Supplementary Material

FutureVQA
Dataset Creation and Quality control

Our dataset creation aims to provide a benchmark that ad-
dress VLMs ability in consistant and accurate future rea-
soning with focus on diverse questions costomized based
on different scene. To achieve this we utilize the annotation
pipeline operate with both human and Al agent, which to
efficiently create the QA.

(1) Human Expert QA Generation and Quality Con-
trol: To construct a human-like benchmark dataset with
high diversity, we employed five expert annotators to manu-
ally generate question-answer pairs based on selected clips
from OpenDV-YouTube dataset (Yang et al. 2024a), cover-
ing multiple cities with different weathers. Each QA pair
was subsequently reviewed and verified by 1-2 annotators to
ensure clarity, unambiguity, and answerability based on the
given input. Although time-consuming, this process results
in a more diverse and naturally phrased QA dataset com-
pared to rule-based or template-driven approaches.

Compared to existing works in the driving domain (see

Figure 4), such as nuScenes-QA (Qian et al. 2023) and
DRAMA (Malla et al. 2023), which rely on rule-based meth-
ods, or OmniDrive (Wang et al. 2024a), which uses GPT-
generated data to construct large-scale datasets, our bench-
mark prioritizes diversity and human-like reasoning. While
DriveLM-ns (Sima et al. 2023) incorporates human anno-
tations for prediction and planning tasks, it still follows a
rigid and highly structured question format, regardless of
the uniqueness of each video clip. As shown in Table 5,
despite being smaller in overall size, our dataset provides
over 4x more unique questions, nearly 3x larger vocabu-
lary, and over 400 x higher type-token ratio (TTR). Notably,
more than 95% of our questions appear fewer than 10 times.
In contrast, DriveLM contains over 85% of questions re-
peated more than 102 times, over 20% more than 102 times,
and over 2% more than 10* times, without considering the
uniqueness of differences in scene content.
(2) AI Quality Control and Multi-option Generation: To
minimize typographical errors, we employ GPT-40 to review
all QA pairs generated by human annotators and automati-
cally correct any detected typos. Following this, GPT-4o0 is
further used to generate plausible but incorrect answer op-
tions based on the ground-truth answers provided by anno-
tators.

To ensure that the resulting multiple-choice questions
remain unambiguous—with only one clearly correct an-
swer—each generated QA pair is manually reviewed by hu-
man annotators. This final verification step guarantees the
quality and clarity of the multi-option format in our dataset.

Evaluation Protocol

To address the limitations of conventional statistical-based
metrics, we adopted an option-based answer format for eval-
uation, where each question has predefined multiple-choice

Dataset N.Ques. N.Uniq. Ques. Vocab. Size TTR

DriveLM(Pred.) 123k 15 69 41 x107°
DriveLM(Pred.&Percep.) 285k 234 150 4.1 x 107°
Ours 2.7k 969 433 1.8 x 10~ 2

Table 5: Comparison of question diversity between our
dataset and DriveLM. N. Ques. denotes the total number of
questions; N. Uniq. Ques. represents the number of unique
questions after de-duplication; Vocab. Size is the number of
distinct words used in the questions; and TTR (Type-Token
Ratio) measures lexical diversity, computed as the ratio of
unique words to total words. The results highlight its greater
linguistic diversity and reduced reliance on fixed templates.

answers (e.g., A: Yellow). The models were required to
provide the corresponding option label (e.g., ) as the an-
swer. See Figure 7 for the prompt and Algorithm 1 for the
multi-trials evaluation.

Interestingly, during our experiments, we observed that
not all models consistently adhered to this strict answer for-
mat. Some models would output answers like A: Yellow
or simply Yellow. To account for this, we relaxed the eval-
uation criteria to accept both answer formats as correct.
However, models like Qwen-VL-7B (Bai et al. 2023) still
struggled to follow the instructions and produced responses
such as "The answer is A”, "The answer is A: Yellow”, or
other variations. Since following instructions is an important
part of the evaluation, we did not further relax this restric-
tion, which resulted in lower accuracy for these models, as
shown in Table 1.

