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Abstract: Tactile-aware robot learning faces critical challenges in data collec-
tion and representation due to data scarcity and sparsity, and the absence of force
feedback in existing systems. To address these limitations, we introduce a tactile
robot learning system with both hardware and algorithm innovations. We present
exUMI, an extensible data collection device that enhances the vanilla UMI with
robust proprioception (via AR MoCap and rotary encoder), modular visuo-tactile
sensing, and automated calibration, achieving 100% data usability. Building on an
efficient collection of over 1 M tactile frames, we propose Tactile Prediction Pre-
training (TPP), a representation learning framework through action-aware tempo-
ral tactile prediction, capturing contact dynamics and mitigating tactile sparsity.
Real-world experiments show that TPP outperforms traditional tactile imitation
learning. Our work bridges the gap between human tactile intuition and robot
learning through co-designed hardware and algorithms, offering open-source re-
sources to advance contact-rich manipulation research.
Project page: https://silicx.github.io/exUMI.
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Figure 1: We present a co-design of hardware and algorithm for tactile-aware robot learning. We
present exUMI, an extensible upgrade for the UMI [1] system (left). With the hardware, we learn
tactile representation by temporal tactile prediction (middle), encoding the tactile dynamics condi-
tioned on robot action. We evaluate our representation on multiple real-world robotic tasks (right).

1 Introduction

Collecting robot manipulation data is crucial for developing autonomous robots in real-world envi-
ronments. While teleoperation techniques [2, 3, 4] yield accurate robot learning data, they are labor-
intensive, inefficient, and expensive. Learning from human demonstration [5, 6, 7, 8, 9, 10, 11] is
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cheap and massive, but inaccurate for robot embodiment. Between these two extremes, portable
hand-held devices offer a promising middle ground. Recently, UMI [1] was proposed to alleviate
the deployment gap, which is a portable physical twin of the robot gripper for in-the-wild demon-
stration collection. It shows remarkable capabilities in collecting kinesthetic teaching data, enabling
efficient transfer of human demonstrations to robotic systems.

However, when it comes to tactile-aware robot learning, traditional data collection systems face chal-
lenges. First, human demonstrators rely on tactile feedback to adjust manipulation strategies, mak-
ing it hard or impossible for the teleoperation systems to collect demonstrations for force-sensitive
tasks. Second, tactile signals in robot learning are severely sparse, with valid contacts occupy-
ing less than 10% of manipulation trajectories [12]. This undermines conventional tactile learning
approaches: (1) Direct imitation learning [13, 14] suffers from data scarcity. (2) Self-supervised pre-
training [15, 16, 17, 18] learns with the potentially incorrect inductive bias (e.g , translation invari-
ance). (3) Visual-tactile alignment paradigm [19, 20, 21] overlooks that vision and tactile modalities
have a one-to-many relation considering the contact force. Therefore, the resulting representations
often fail to generalize beyond narrow task-specific scenarios.

To address these challenges, we present a solution of tactile representation learning with the co-
design of both novel hardware and an algorithm. We propose exUMI (Sec. 3), an extensible upgrade
to the UMI robot teaching system [1]. exUMI is a portable hand-held data collection device with
visuo-tactile sensors and a motion capture system for teaching robot trajectory. Our system has
three key innovations: (1) A robust proprioception subsystem of AR-based motion capture (Meta
Quest 3) and magnetic rotary encoder (AS5600), achieving nearly 100% data usability by replacing
the vulnerable SLAM and ArUco systems. (2) A central controller enabling modality extensibility,
coupled with temporal sensor alignment protocols during human demonstrations with <50 ms error.
(3) Visuo-tactile integration of an upgraded design of 9DTact [22] for stable quality control and
better durability. With exUMI, users could efficiently collect robot learning and tactile sensing data
with the least effort. For a simple pick-and-place task, a user could collect 100 demonstrations in 20
minutes to achieve 100% data usability and over 70% task success rate by behavior cloning.

Building on the hardware basis, we propose an action-aware but task-agnostic tactile representation
learning framework (Sec. 4). To exploit exUMI’s unique data properties and address the previously
mentioned potential issues, we propose Tactile Predictive Pretraining (TPP), learning tactile repre-
sentation by the proxy task of temporal tactile prediction. We pretrain a tactile diffusion model
to predict future tactile frames, conditioned on the action sequence and the current camera image.
The representation is learned considering the physical action on the sensor, mirroring human haptic
perception, where contact dynamics could be inferred from future movement. To enable the action-
aware pretraining, we use exUMI to efficiently collect large-scale human play data by randomly
interacting with objects, producing a contact-rich tactile-action aligned dataset of >1 M frames
with over 10 times efficiency than teleoperation. The pretrained representation model could be em-
bedded in an imitation learning policy, and our tactile embeddings empirically achieve significant
success gain in force-sensitive tasks (e.g , “pull drawer, peg in hole”) versus vision-only baselines.

This work establishes a new paradigm for tactile-aware robot learning to overcome fundamental
bottlenecks in tactile learning. Our primary contributions include: (1) exUMI, a tactile robot data
system that enhances UMI with 100% reliable proprioception and tactile sensing; (2) Tactile Predic-
tion Pretraining (TPP), an action-aware and task-agnostic tactile representation learning method
that exploits contact dynamics through forward tactile prediction; (3) A large-scale tactile-action
aligned robot dataset with over 1 M frames; (4) Empirical validation showing over 20% perfor-
mance gains over tactile learning baselines.

