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Algorithm 2 OLIVE (F , ζact, ζelim, nact, nelim)

1: Initialize: B0 ← F , Dh ← ∅ for all h, k.
2: for phase k = 1, 2, . . . do
3: Choose policy πk = πfk , where fk = argmaxf∈Bk−1 f(s1, πf (s1)).
4: Execute πk for nact episodes and refresh Dh to include the fresh (sh, ah, rh, sh+1) tuples.
5: Estimate Ê(fk, πk, h) for all h ∈ [H], where

Ê(g, πk, h) =
1

|Dh|
∑

(s,a,r,s′)∈Dh

(
gh(s, a)− r −max

a′∈A
gh+1(s′, a′)

)
.

6: if
∑H
h=1 Ê(fk, πk, h) ≤ Hζact then

7: Terminate and output πk.
8: Pick any t ∈ [H] for which Ê(fk, πk, t) ≥ ζact.
9: Execute πk for nelim episodes and refresh Dh to include the fresh (sh, ah, rh, sh+1) tuples.

10: Estimate Ê(f, πk, t) for all f ∈ F .
11: Update Bk =

{
f ∈ Bk−1 :

∣∣∣Ê(f, πk, t)
∣∣∣ ≤ ζelim

}
.

A Algorithm OLIVE

In this section, we analyze algorithm OLIVE proposed in [1], which is based on hypothesis elimina-
tion. We prove that, despite OLIVE was originally designed for solving low Bellman rank problems,
it naturally learns RL problems with low BE dimension as well.

The main advantage of OLIVE comparing to GOLF is that OLIVE does not require the completeness
assumption. In return, OLIVE has several disadvantages including worse sample complexity, and no
sublinear regret.

The pseudocode of OLIVE is presented in Algorithm 2, where in each phase the algorithm contains
the following three main components:

• Line 3 (Optimistic planning): compute the most optimistic value function fk from the
candidate set Bk−1, and choose πk to be its greedy policy.

• Line 4-7 (Estimate Bellman error): estimate the Bellman error of fk under πk; output πk
if the estimated error is small, and otherwise activate the elimination procedure.

• Line 8-11 (Eliminate functions with large Bellman error): pick a step t ∈ [H] where the
estimated Bellman error exceeds the activation threshold ζact; eliminate all functions in the
candidate set whose Bellman error at step t exceeds the elimination threshold ζelim.

We comment that OLIVE is computationally inefficient in general because implementing the opti-
mistic planning part requires solving an NP-hard problem in the worst case [Theorem 4, 48].

A.1 Theoretical guarantees

Now, we are ready to present the theoretical guarantee for OLIVE.
Theorem 18 (OLIVE). Under Assumption 1, there exists absolute constant c such that if we choose

ζact =
2ε

H
, ζelim =

ε

2H
√
d
, nact =

H2ι

ε2
, and nelim =

H2d log(NF (ζelim/8)) · ι
ε2

where d = dimBE(F ,DF , ε/H) and ι = c log(Hd/δε), then with probability at least 1 − δ, Algo-
rithm 2 will output anO(ε)-optimal policy using at mostO(H3d2 log[NF (ζelim/8)] · ι/ε2) episodes.

Theorem 18 claims that OLIVE learns an ε-optimal policy of an MDP with BE dimension d within
Õ(H3d2 log(NF )/ε2) episodes. When specialized to low Bellman rank problems, our sample com-
plexity has the same quadratic dependence on Bellman rank d as in [1].

Comparing to GOLF, the major advantage of OLIVE is that OLIVE does not require completeness
assumption (Assumption 2) to work. Nevertheless, OLIVE only learns the RL problems that have
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low BE dimension with respect to distribution familyDF , notD∆. The sample complexity of OLIVE
is also worse than the sample complexity GOLF (as presented in Corollary 16).

Finally, we comment that interpreting OLIVE through the lens of BE dimension, makes the proof
of Theorem 18 surprisingly natural, which follows from the definition of BE dimension along with
some standard concentration arguments.

A.2 Interpret OLIVE with BE dimension

In this subsection, we explain the key idea behind OLIVE through the lens of BE dimension.

To provide a clean high-level view, let us assume all estimates are accurate for now, and the
activation threshold ζact and the elimination threshold ζelim satisfy ζelim

√
d ≤ ζact, where d =

dimBE

(
F ,DF , ζact

)
. Since E(Q?, π, h) ≡ 0 for any (π, h), Q? is always in the candidate set.