FutureVQA Prompt

Imagine you are looking at the image {future_second} second
after the input frames and answer the following question:
Question: {question}

Options: {options}

Please choose the most appropriate answer from the given
options. Respond with the option without any explanation, for
example, if the answer is B: Yellow, your answer should be: B

J

Figure 7: The prompt used to instruct VLMs to predict the
future scene and answer the corresponding question.

Algorithm 1: Multi-trial Evaluation for QA Consistency

Require: Model M, Question @, Image I, Ground-truth
Answer A, Number of Trials N

1: fori =1to N do

2:  @; < ShuffleOptions(Q)
3: P« M.predict(I, Q;)
4: if P; # A then

5: return False

6: endif

7: end for

8:

return True




Benchmark Task T. Size | Cust. Q | Ans. Type | Mul. Trl. | Mul. C. | Pred. | T-Pred.
nuScenes-QA (Qian et al. 2023) | Drive VQA | 83.3k** X Mixed X X X
BDD-X (Kim et al. 2018) Drive Action | 2.6k - Sentence X X X
DRAMA (Malla et al. 2023) Drive VQA 11.6k X Mixed X X X X
Rank2Tell (Sachdeva et al. 2024) | Drive VQA - X Mixed X X X
OmniDrive (Wang et al. 2024a) Drive VQA 24k Sentence X X
DriveLM-nS (Sima et al. 2023) Drive VQA 73k* X Sentence X X
MMBench (Liu et al. 2023c¢) Gen. 1. QA 1.7k Options - - -
LngVidBench (Wu et al. 2024) Gen. V. QA 5.3k Options X - - -
Video-MME (Fu et al. 2024) Gen. V. QA 2.7k Options X - - -
MME (Fu et al. 2023a) Gen. I. QA 2.1k X Y/N X - - -
Ours Drive VQA 2.8k Options

Table 6: Comparison of existing VLM benchmarks. Key aspects of dataset creation include test size (T. Size), whether ques-
tions are customized for different scenarios and video clips (Cust. Q), answer type (Ans. Type), multi-trial evaluation for each
question (Mul. Tri), inclusion of multiple cities (Mul. C.), presence of perception tasks (Perc.), inclusion of prediction tasks
(Pred.), and whether the dataset challenges VLMs with time-specific prediction (T-Pred.). Our benchmark dataset is the first in
the driving domain that does not rely on sentence-based answers, which are subjective and difficult to evaluate. Additionally,
it consists of fully human-annotated QA pairs tailored to different scenes, rather than relying on rule-based methods. Further-
more, our dataset challenges VLMs to predict future scenes at specific time intervals, requiring precise temporal reasoning to
differentiate between near-future and far-future events.

T: The QA pairs are fully generated by GPT-4. ** Fully rule-based (no human annotators), * Semi-rule-based labeling (with

human annotators for certain tasks).

VQA Category

To evaluate the diverse reasoning capabilities of VLMs, we
classify VQA tasks into the following categories. These cat-
egories are not mutually exclusive, as a single question can
belong to multiple categories depending on the type of rea-
soning required.

» Hallucination: This category evaluates the model’s abil-
ity to avoid providing incorrect information about objects
or features that do not exist in the scene. (e.g., "How
many blue cars do you see in this image?”’) Such ques-
tions are especially challenging when an object has just
left the scene.

e General: General questions involve straightforward
scene understanding or recognition tasks that do not re-
quire spatial or temporal reasoning. Examples include
identifying landmarks, objects, or common scene ele-
ments (e.g., "What is the landmark in the middle of the
image?”).