2 Related Work

Robot Data Collection Systems are essential for training generalizable manipulation policies. Tra-
ditional approaches include teleoperation [23, 4, 24, 25], which offers high-quality data but is costly;
and human data based methods [5, 6, 7, 26, 27, 8, 28, 29, 9, 10, 30, 11], which lack precision.
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Figure 2: exUMI hardware system. We extend the UMI framework by disentangling propriocep-
tion into an AR motion capture system and a rotary encoder for precise gripper width. A central
controller with automatic latency calibration enables additional sensor integration with maximal
mobility. We attach two visuo-tactile sensors to the gripper fingertips.

Portable systems like UMI [1] and AirExo [31] employ a handheld or exoskeleton as a physi-
cal twin of a robot, enabling efficient in-the-wild demonstrations. Recent variants address exist-
ing limitations: Fast-UMI [32] enhances the SLAM system of UMI with RealSense T265, while
ForceMimic [33] integrates a force-torque sensor for contact-rich tasks. These advancements im-
prove scalability, adaptability, and multimodal data acquisition for robotic learning.

Tactile Representation Learning aims to extract meaningful tactile features for robots to perceive
geometry properties and interaction dynamics. Current trending involves: (1) Directly imitation
training: minimally process the tactile data [13] or even directly use it without any processing [14]
for training via reinforcement learning methods. Further learning process involves modality fusion
models such as transformer [19, 20, 21]. (2) Intermediate Representation: transform raw data into
a manual representation space that captures task-relevant semantics, such as converting into point
clouds [34, 35], or reconstruct with NeRF [36]. (3) Self-Supervised Learning (SSL): leverages
the inherent structure and temporal-spatial correlations within raw tactile data through proxy tasks.
Rodriguez et al. [15] extends contrastive learning to paired tactile data. Guzey et al. [16], Yu et al.
[17] extend traditional SSL methods like BYOL to tactile tasks and train on play data or task-specific
data. Wu et al. [18] utilizes the masked learning method. Feng et al. [37] combine the pixel level
SSL and contrastive learning to learn a cross-sensor tactile representation. Zhao et al. [38] exploit
multimodal and multitask joint representation learning for a semantically meaningful tactile model.

Real-World Tactile Datasets have been developed to advance tactile perception and manipulation.
Early progress in tactile sensing was driven by data collected using GelSight and, more recently,
DIGIT sensors. Notable examples include Calandra et. al. [39, 40], SSVTP [41], datasets col-
lected through a self-supervised automated process, respectively utilizing GelSight and DIGIT; Vis-
Gel [42], a synchronized vision-touch dataset comprising diverse everyday objects; X-Capture [43],
adding depth information and acoustic information. Touch and Go [44], a single model approach
that utilizes a portable device, enabling human data collection and introducing a large diversity in
scenes. In comparison, our dataset addresses the challenges of efficient collection and propriocep-
tion alignment, resulting in a significantly larger data volume than any existing dataset.

3 Hardware System

We present exUMI, an enhanced hardware design upon UMI [1], guided by three key principles:

• Precise robot proprioception: Precise tracking of end-effector 6D pose and gripper width. The
vanilla UMI system relies on visual SLAM and ArUco tracking, which is vulnerable (Fig. 3).

• Extensibility: Seamless integration of additional sensors through centralized control.
• Portability: Ensuring in-the-wild data collection without fixed infrastructure (e.g , base station).
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Therefore, we develop the hardware system with the following key components. Due to the page
limit, please refer to Appendix A for full details.

3.1 Hardware Design

Magnetic Rotary Encoder. The gripper state estimation in the original UMI design relies on ArUco
markers, which suffer from occlusion and severe fisheye distortion, contributing to approximately
10% of data preprocessing failures and notable errors. To achieve accurate and robust gripper width
tracking, we propose a low-cost AS5600 magnetic rotary encoder solution. As shown in Fig. 2, we
modify the top plate to attach a radial magnet and the rotary sensor above a joint.

AR Motion Capture System. To overcome the limitations of vision-based tracking (SLAM) in
occluded or complex scenarios, use a Meta Quest 3 headset for end-effector 6D pose capture fol-
lowing Chen et al. [45], which is accurate and robust to occlusion. We integrate the left VR con-
troller through a custom-designed mount attached to the UMI body, which also provides space for
the power supply and an Orange Pi controller, serving as a universal sensor hub, synchronously cap-
turing data from the AR headset, rotary encoder, and any additional sensors, such as tactile sensors.
Our MoCap system achieves less than 10 mm error on average compared to FastUMI [32].

Fingertip Visuo-tactile Sensors. We embed visuo-tactile sensors on the fingertips for modality
extension. We propose a low-cost visuo-tactile sensor based on 9DTact [22]. We redesigned the
sensor model with a contact protection structure, which could hold the silicon gel and secure it from
large tangent forces. The cable and power connection are also optimized for durability. We also use
a customized mold to ensure the same and stable thickness of the silicon gel for consistent tactile
sensing. The upgraded sensor design achieves significantly enhanced durability and stability.

Visual Input. We employ the same GoPro setting to Wu et al. [32] for a wider and clearer view.

Non-Parallel Gripper Mechanical Design. We design an additional mechanical system (Fig. 4)
for the users of non-parallel grippers such as Flexiv Grav and Robotiq 2F.

Cost and Accessibility. Our system is low-cost and DIY-friendly with a default configuration start-
ing at $ 698, making it suitable for research/education. All CAD files will be released.