Therefore, the optimistic planning (Line 3) guarantees maxa f
k
1 (s1, a) ≥ V ?1 (s1).

If the Bellman error summation is small (Line 6) i.e.,
∑H
h=1 E(fk, πk, h) ≤ Hζact, then by simple

policy loss decomposition (e.g., Lemma 1 in [1]) and the optimism of fk, πk is Hζact-optimal.
Otherwise, the elimination procedure is activated at some step t satisfying E(fk, πk, t) ≥ ζact and
all f with E(f, πk, t) ≥ ζelim get eliminated. The key observation here is:

If the elimination procedure is activated at step h in phase k1 < . . . < km, then
the roll-in distribution of πk1 , . . . , πkm at step h is an ζact-independent sequence
with respect to the class of Bellman residuals (I − Th)F at step h. Therefore, we
should have m ≤ d.

For the sake of contradiction, assume m ≥ d+ 1. Let us prove πk1 , . . . , πkd+1 is a ζact-independent
sequence. Firstly, for any j ∈ [d+ 1], since fkj is not eliminated in phase k1, . . . , kj−1, we have√√√√j−1∑

i=1

(
E(fkj , πki , h)

)2 ≤ √d× ζelim ≤ ζact.

Besides, because the elimination procedure is activated at step h in phase kj , we have
E(fkj , πkj , h) ≥ ζact. By Definition 6, we obtain that the roll-in distribution of πkj at step h
is ζact-independent of those of πk1 , . . . , πkj−1 for j ∈ [d + 1], which contradicts the definition
d = dimBE

(
F ,DF , ζact

)
. As a result, the elimination procedure can happen at most d times for

each h ∈ [H], which means the algorithm should terminate within dH + 1 phases and output an
Hζact-optimal policy.

B V-type BE Dimension and Algorithms

The definition of Bellman rank, mentioned in Definition 10 and Proposition 11, is slightly different
from the original definition in [1]. We denote the former by Q-type and the latter (the original
definition) by V-type. In this section we introduce V-type BE Dimension as well as V-type variants
of GOLF and OLIVE. We show that similar results also hold for the V-type variants.
Definition 19 (V-type Bellman rank). The V-type Bellman rank is the minimum integer d so that
there exists φh : F → Rd and ψh : F → Rd for each h ∈ [H], such that for any f, f ′ ∈ F , the
average V-type Bellman error

EV(f, πf ′ , h) := E[(fh − Thfh+1)(sh, ah) | sh ∼ πf ′ , ah ∼ πf ] = 〈φh(f), ψh(f ′)〉,
where ‖φh(f)‖2 · ‖ψh(f ′)‖2 ≤ ζ, and ζ is the normalization parameter.

The only difference between these two definitions is how we sample ah. In the Q-type definition we
have ah ∼ πf ′ (the roll-in policy), however in the V-type definition we have ah ∼ πf (the greedy
policy of the function evaluated in the Bellman error) instead. It is worth mentioning that the Q-type
and V-type bellman error coincide whenever f = f ′; namely, E(f, πf , h) = EV(f, πf , h) for all
f ∈ F .

We can similarly define the V-type variant of BE Dimension. At a high level, V-type BE dimension
dimVBE(F ,Π, ε) measures the complexity of finding a function in F such that its expected Bellman
error under any state distribution in Π is smaller than ε.
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Algorithm 3 V-type GOLF (F ,K, β)

1: Initialize: D1, . . . ,DH ← ∅, B0 ← F .
2: for epoch k from 1 to K do
3: Choose policy πk = πfk , where fk = argmaxf∈Bk−1 f(s1, πf (s1)).
4: for step h from 1 to H do
5: Collect a tuple (sh, ah, rh, sh+1) by executing πk at step 1, . . . , h − 1 and taking action

uniformly at random at step h.
6: Augment Dh = Dh ∪ {(sh, ah, rh, sh+1)} for all h ∈ [H].
7: Update

Bk =

{
f ∈ F : LDh(fh, fh+1) ≤ inf

g∈Gh
LDh(g, fh+1) + β for all h ∈ [H]

}
,

where LDh(ξh, ζh+1) =
∑

(s,a,r,s′)∈Dh

[ξh(s, a)− r −max
a′∈A

ζh+1(s′, a′)]2.

8: Output πout sampled uniformly at random from {πk}Kk=1.

Definition 20 (V-type BE dimension). Let (I − Th)VF ⊆ (S → R) be the state-wise Bellman
residual class of F at step h which is defined as

(I − Th)VF :=
{
s 7→ (fh − Thfh+1)(s, πfh(s)) : f ∈ F

}
.