* Traffic Understanding: This category targets traffic-
related reasoning, including understanding road signs,
speed limits, or dynamic traffic scenarios. These ques-
tions often require knowledge specific to driving envi-
ronments (e.g., "What is the speed limit here?”).

* Absolute Location: Absolute location questions focus
on the spatial properties of objects in the scene, such as
identifying specific positions or attributes relative to the
image boundaries (e.g., "What color is the car on the far
right of the image?”).

* Relative Position: Relative position questions require
understanding the spatial relationships between multiple
objects in the scene. These questions test the model’s
ability to interpret multiple objects interaction (e.g., ”De-
scribe the vehicle in front of the taxi.”).

By introducing these categories, we aim to provide a com-
prehensive evaluation framework for VLMs, covering both
basic scene understanding and complex reasoning tasks. See
Figure 8 for the examples.

Analysis on Different FutureVQA Categories

To establish a baseline for expected performance in the
FutureVQA, we analyze various VLMs on our benchmark
dataset across different categories . In this baseline analy-
sis, VLMs perform regular VQA, where the actual images
corresponding to the questions are provided as input.

As shown in Figure 9, we evaluate models includes
CogVLM (Wang et al. 2023), Yi-VL (Young et al. 2024),
LLaVA series (Liu et al. 2023a, 2024) and GPT-4o0, the re-
sults suggest that traffic understanding appears to be a rela-
tively weak area for many existing VQA models. Most mod-
els do not exhibit significant differences in their capability
to handle absolute or relative position questions. Addition-
ally, for hallucination-related tasks, where models are asked
about nonexistent objects, most models perform well when
the image is provided, effectively avoiding incorrect predic-
tions. These findings highlight the strengths and weaknesses
of current VLMs and provide a foundation for evaluating
their potential performance in future image QA tasks.

In Figure 10, we further compare the performance of
VLMs across different question categories when asked to
predict future scenes. As time progresses, we observe that
GPT-40’s performance degrades significantly across all cat-
egories, with the most notable decline in questions related to
relative and absolute positioning.



General

Hallucination

Absolute Location

H t is the Iahdmak in the
middle of the image?

Q: Describe the vehicle in front  Q: What colar is the car on the far

Q: How many red cars do you see  Q: What is the speed limit here?

] in this image? (A) 30 of the taxi. right of the image?
(A) Arc de triomphe (A) 1 (B) 50 (A) It is a black SUV (A) Green

(B) Pyramid (B)5 (C) 100 (B) It is a White SUV (B) Red

(C) eiffel tower (©)o (D) 70 (C) It is a black truck (C) Pink

(D) Taipei 101 (D) 3 (D) It is a motorbike (D) Yellow

Figure 8: Examples of visual question answering (VQA) tasks categorized into different types: Hallucination, General, Traffic
Understanding, Absolute Location, and Relative Position. Each question is categorized based on the type of reasoning it
requires; however, a single question can belong to multiple categories simultaneously, depending on its context and the type of
information needed.
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Figure 9: Radar plots comparing the performance of various models across five VQA categories: Hallucination, General, Traffic
Understanding, Absolute Location, and Relative Position. In this experiment, models perform regular VQA on images, with the
actual images provided as input. The plots illustrate the strengths and weaknesses of each model in handling different reasoning
tasks, providing a comparative baseline for understanding the capabilities of existing VLMs before extending to future image
QA tasks.
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Figure 10: Radar plots comparing the performance of different models across various VQA categories (Hallucination, General,
Traffic Understanding, Absolute Location, and Relative Position) at different future time steps: (a) t + 1, (b) t + 4, (c) t + 8,
and (d) ¢ + 12. The results highlight that while most models maintain robustness in hallucination detection, their performance
in other categories, particularly traffic understanding and spatial reasoning, declines as the time offset increases.