3.2 Data Processing

Our careful design enables robust in-the-wild data collection with minimal calibration overhead.

System Calibration. Our system requires two one-time calibrations: (1) AR Controller Calibra-
tion: the user aligns the exUMI with the base coordinates in the AR space and records the con-
troller’s transform, which is then used to correct the pose tracking. (2) Gripper State Calibration:
incrementally positioned the gripper at 1 cm intervals and recorded AS5600 reading, which is then
interpolated and used for mapping from AS5600 readings to absolute gripper width.
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Latency Calibration. We designed a calibration protocol to synchronize AR motion capture (and
the tactile signals) with the visual inputs (Fig. 5). At the beginning of data collection, the user
horizontally sweeps above an ArUco marker. We extract the x-axis movement of the AR MoCap
and the marker trajectories, then use an MSE minimization algorithm to find the latency offset
between the two curves. This approach ensures tight synchronization between the two systems.

Overall, exUMI could efficiently collect robot demonstrations with accurate 6D pose trajectory and
gripper width, aligned RGB image input, and additional tactile signals. Our data collection pipeline
is significantly simplified and more robust, leading to a nearly 100% data processing success rate
compared to less than 60% of vanilla UMI. Our system could significantly enhance data efficiency
and also enable multi-modality data collection at an affordable price.

4 Methodology

4.1 Taxonomy of Tactile Representation Learning

Tactile representation learning converts high-dimensional raw touch signals into compact features,
which is fundamental to alleviating challenges like sensor heterogeneity, data dimension, data
scarcity, and the need for real-world generalization. Regularly, its target is to learn a tactile en-
coder ET for further multimodal policy learning: π(at|ES(st), ET (Tt), EV (Vt)), where a is the
action, T, V, s are tactile, visual and robot state inputs, and ES , ET , EV are the encoders. Currently,
we classify the learning methods of ET to three paradigms, which will be detailed in Appendix B.

(a) Direct Multimodal Imitation Learning [13, 14, 19, 20, 21]: end-to-end learning ET during the
training of π, which suffers from tactile data scarcity since both the data size and the proportion
of valid tactile contacts are limited. (b) Spatial Self-Supervised Learning: methods like con-
trastive learning [15, 16, 17] and masked learning [18] learn tactile embeddings ET (Tt) through
proxy objectives. But these method usually imposes incorrect inductive biases borrowed from vi-
sion e.g , geometrical self-consistency and translation invariance, which may not exist in tactile
sensing. (c) Visual-Tactile Alignment [42, 43]: learns joint embeddings by maximizing similarity
s (ET (Tt), EV (Vt)). It assumes a coarse one-to-one visuo-tactile mapping, regardless of the actual
one-to-many relation when different contact forces are applied.

Therefore, to overcome data scarcity of tactile sensing and for task transferability, representation
pretraining (such as (b), (c)) is critical. However, current pretraining approaches face limitations
that stem from a shared oversight: treating tactile signals as static observations rather than action-
aware dynamic processes. Human tactile understanding intrinsically combines contact mechanics
with motion intent (e.g , “if I push harder, drag the object left, the slip risk decreases, and the tactile
signal will be more significant”). Our framework bridges this gap by reformulating tactile learning as
an action-conditioned temporal prediction problem, explicitly modeling the forward tactile dynamics
that underpin real-world contact interactions.

4.2 Action-aware Tactile Data Collection

For the tactile pretraining process, we efficiently collect tactile-action aligned human play data
leveraging the portability of the exUMI system. The collectors randomly manipulate diverse ob-
jects across 10 real-world environments, interacting with 300+ objects spanning from rigid tools
to deformable fabrics and granular materials. Finally, we collect a total of 1 M frames of aligned
images-tactile-action data. Our data has rich contacts with over 60% active tactile frames, compared
to less than 10% of regular data collection [12]. The contact richness further enhances our collec-
tion efficiency, and the 480 K tactile frames are collected from just 5 hours of human interaction,
which would take 10× the time for a teleoperation system. Although having different purposes and
granularity, the dataset is significantly larger than the previous tactile datasets (e.g , TVL [12] has
43.7 K frames), which is sufficient for our tactile learning.
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Figure 6: The proposed tactile representation learning pipeline. The representation model ET is
learned during the temporal tactile prediction task. The history tactile and action features are fused
and mapped as the prediction of future tactile features with a latent diffusion model (LDM). The future
action and the current image are encoded as the condition of the denoising process.

4.3 Tactile Predictive Pretraining

Given the exUMI hardware, we present an action-aware, and task-agnostic tactile representation
learning framework that addresses the challenges of contact dynamics modeling in manipulation.
We propose Tactile Predictive Pretraining (TPP), formulating tactile representation learning as a
conditional future prediction: pθ (Tt+1:t+n|ET (Tt−n+1:t), EV (Vt), EA(At−n+1:t+n)), The tactile
encoder ET would learn an informative representation involving tactile dynamics in the predictive
pretraining. The predictive model is learned from our 1 M human play data. We adopt the diffusion
model and masked autoencoder structure following [46] (Fig. 6), with the following components:

Multimodal Encoding. We employ the VAE model as the encoder and decoder of the tactile modal-
ity (ET ,DT ), and each tactile image is patchified and converted into a sequence of embeddings.
Different from UVA [46], the VAE model is learnable for tactile representation learning.

