lemma F.1]) we can get a similar lower bound on the prediction
error as Theoremd] but with explicit dependence on p.

N Techincal Proofs

N.1 Proof of Lemma[10]

Proof. Consider the SGD — RER iteration:

A} = A - (A X - XL X

t—1 t—1yt—1,T t—1 t—1,T
=A7 (I -29X5 X5 )+ Q’YX_(i_l))X_(H_l) (167)

Observe that for our choice of ~ and under the event DN =1 we have ||(I — 2y X' X" 01| <1

and || X :(1,1 )X LTl < R. Therefore, triangle inequality implies:

JAG I < 1AM +2vR
‘We conclude the bound in the Lemma.

N.2 Proof of Lemma[I1l

Proof. We again consider the evolution equation: X :-1

At = A (Al X XL X

= AT 2y(ATIXI - XL X 4 A (168)
Where

t—1 (gt—15t—1,T t—13t—1,T t—1 t—1,T _ gt—1  pt-1,T
Ay =29 A (RIRENT - XX ) oy (XL, XINT - XL RST)
Using Lemmas[I0]and[7] we conclude that:
Al < (169°R*T + 8yR) [|A*"||
Using the recursion for flﬁ, we conclude:
Ay — AT = (A7 = ATDP 4 Ay

i+1
— [l - A < | - A || 2] + asvRRT S syRY A

— |t - At < A = A+ a6 RRT 4 syR) a7 (169)

< 1. We

In the last step we have used the fact that under the event DON —1 we must have pr

conclude the statement of the lemma from Equation (T69).
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N.3 Proof of Lemma
Proof. First we have

E[(aft—an) (At = a1 [P ] <E[(a7 - an)T (a4 - a1 [P

1
+ 472(Bt)2R\/,LT4Ta el

<E [(ATl _ A*)T (Azfl _ A*) 1 {f)o,t—lﬂ
+ ey domay (Z)RT? Ti 1 (170)

Next, we have

=T (gt - - (A - ar) ()|
[+ (257 - 2)])
B P PP
Thus on the event D%, using lemmaand lemmawe get
Jat = )T (4 - - (A - ) (- )|

< (v R*T? + yRT)(yRT + | A*|| + [[ Ao} [A™|| < ey® RPT? [ 4™ (172)

< [lag = s (s - a)

for some constant c. (We have suppressed the dependence on Ay and A* since they are constants and
YRT grows with T').

The proof follows by combining and (I72).
The proof of follows similarly. O

O Prediction error for sparse systems

In this section we consider the VAR(A*, ;1) model with sparse A* whose sparsity pattern is known.
We will present a modification of SGD — RER that takes into account the sparsity pattern information.
Formally, let S; = {k : A}, # 0} be support or sparsity pattern of row [ of A*. Further let s; = |5y
denote the sparsity of row j. We assume that S; is known for each 1 < [ < d. The claim is that

2
the excess expected prediction loss is of order % We will present only a sketch of the proof
highlighting the main steps. Detailed calculations follow similarly as in sections[F and [G]

The modification of the SGD — RER algorithm to use the sparsity pattern is as follows. Let af’T

denote row [ of A*. The algorithmic iterates are given by (A;fl) where row [ is aé}l’T. Let
agyl =0 € R% Let {e; : 1 <1 < d} denote the standard basis of R?. Let Pg, : R? — R? denote
the (self adjoint) orthogonal projection operator onto the subspace spanned by {e; : I € S;}. Then

update for row [ is given by

t—1,T _ t—1,T t—1,T vt—1 t—1 t—1,T
a1 = a0 — 27’(%’,1 X5 - (el,Xi(j71)>)X_j ] Ps, (173)
and af |, = atBTll. Since each iterate above has sparsity pattern S; by construction, we can rewrite the
above as .
t—1,T _ t—1,T t—1,T yt—1 t—1 t—1
ajiy =a;; 0 — 2'7(%‘,1 X5 - (el,X_(j_1)>) (Plefj ) (174)

. t—1,T yt— t—1,T _
Notice that a;; Xijl =a;; " PSLXij1 and

(e, XX ) = ap T X )
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Thus

_ D _ AT _ T _ I\ T
(ahi—ai) = (a7" —ai) (Ps—2v (PeX5") (P X5)") + 29 (Ps X15)
(175)

For a vector v € R, let vs, € R be the vector corresponding to the support S; i.e. entries in vg,
correspond to the entries in v whose indices are in .S;. So we can rewrite completely in R** as

T T
t—1 * t—1 * t—1 t—1\ | t—1 t—1\ 1
(aﬂ‘“’l N al)sl - (aﬂ"l - ‘”)sl <Isl -2 (X5 ) (X5 )Sz) 25 (X5,
(176)
where I, is the identity matrix of dimension s;.

Our goal is to bound the expected prediction error for this modified SGD — RER. To that end, we
will make some important observations.

(1) Since we focus on prediction error, the entire analysis can be carried out row by row. To see
this, if A is any estimator, the

d
Lorea(A; A%, ) = Tr(S) = Tr(G(A - A") (A= A)) = > Tr(G(a — af )@ — af) ")
=1

where &l—r is the row [ of A.
(2) If G; and a; have sparsity pattern S; then

Tr(G(a — af) (@ — af) ") = Tr(Ps,GPs, (& — af) (@ — aj) ")
= Tr(GSz (a’l - azk)sz (&l - a?);)

where Gg, € R%** s the submatrix of G obtained by picking rows and columns
corresponding to indices in .S;.

(3) Under the stationary measure, we have E {(Pg, X t_;l) (Ps, X t_;1)7} = P5,GPs,. Thus,

with high probability ||Psl Xt_gl ||2 < €810 max(G) log T'.

(4) Letting s9 = max; s;, we can set R = ¢Soomax(G) log T and use step size v = O(1/RB).

(5) We can perform the same bias-variance decomposition as described in section [D]to obtain
aj, " and aly ).

(6) From previous observations, the variance of last iterate corresponding to row [ turns out to
be

B,
—1,v t—1,v Y
o2 (1 — o(1))I,, <E {(atB,l )Sl (a’}il ) } < et o)L,

where 07 = % ;.
(7) Similarly, the variance of the average iterate E [(d’éy n(@s N, Z)T} corresponding to row [
can be bounded upto leading order by

N
1
7 2 Vienie = Hs)7H o+ (T = M)~ Ve d]

t=1

T
where V;_1; =E {(a?}’”) < (a%_ll’”) s } and (with abuse of notation) Hg, is defined as
1 l

2
»
where X9 ~ 7.

(8) Now, similar to lemmawe can bound Hg, + 7—[; by 2(Is, — cyBGy,) upto leading order.

B-1

Ho =E | I] (L, - 21(X2)s,(X2)5) 1 [ﬂ;iol {H(XEJ»)SZ

Jj=0
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(9) Thus similar to lemma[I7]we obtain

— S
TI'(GSl (I - HS[) 1) S c’yiB
(10) Finally as in section|G.I|we can bound the variance of prediction error of row [ upto leading
order by
g 12 S

TH(GE [(@ x1)(a8 ) T]) S 2
Thus summing over [ we get
2
T (GE [(dg 1) (g ) T]) 5 2472
(11) Bias can also be analyzed in a similar way and it will be of strictly lower order (using

suitable tail-averaging).
(12) Thus the excess prediction loss is given bounded as

A o?s

So the modified SGD — RER algorithm effectively utilizes the low dimensional structure in A*.
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