Algorithm 2: Temporal Chain-of-Thought Future Scene
Reasoning

Require: VLM A, Observed Frames [;_5.;, Target Future
Step At, Question Q¢+,
Dy < Initialize empty future description
for i = 1to At do
D; + A.describe_future(l;_s., Di—1,1%)
end for
ans < A.answer(Qii¢,, Dr)
return ans

AU A

Detail Implementation

Chain-of-Thought

To enhance temporal reasoning, we adopt a Chain-of-
Thought (CoT) prompting strategy in which the VLM pre-
dicts the future scene progressively, one step at a time.
Rather than directly predicting the outcome at a future times-
tamp, the model is encouraged to reason through each inter-
mediate step—first predicting ¢ = 1, then ¢ = 2, and so
on, until the final target time is reached, see Algorithm 2.
At each step, the model uses the history frames along with
its previous predictions to generate the next future scene de-
scription. This design mimics human-like sequential fore-
sight and allows the model to build up an understanding of
how the scene may evolve over time. For practical computa-
tional efficiency, we limit the maximum number of steps to
4. This step-wise reasoning not only improves temporal con-
sistency but also provides interpretable intermediate predic-
tions that make the model’s reasoning process more trans-
parent and grounded in scene dynamics.

Visual Input Encoding

Memory Decay Sampling. Our implementation of
the memory decay sampler leverages a transformer-
based framework with learnable sampling queries
Q = {q1,92,-.-,qn}, where n is the total number of
queries set as the initial number of tokens. These queries
are initialized at the beginning of training and are optimized
to extract temporal information relevant to the task. Let the
current time be ¢, and let the number of tokens provided by
the image encoder be ng. The decay factor for the frame at
time tg — ¢ is defined as (%)Z Accordingly, the first ng - (%)Z
queries are utilized in the cross-attention mechanism to
represent the frame at £y — s.
Adaptive Token Sampling. In our implementation, frame
similarity is evaluated by first computing the difference be-
tween two consecutive frames, |I(¢) — I(t — 1)|. To reduce
noise introduced by high-frequency details, such as windows
on distant buildings in urban environments, a Gaussian fil-
ter, G, is applied to smooth the difference map while pre-
serving significant changes. Finally, a Sobel operator, Sy, is
used to highlight the structural changes between the frames.
During our experiments, we tested multiple Gaussian fil-
ter kernel sizes and determined that a kernel size of 13
strikes the best balance between reducing noise and preserv-
ing important structural details. The comparison is shown
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Figure 11: Overview of our visual encoding pipeline. The
goal is to minimize the number of tokens while maintain-
ing similar performance. In the context of autonomous driv-
ing videos, recent frames typically have greater influence on
upcoming events. To reflect this, the Memory Decay Sam-
pler assigns fewer queries to older frames, while the Adap-
tive Token Sampler adjusts the number of tokens based on
the similarity between adjacent frames. The Prior Frame
Memory Encoder is a transformer-based module that inte-
grates temporal information from preceding frames.

in Figure 12. After computing the similarity maps, we mea-
sure the amount of highlighted area and then scale and cap
the values for consistency. On average, the scaling factor is
approximately 0.5 across our evaluation dataset.

Additional Evaluation
Ablation Study on Sampling Strategy

Our choice of the number of visual input frames is guided by
two main considerations: (1) performance and (2) hardware
constraints. The objective is to minimize the number of vi-
sual tokens while maintaining competitive performance. De-
tailed results at specific time steps are provided in Table 7
and Figure 13.

We observe that extending the input range from the past 5
seconds to the past 10 seconds does not lead to significant
performance gains, yet results in increased computational
cost. On the other hand, reducing the input to only the past
2 seconds leads to a slight drop in performance.