Tactile Prediction. Following Li et al. [46], we apply random masking to the history tactile patch
embeddings and action features and fuse the two modalities with a transformer. The n history
latents are forwarded to a latent diffusion model to predict the latents of future tactile signals, where
the embeddings of future action At+1:t+n and current RGB image Vt serve as the condition. The

Tactile
History

Action
Input

RGB
Image

MSE
Error

✗ ✓ ✓ 0.0298
✓ ✗ ✗ 0.0132
✓ ✗ ✓ 0.0125
✓ ✓ ✗ 0.0117

✓ ✓ ✓ 0.0099

Table 1: Tactile predictive pretraining
with different input settings.

tactile image is reconstructed by the VAE decoder. The pre-
dictive model is constrained by hybrid losses: (1) Ldiff :
the regular diffusion loss between the predicted and actual
noise perturbations. (2) Lrecon: the reconstruction MSE
loss between reconstructed and original tactile images.

Policy Learning. After learning the predictive representa-
tion, we freeze the tactile encoder ET for all downstream
policies. We learn the multimodal policy with common
imitation learning. The rich tactile dynamics knowledge
has been encoded in the tactile model; hence, our approach
could generate a more robust representation and alleviate the issues of data scarcity and low diversity,
avoiding the overfitting in low-shot learning scenarios for tactile-aware tasks. Note that although the
pretraining process requires dense computational resources, the pretrained tactile model could be
seamlessly adopted in all the downstream policy learning tasks without further finetuning.

5 Experiment

5.1 Tactile Predictive Pretraining

We first pretrain the TPP model on our collected large-scale dataset with a total of over 1M frames.

Implementation Details. exUMI collects two tactile images on the two sides. We convert the
images to a calibrated grayscale image following Lin et al. [22], and extract the convex and concave
pixel maps and stack them as a 3-channel image for a richer representation of tactile contacts. We
train the TPP model on 4 NVIDIA H100 GPUs for 120 hours. Refer to Appendix C for details.
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Task Number of
Demos

Data Collection
Duration †

Success
Rate

Pick Cube 204 42 min 85%
Pick Carrot 135 31 min 80%
Pick Broccoli 170 47 min 60%
Stack Cube 201 26 min 60%
Insert Pen 139 60 min 65%
Put Ball 181 66 min 70%
Open Bottle 270 79 min 20%
Pull Drawer 202 70 min 40%
Peg in Hole 163 56 min 50%

Table 2: Data collection efficiency and policy
performance on non-tactile tasks. †: total col-
lection time of all demonstrations, including the
environment resetting.

Results. We compare the prediction MSE error on the val set in Tab. 1, showing that multimodal
conditioning of visual and action sequences could reduce the tactile prediction error. Among all
the settings, our action-aware prediction achieved the best performance, indicating that the policy
implicitly learns the forward tactile dynamics with full consideration of the action sequence.

In Fig. 7. We visualize the tactile signals on the validation set (unseen data) following Lin et al. [22],
where red and green represent the concave and convex areas. Our model manifests to learn clues
from the action sequence. For example, in the first case, the model infers from the future action that
the tactile contact will cease after two frames, which is impossible for models without the reasoning
of action-informed tactile dynamics. Thus, our action-aware predictive pretraining enables robust
tactile representation for future tactile-aware policy learning.

5.2 Experiment Settings for Imitation Learning

Environment Settings. We evaluate our learning system on a Flexiv Rizon 4 robot arm with a
Flexiv Grav adaptive gripper, and use a GoPro camera as the only visual input. We adopt diffusion
policy [47] with a ViT image backbone model, and direct feature concatenation for multimodal
inputs. We evaluate our policy for 20 trials.

Task Settings. Our evaluation covers regular manipulation tasks: (1) Pick cube / carrot / broccoli:
pick up and place it into a container; (2) Insert pen: move a pen to another cup; (3) Stack cubes:
stack a small cube on top of another.

For tactile-aware policy learning, we evaluate on more complex tasks: (1) Put Ball: pick up a soft
ball and place it in a cup. (2) Open Bottle: rotate the bottle cap until it is fully unscrewed. (3) Pull
Drawer: pull out one drawer, which is either empty (“Empty”) or contains a random amount of
stones (“Random”), requiring tactile clues to determine the pulling direction. (4) Peg in hole: insert
a block into a slot, requiring a precision and force-aware adjustment. We split the task into “Grasp”
and “Insert” stages. Please refer to Appendix C for more details.

Demonstration Collection. We collect 100 to 200 demonstrations with exUMI for robot teaching,
and the total data collection time is shown in Tab. 2. Note that the time duration includes the task.
With its efficiency and tactile feedback, an expert could complete the data collection within half an
hour. And our system has a nearly 100% effective data ratio. In comparison, users should spend
50% or more data collection time with the regular UMI system for the same amount of valid data.

5.3 Real World Evaluation Result

Non-tactile Imitation Learning. We first train a vision-only diffusion policy to evaluate the data
collection quality of exUMI (Tab. 2). The policy achieves decent performance across tasks, demon-
strating both sufficient spatial demonstration quality and its capability for visual imitation learning.
Our policy achieves an over 80% success rate on simple pick-and-place tasks, indicating sufficient
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Input Representation Put Ball Open Bottle Pull Drawer Peg in Hole
Empty Random Grasp Insert

Vision Only 70% 20% 100% 40% 100% 50%
Vision & Tactile 70% 50% 100% 50% 100% 60%
Vision & Tactile w/ TPP (Ours) 85% 60% 100% 95% 100% 80%

Table 3: Real world evaluation of tactile-aware policies on complex tasks.

Figure 8: Real world rollout of tactile-aware policy. Yellow arrows indicate the tangent force, which
points from red area (concave due to pressure) to green area (convex bump of silicone gel).

spatial demonstration quality. The success rate of “pick broccoli” task slightly drops to 60% due
to the slippery surface and irregular geometry. Tasks involving precision manipulation (“stack” and
“insert”) are more challenging, but we still reach over 60% due to the accurate robot proprioception
of exUMI. Complex tasks requiring reasoning with tactile feedback show performance degradation.
“Pull drawer” achieves merely a 40% success rate, and the majority of failures occur when the policy
applies excessive force in incorrect directions. For “peg in hole”, the policy usually fails to align the
peg merely on visual input. These tasks require further tactile robot learning.

Tactile-aware Imitation Learning. We augment our policy model with tactile sensing and evaluate
across contact-sensitive tasks (Tab. 3 and visualized in Fig. 8). While both vision-only and tactile-
aware policies achieve a high success rate on simple settings, tactile integration yields significant
improvements, particularly in harder stages (e.g drawer pulling ). For the “put ball” and “rotate
bottle” tasks, TPP brings >15% performance gain over vanilla tactile policy. And though tactile
policy is only comparable to vision policy on “put ball” task, we empirically observe that tactile-
aware policy slightly adjusts the grasp pose until accurately holding the center of the ball. For the
“pull drawer” and “peg in hole” tasks, all policies with or without tactile sensing achieve a high
success rate of 100% at non-tactile stages (pulling the empty drawer or simply grasping the object).
But for the force-sensitive stages, tactile-aware policies continuously bring improvement, and our
TPP boosts the performance to over 100% and 80%, respectively. For these tasks, tactile clues play
an important role in the trajectory planning. As shown in Fig. 8, for the “pull drawer” task, the tactile
signals inform the grasp pose of the handle (red area), which is critical for the selection of pulling
direction. This indicates that the insertion success depends critically on post-grasp tactile feedback.

These results validate that effective tactile integration requires both careful tactile feature engineer-
ing (via pretraining). The performance gaps between our method and baselines highlight the impor-
tance of learning the temporal dynamics of tactile for real-world manipulation.

6 Conclusion

In this work, we propose a co-design of the exUMI hardware with its reliable proprioception and
scalable tactile sensing, and the TPP framework, which learns tactile features by predictive proxy
task. Our system achieves significant performance gain on complex tactile-aware tasks, highlighting
the importance of grounding human-style contact dynamics reasoning in physical interaction.
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7 Limitations

While our system provides a user-friendly interface for tactile-aware robot data collection, several
critical challenges remain to be addressed in future research.

Hardware Limitations. (1) Although our AR headset-based motion capture system demonstrates
robustness, user feedback highlights two ergonomic concerns of thermal discomfort and neck strain.
While we considered alternative tracking solutions (e.g , dedicated motion capture trackers like
HTC Vive Tracker), these trackers usually rely on external base stations for more accurate tracking,
which conflicts with our design goal of maintaining portability for in-situ AR-assisted data acqui-
sition. Future work could explore ergonomic upgrades like neck supports. (2) The durability and
consistency have always been critical concerns of tactile sensors. We adopt the 9DTact sensor for
a low-cost tactile solution. While we have notably improved tactile sensor consistency to 9DTact,
further enhancements remain possible.

Algorithm Limitations. Our predictive framework for learning interaction representations faces
inherent constraints. The interaction and movement information is limited due to low action dimen-
sion and limited camera angle, resulting in imperfect tactile prediction performance. We plan to
address these by integrating force-torque measurements and multi-view vision inputs in the future.
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Appendix

A Details of exUMI Hardware Design

We gave a brief introduction to the hardware and algorithms for exUMI due to the page limit. Below
are the details of our system.

A.1 Hardware

Transparent layer 
(silicon gel & acrylic layer)

CameraLED Board with 
2-pin headerCamera seat

Contact layer
(silicon gel)

Sensor shell

Bevel to lock 
the silicone gel

Figure 9: An exploded view of the enhanced tactile sensor design. We enhance the 9DTact for
stability and quality control. We add an bevel to the sensor shell to secure the black silicon gel and
prevent it from detaching.

Magnetic Rotary Encoder. We propose a low-cost AS5600 magnetic rotary encoder solution to
achieve accurate and robust gripper state capture. As shown in Fig. 11, we modify the top cover of
UMI to attach a radial magnet to one of the joints of the mechanical assembly, with the Hall sensor
positioned above it at an appropriate distance (∼ 2 mm). The AS5600 provides high-resolution
12-bit position readings (4,096 positions per revolution) and communicates with the single-board
computer through the I2C protocol. This solution offers a higher sampling rate and resolution,
immunity to visual occlusion, and negligible computational overhead.