Similarly, ablating either the memory decay sampler or
the adaptive token sampler individually does not substan-
tially affect the final accuracy, while reducing visual token
usage by approximately 75%. This highlights the efficiency
of our sampling strategy in balancing performance and com-
putational cost.
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Figure 12: Visualization of frame similarity evaluation us-
ing Gaussian smoothing followed by the Sobel operator with
different kernel sizes. The input images have a resolution
of 1280 x 720 pixels. The difference between two consecu-
tive frames, |I(¢) — I(t — 1)|, is computed, smoothed using
Gaussian filters with kernel sizes of 5, 9, 11, 13, 15, and 17,
and then processed with the Sobel operator, Sy, to highlight
changes. For better readability, the colors of the similarity
maps are inverted.

. Scores 1
Time | Model B3 B4 RL C M
Baseline™ 134 6.1 250 24 259
Ours™ 322 262 40.2 17.7 41.5
w/o CoT 28.1 227 382 15.1 40.2
+1s | w/o self-sup. 121 7.2 249 27 262
tos:—10s 325 265 400 17.6 413

w/o Adpt. Sam. | 323 262 404 173 41.6
w/o Mem. Sam. | 31.8 26.2 40.1 17.0 41.2

Baseline™ 225 6.0 244 26 255
Ours™ 28.6 22.5 37.1 11.8 39.1
w/o CoT 25.6 20.1 359 11.0 384
+4s | w/o self-sup. 116 6.7 244 20 258
tos:—10s 32.1 262 407 177 415

w/o Adpt. Sam. | 32.7 263 40.6 18.0 415
w/o Mem. Sam. | 32.7 25.6 40.8 18.1 415

Baseline™ 112 62 251 22 254
Ours™ 275 214 36.2 10.1 383
w/o CoT 241 18.6 349 9.7 376
+8s | w/o self-sup. 120 7.1 249 23 263
tos:—10s 322 258 402 17.7 415

w/o Adpt. Sam. | 32.3 26.6 415 175 415
w/o Mem. Sam. | 32.0 264 419 17.1 415

Baseline™ 113 72 239 22 255
Ours™ 26.7 20.6 356 94 37.7
w/o CoT 256 20.1 344 8.6 369
+12s | w/o self-sup. 115 6.7 244 20 258
tos:—10s 312 260 395 17.0 415

w/o Adpt. Sam. | 32.0 255 39.6 169 415
w/o Mem. Sam. | 32.1 262 404 179 415

Table 7: In this comparison the reference captions are from
regular image captioning, while the compared captions are
generated by our fine-tuned model which perform future
scenes captioning with only previous frames are given. B-3:
BLEU-3, B-4: BLEU-4, R-L: ROUGE-L, C: CIDEr, M: METEOR.
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Figure 13: Accuracy over time in the FutureVQA task with
different visual input encoding strategies, showing that our
sampling approach reduces the number of required tokens
while maintaining higher performance.

Hallucination and Mode Collapse

Generating accurate captions is the first and most crucial
step in our training methodology. We experimented with var-
ious models for this task; however, we observed that not
all models are capable of providing objective and accurate
captions that comprehensively describe all elements in the
scene. For instance, models like LLaVA-V1.5-7B (Liu et al.
2023b) tend to generate repetitive sentences and often pro-
duce hallucinations, exaggerating or inaccurately inferring
details that are not present in the image. Figure 14 illustrates
examples of these issues, showcasing captions that overstate
the number of objects in the scene and use overly similar and
redundant phrasing. These limitations highlight the need for
more robust captioning models to ensure high-quality data
generation for downstream tasks.

Prompt Template

In this section, we describe the unified prompt template used
for our experiments across three key tasks: captioning eval-
uation, regular VQA, and FutureVQA. The template, shown
in Figure 15, standardizes the model’s input format to ensure
consistent and fair evaluation.

For captioning evaluation, the model generates captions
for a given image, which are subsequently scored by GPT-40
acting as a judge. GPT-40 is instructed to provide a score be-
tween 1 and 10 based on the objective aspects of the caption,
explicitly disregarding subjective elements such as mood or
atmosphere.