AR Motion Capture System. To overcome the limitations of vision-based tracking (SLAM) in

Fabrication mold

Sensor shell

Level of 
Transparent gel

Level of 
Translucent gel

Level of 
Opaque gel

Figure 10: The mold for stable fabrication
of the tactile sensor.

occluded or complex scenarios, we adopt an AR-based
approach for end-effector pose estimation. Following
ARCap [45], our system uses a Meta Quest 3 headset
for 6D pose motion capture, which is accurate and ro-
bust to occlusion. We integrate the left VR controller
through a custom-designed mount attached to the UMI
body, and use the headset to track the 6D pose of the
controller. The mount also provides additional space
for the power supply and an Orange Pi controller, serv-
ing as a universal sensor hub, synchronously capturing
data from the AR headset, rotary encoder, and any ad-
ditional sensors, such as tactile sensors. The tracking
range of the system is 3 meters, sufficient for tasks at
a typical robot workspace. While our system can also
easily adapt to other trackers (e.g. HTC Vive track-
ers), our goal of using VR is the real-time evaluation
of tracking and future extension of a user-friendly in-
terface to guide the crowdsourcing.
The orientation of the VR controller is arbitrary since the transformation between the controller and
UMI coordinate frames will be determined through our calibration pipeline. This flexible mounting
approach simplifies the assembly and avoids precise physical alignment.
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AS5600 Board

Radial Magnet

Figure 11: Detailed view of AS5600 sen-
sor on exUMI.

Component Base Cost ($)

GoPro 11 + Accessories 298
Meta Quest VR Headset 299
Orange Pi 3B 35
AS5600 Magnetic Encoder 1
3D Printed Parts 15
Visuo-Tactile Sensors 30
Misc. (Power Bank, Cables/Screws/Nuts) 20

Total Cost of exUMI 698

Table 4: Bill of materials (BOM) of exUMI.

Visual Input. Same as the UMI [1], we employ a GoPro camera with a fisheye lens as our primary
visual input. We move the camera forward, following FastUMI [32] for a wider and clearer view.
The camera positioning eliminates body occlusion in the field of view to enhance transferability.

Fingertip Visuo-tactile Sensors. We improve 9D-Tact [22] as a low-cost and DIY-friendly tactile
senser for exUMI. We use 9DTact for low-cost. It is not as accurate as GelSight for surface ge-
ometry, but it provides sufficiently rich information about contact forces (normal+tangent) with fast
deformation recovery, which is justified by our experiments.
As shown in Fig. 9 and Fig. 10, our enhancements involve: (1) We redesigned the sensor shell to
securely anchor the top silicone layer, enhancing its resistance to tangent forces and ensuring long-
term stability. (2) The LED board was modified to incorporate a more robust 2-pin header connector
for stable power delivery. Compared to USB cables, Dupont connectors offer superior cable man-
agement flexibility. Plus, the LEDs were rearranged to minimize power consumption—a critical
factor for our embedded system’s efficiency. (3) A custom mold was developed to precisely control
the silicone layer’s thickness. The mold is affixed to the sensor shell, allowing controlled pouring of
transparent, translucent, or opaque liquid silicone until it reaches the desired level (Fig. 10). Excess
silicone is then removed by carefully scraping along the mold’s surface with a spatula.
The upgraded sensor design achieves significantly enhanced durability and stability. Please refer to
the appendix for more fabrication details.

Cost and Accessibility. We show the overall bill of materials in Tab. 4. Our system is low-cost with
a minimal configuration starting at $ 698, which can be further reduced by substituting the GoPro
with alternative fisheye cameras. The battery duration of Meta Quest headset is around 4 hours, and
that of the Orange Pi system is over 10 hours. Our design is DIY-friendly and use readily available
components, making it suitable for research and education. All CAD files will be released.

A.2 Data Collection and Processing

AR Capture Interface. Building upon the remarkable engineering of ARCap [45], we simplify the

Figure 12: VR Headset Stand

socket-based data transfer interface for the 6D pose capture pro-
cess. The collection procedure is as follows:

1. Initialize the server program on the Raspberry Pi.
2. Launch the client application on the Meta Quest headset.
3. Set up the base coordinate frame in AR space. Then the

headset can be optionally placed on a stand for conve-
nience.

4. Begin data streaming of real-time 6D controller poses to
the Raspberry Pi.

Calibration of AR Latency. To synchronize AR motion capture
with the visual inputs, we designed a calibration protocol involv-
ing horizontal sweeps in front of a stationary ArUco marker. We
extract the x-axis movement of the AR MoCap system and the
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Algorithm 1 Latency alignment algorithm

Input: Trajectories f(t) and g(t), timesteps {ti}Ti=1, bounds of latency δmin δmax

Input: Constants: ϵ = 0.0001, search window N , search splits M
Output: Latency δ∗ of g(t) such that f(t) ≈ g(t+ δ∗)

1: repeat
2: Interpolate the interval [δmin, δmax] into M segments: δ0, δ1, · · · , δM
3: k = mink

∑T
i=1 ∥f(ti)− g(ti + δk)∥22

4: δ∗ = δk
5: δmin, δmax ← δk−N , δk+N (update the search range to the neighborhood of δk)
6: until δmax − δmin < ϵ
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Figure 13: Comparison of AR MoCap trajectory and ground truth trajectory.

camera-detected marker trajectories, then use a bisection-style optimization algorithm to align the
two trajectories and compute the latency of the AR system. Specifically, given the two 1-dimension
trajectories on timesteps {ti}Ti=1, we convert them to two function f(t) g(t) w.r.t time t by interpo-
lation, which is then calibrated by minimizing the MSE error between the two trajectory. The details
are given in Alg. 1.

Data Collection and Processing Pipeline. Compared to the original UMI system, our data collec-
tion and processing pipeline is significantly simplified and more robust:

1. Set up the desired environment.
2. Initialize AR tracking system on the Raspberry Pi.
3. Record latency calibration sequence (one video).
4. Record demonstration videos.
5. Calculate and apply temporal latency correction.
6. Align AR capture data to the video frames through interpolation.
7. Pack synchronized data.

A.3 System Evaluation

Proprioception Precision. We first evaluated the precision of our proprioception system, particu-
larly for the AR-based MoCap system. We obtained both ground truth and AR controller trajectories
by mounting the AR controller on the robot end-effector and teleoperating the robot. We evaluate
the system by moving the robot within a 50 cm range. The resulting 6D pose differences between
the estimated and ground truth values are presented in Fig. 13 The system demonstrates remarkable
accuracy, achieving mean position errors of 5.4 / 2.3 / 1.7 mm at each axis. The rotation errors are
below 1 degree (notably small due to the robot’s limited rotation range). The x-axis error reaches a
maximum of 20 mm since it is the depth axis in the Flexiv coordinate system and inherently presents
greater measurement challenges. These high-precision measurements enable efficient robot policy
learning by providing high-quality training data.
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Figure 14: An example of AR MoCap and Vision trajectory before (left) and after (right) alignment.

Latency Calibration. We give a qualitative visualization of our latency calibration algorithm in
Fig. 14. The x-axis trajectory of the AR MoCap system and the visual input (represented as the
trajectory of the ArUco marker) are perfectly aligned after our calibration system, and we can read
the time offset for further modality alignment. With proper sweeping frequency, our system could
consistently achieve less than 5 ms latency error.

Key Takeaways
We provide an accurate, extensible, cost-effective, and DIY-friendly enhancement to the
UMI system. Our solution is particularly valuable if you need:
• Enhanced Tracking Precision: Achieve ∼100% data effective ratio in diverse environ-
ments by our AR-based MoCap system and the magnetic rotary encoder for gripper state.
• Non-Parallel Gripper Support: An alternative design is provided for more popular in-
dustrial grippers like Flexiv Grav or Robotiq 2F series with an adaptable mechanical design.
•Multimodal Sensing: Including tactile, audio, or other custom sensors through our mod-
ular hardware interface.
All components are commercially available, and the fabrication details will be opened soon.

B Detailed Taxonomy of Tactile Representation Learning

We give more details of our discussion on the current taxonomy of tactile representation learning.

The target of tactile representation learning is to learn a tactile encoder ET for the tactile data, to
facilitate further multimodal policy learning:

π(at+1|ES(st), ET (Tt), EV (Vt)). (1)

Current tactile representation methods fall into three dominant paradigms, each with specific advan-
tages and fundamental constraints:

(a) Direct Multimodal Imitation Learning [13, 14, 19, 20, 21]. This approach trains end-to-end
multimodal policies in Eq. 1 using paired tactile-visual-action data, and learn the tactile represen-
tation ϕT . While effective for narrow tasks, it suffers from tactile data scarcity, since the tactile
contacts only occur in very few frames in most regular robot tasks (e.g∼ 3000 frames in 100 demos
of pick and place task). The method also inherently couples task objectives with tactile features,
limiting cross-task transferability.

(b) Spatial Self-Supervised Learning [15, 16, 17, 18]. Self-supervised learning (SSL) is adopted
for a generic and transferable tactile representation and learn tactile embeddings ET (Tt) through
proxy objectives on task-agnostic unlabeled data. Mostly, SSL is adopted for tactile pretraining
spatially, i.e treating tactile frames as images and applying image-level SSL algorithms. However,
these spatial SSL methods potentially exploit incorrect inductive bias for tactile learning. Methods
like contrastive learning [15, 16, 17] usually assumes translation invariance, which may not exist
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Dataset Data Scale Tactile Sensor Proprioception
/ Action

Collection
Source

Calandra et al. [39] 6.5 K GelSight ✓ Robot
Calandra et al. [40] 9.3 K GelSight ✓ Robot
VisGel [42] 12.0 K GelSight ✓ Robot
Burka [50] 1.1 K Multiple ✓ Human
Touch and Go [44] 13.9 K GelSight ✗ Human
ObjectFolder Real [51] 3.0 K GelSight ✓ Robot
SSVTP [41] 4.5 K DIGIT ✓ Robot
TVL [12] 43.7 K DIGIT ✓ Robot
Touch2Touch [52] 32.3 K Multiple ✓ Robot
X-Capture [43] 3.0 K DIGIT ✗ Human

Ours 480.9 K
(raw frames) 9DTact+ ✓ Human

Table 5: Comparison of real-world tactile datasets.

exUMI Teleoperation
Tactile Active Frames 83931.4272 6060
Total Frames 90925.7128 94940

174,857.14 101000

exUMI Teleoperation

Total Frames
Tactile Active Frames

Figure 15: Comparison
of per-hour tactile data
collection efficiency.

in tactile sensing: any translation or shifting of tactile frames result in different contact point infor-
mation. Similarly, masked learning [18, 48, 37] methods assumes that some image patches could
be recovered from other patches, but tactile images do not hold geometrical self-consistency: e.g ,
a three-finger press and a four-finger press on a tactile sensor produce different signals, but partial
masking could produce an identical image showing only two contact points. This ambiguity makes
it impossible to recover the correct original input from the masked data. Therefore, it is challenging
to design a self-supervising proxy objective for a robot task.

(c) Visual-Tactile Alignment [42, 43, 37]. Cross-modal alignment learns joint embeddings by
maximizing in-pair similarity s (ET (Tt), EV (Vt)) of visual and tactile modalities. Though it is
effective for visual-language learning, it fundamentally assumes a coarse one-to-one visuo-tactile
mapping, regardless of the actual one-to-many relation: with different contact forces, identical visual
scenes yield divergent tactile signals. The multimodal alignment also overlooks that visual and
tactile sensing are complementary rather than well-aligned. For robot learning, tactile sensors are
a complementary information to the visual input, but the alignment method discards this privileged
information.