In the regular VQA task, the model is provided with the
input image and a set of predefined multiple-choice options.
It is required to select the most appropriate answer, estab-
lishing a baseline for evaluating the model’s performance
when the image is explicitly available.



LLaVA-1.5-7B
4 - I

The image features a busy street with multiple cars and trucks. There are at least 11
cars and 3 trucks visible on the road. Some cars are positioned closer to the
foreground, while others are further back in the scene. The vehicles are driving under a
bridge, and there are traffic lights present in the area. The traffic lights are located at
different positions along the road, ensuring proper traffic flow and safety.

The image shows a busy street with multiple cars and trucks. There are at least 11
cars and 2 trucks visible on the road. Some cars are positioned closer to the
foreground, while others are further back in the scene. The vehicles are driving in
various directions, creating a sense of movement and activity on the street.

LLaVA-1.6-34B \

The image depicts a highway scene with a focus on a road intersection. There is a
white SUV in the foreground, stopped at the intersection. The road is marked with
white lane markings and a dashed white line indicating a lane change area. A yellow
diamond-shaped sign with a black symbol of a person walking is visible on the right
side of the road, indicating a pedestrian crossing or area.

Above the intersection, there is a green highway sign with white lettering that reads
""Left Exit 1A,"" suggesting the direction of the exit ramp. The sign also includes a
symbol indicating the exit is to the left.

The highway overpass is in the background, with a greenish-gray color. The sky is
clear and blue, indicating fair weather conditions. There are no visible people or
animals in the image. The style of the image is a standard, non-stylized photograph
with no filters or artistic effects applied. The focus is on the road infrastructure and the

vehicle, with no additional context or background details provided. )

4 1\
In the image, there is a highway scene with several vehicles and a clear sky. On the left
side of the image, there is a black SUV driving on the highway. The SUV is positioned
in the left lane, and it appears to be in motion.

In the center of the image, there is a large black van or bus. It is driving in the right
1 lane of the highway. The vehicle is quite large, occupying a significant portion of the

o o < image from left to right.

On the right side of the image, there is a black car driving in the right lane of the
highway. The car is smaller in comparison to the van and is positioned behind it.

In the background, there are trees and a clear sky, indicating that the highway is likely
in a suburban or rural area. There are no people visible in the image. The overall scene

\ _suggests a typical day with vehicles traveling on a highway. /

Figure 14: Comparison of captions generated by LLaVA-V1.5-7B (Liu et al. 2023b) and LLaVA-V1.6-34B (Liu et al. 2024).
While LLaVA-V1.5-7B produces shorter and repetitive captions with occasional hallucination, LLaVA-V1.6-34B generates
significantly longer and more detailed descriptions. Additionally, LLaVA-V1.6-34B exhibits a varied response pattern, provid-
ing distinct levels of detail and focus when presented with different images.




f GPT-40 as Judge for Captioning Evaluation )

Please act as an impartial judge and evaluate the quality of the image caption
provided by an Al assistant displayed below. Your evaluation should specifically
assess the accuracy of object presence and positioning within the image,
disregarding any subjective descriptions like vibe, atmosphere, or general
impressions. Focus solely on whether the caption correctly reflects the precise
positioning and presence of each object mentioned. Begin your evaluation by
providing a short explanation. Be as objective as possible. After providing your
brief explanation, please rate the response on a scale of 1 to 10 by strictly
following this format: '[[rating]]’, for example: 'Rating: [[5]]'".

Caption by the Al assistant: {caption}

Regular VQA

Answer the following question based on the image:

Question: {question}

Options: {options}

Please choose the most appropriate answer from the given options. Respond
with the option without any explanation, for example, if the answer is B:
Yellow, your answer should be: B

. J

\Ya

J
~

Figure 15: Prompts used for three tasks: GPT-40 as a judge in captioning evaluation and Regular VQA on our annotated
evaluation dataset. Each prompt is tailored to the specific requirements of its respective task.
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