Beside these approaches, some methods use pure generative models to learn a compact latent that
preserves most tactile clues, such as auto-encoder [38] or VQ-GAN [49], which is more reason-
able. To take a step further, we consider the proxy task of temporal prediction, by reformulating
tactile representation as an action-conditioned temporal prediction problem, explicitly modeling the
forward tactile dynamics that underpin real-world contact interactions.

C More Implementation Details

Tactile Data Curation. Since active tactile signals are sparse in real-world data collection, we
adopt a data rejection strategy during data sampling to avoid trivial samples. For each data chunk,
we check the proportion of active pixels for each tactile frame. If the active proportion of all frames
is below a certain threshold, the data chunk will be discarded and resampled.

Implementation Details. For each timestep, our exUMI collects two tactile images on the two sides
of the gripper. We convert the images to a calibrated grayscale image following 9DTact [22], and
extract the convex and concave pixel map by comparing the grayscale image to the reference image
(tactile signal at no contact). The grayscale image, convex map, and concave map are stacked as a
3-channel image for a richer representation of tactile contacts.

We pretrain the tactile representation on our large-scale human play dataset, which is randomly
split into a training and validation set by 15:1. The action sequence is represented as the relative
pose and the gripper state. The images on two sides are concatenated and then downsampled to
224×224 resolution. We use a pretrained VAE model (KL-F16) as the encoder and decoder for
tactile learning. The tactile prediction is conducted in 8 temporal frames, where 4 random frames

17



Half-ring with
Camera Mount

Half-ring with
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Figure 16: Pipe clamp style GoPro mount for deployment.

Modality V V+T V+T V+T
Tactile Learning / Direct BYOL TPP (Ours)

Put Ball 70% 70% 80% 85%
Peg in Hole 50% 60% 50% 80%

Table 6: Real world evaluation of tactile represention
learning algorithms. V: vision; T: tactile. Figure 17: Attention Map.

in the first half are regarded as input and 4 frames in the second half are the prediction target. We
adopt a larger frequency for action following Li et al. [46]. The tactile prediction model reaches
quick convergence due to the simpler distribution of tactile sensing.

Environment Details. The camera and sensors are connected to a master computer with a RTX
4070 GPU, which controls the robot at a frequency of 10 Hz. As illustrated in Fig. 16, we designed a
pipe clamp-style camera mount and gripper tactile sensor mount to exactly replicate the end-effector
sensor placement of the exUMI system. The mount consists of two half-rings, one integrated with
a standard GoPro mount. This design can be attached to the Flexiv Grav gripper base, and also
adaptable on various other end effectors.

Task Details. (1) Pick cube / carrot / broccoli: picking up an object and place it into a container. The
object and the target container are randomized within a 30cm×30cm area. (2) Insert pen: moving a
pen from one cup to another cup. The cups are randomized within a 30cm×30cm area, and the pen
is randomly placed in the cup. The colors are fixed. (3) Stack cubes: stacking a 5cm×5cm×5cm
cube on top of another, requiring precise manipulation ability. The cubes are randomized within a
30cm×30cm area. The colors are fixed.

For tactile-aware policy learning, we evaluate on more complex tasks: (1) Put Ball: pick up a yellow
soft ball (radius= 3cm) and place it in a red cup. The cubes are randomized within a 30cm×30cm
area. (2) Open Bottle: rotate the bottle cap until it is fully unscrewed. The bottle has diameter=
6.5cm and height= 13cm, and is randomized within a 20cm×20cm area. (3) Pull Drawer: pull
out a drawer, which is either empty (“Empty”) or contains a random amount of stones (“Random”,
randomized from 50g to 1000g), requiring tactile clues to determine the pulling direction. (4) Peg
in hole: insert a 4 cm × 3 cm yellow block into a 4.3 cm × 3.3 cm slot, requiring a precision and
force-aware adjustment. The yellow block is randomly put on a 10cm×10cm blue cube. We split
the task into “Grasp” and “Insert” stages.

D Ablation Experiments

D.1 Attention Visualization

We visualize the attention map of tactile encoder pretrained by TPP. We give an example in Fig. 17
on “pull drawer” task, where the arrow shows the tangent force direction. The pretrained tactile
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model focuses on the area that indicates force magnitude (red area), and also the direction (in the
circle).

D.2 Tactile Learning Comparison

To compare our representaion learning algorithm, we implement the direct learning method, and a
spatial self-supervised learning method BYOL following MimicTouch [53], which is pretrained on
our collected tactile dataset. The results are shown in Tab. 6. TPP shows the best success rate on
two tasks.

E Broader Impact

The open-source design and affordability ($698, and we are working on making it less than $500) of
the exUMI system democratize tactile robotics research by lowering technical and financial barriers
for resource-constrained labs and educational institutions. This accessibility can accelerate innova-
tion and broaden participation in the field. Beyond the research community, this work has direct
societal applications. In assistive robotics, it enables robots to perform delicate tasks for the elderly
or individuals with disabilities. In industrial safety, sophisticated tactile sensing allows robots to
operate more safely alongside human workers and enabling the reliable handling of fragile compo-
nents. By making advanced tactile learning more accessible, our work helps pave the way for robots
that can interact with the physical world more safely and intelligently.
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