Let Π = {Πh}Hh=1 be a collection of H probability measure families over S. The V-type ε-BE
dimension of F with respect to Π is defined as

dimVBE(F ,Π, ε) := max
h∈[H]

dimDE

(
(I − Th)VF ,Πh, ε

)
.

Relation with low V-type Bellman rank With slight abuse of notation, denote by DF,h the col-
lection of all probability measures over S at the hth step, which can be generated by rolling in with
a greedy policy πf with f ∈ F . Similar to Proposition 11, the following proposition claims that
the V-type BE dimension of F with respect to DF := {DF,h}h∈[H] is always upper bounded by its
V-type Bellman rank up to some logarithmic factor.
Proposition 21 (low V-type Bellman rank ⊂ low V-type BE dimension). If an MDP with function
class F has V-type Bellman rank d with normalization parameter ζ, then

dimVBE(F ,DF , ε) ≤ O(1 + d log(1 + ζ/ε)).

The proof of Proposition 21 is almost the same as that of Proposition 11 in Appendix D.1. We omit it
here since the only modification is to replace Q-type Bellman rank with its V-type variant wherever
it is used.

B.1 Algorithm V-type GOLF

In this section we describe the V-type variant of GOLF. The pseudocode is provided in Algorithm 3.
Its only difference from the Q-type analogue is in Line 5: for each h ∈ [H], we roll in with policy
πk to sample sh, and then instead of continuing following πk we take random action at step h.

Now we present the theoretical guarantee for Algorithm 3. Its proof is almost the same as that of
Corollary 16 and can be found in appendix G.2.
Theorem 22 (V-type GOLF). Under Assumption 1, 14, there exists an absolute constant c such that
for any given ε > 0, if we choose β = c log[KHNF∪G(ε2/(d|A|H2))], then with probability at
least 0.99, πout is O(ε)-optimal, if

K ≥ Ω

(
H2d|A|
ε2

· log

[
NF∪G

(
ε2

H2d|A|

)
· Hd|A|

ε

])
,

where d = minΠ∈{D∆,DF} dimVBE

(
F ,Π, ε/H

)
.

Compared with Theorem 23 (V-type OLIVE), Theorem 22 (V-type GOLF) has the following two
advantages.
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Algorithm 4 V-type OLIVE (F , ζact, ζelim, nact, nelim)

1: Initialize: B0 ← F , Dh ← ∅ for all h, k.
2: for phase k = 1, 2, . . . do
3: Choose policy πk = πfk , where fk = argmaxf∈Bk−1 f(s1, πf (s1)).
4: Execute πk for nact episodes and refresh Dh to include the fresh (sh, ah, rh, sh+1) tuples.
5: Estimate ẼV(fk, πk, h) for all h ∈ [H], where

ẼV(fk, πk, h) =
1

|Dh|
∑

(s,a,r,s′)∈Dh

(
fkh (s, a)− r −max

a′∈A
fkh+1(s′, a′)

)
.

6: if
∑H
h=1 ẼV(fk, πk, h) ≤ Hζact then

7: Terminate and output πk.
8: Pick any t ∈ [H] for which ẼV(fk, πk, t) > ζact.
9: Collect nelim episodes by executing πk for step 1, . . . , t − 1 and picking action uniform at

random for step t. Refresh Dh to include the fresh (sh, ah, rh, sh+1) tuples.
10: Estimate ÊV(f, πk, t) for all f ∈ F , where

ÊV(f, πk, h) =
1

|Dh|
∑

(s,a,r,s′)∈Dh

1[a = πf (s)]

1/|A|

(
fh(s, a)− r −max

a′∈A
fh+1(s′, a′)

)
.

11: Update Bk =
{
f ∈ Bk−1 :

∣∣∣ÊV(f, πk, t)
∣∣∣ ≤ ζelim

}
.

• The sample complexity in Theorem 22 depends linearly on the V-type BE-dimension while
the dependence in Theorem 23 is quadratic.

• Theorem 22 applies to RL problems of finite V-type BE dimension with respect to either
DF or D∆. In comparison, Theorem 23 provides no guarantee for the D∆ case.

Finally, we comment that for the low Q-type BE dimension family, we provide both regret and sam-
ple complexity guarantees while for the low V-type counterpart, we only derive sample complexity
result due to the need of taking actions uniformly at random in Algorithm 4 and Algorithm 3. [38]
propose an algorithm that can achieve

√
T -regret for problems of low V-type Bellman rank. It is an

interesting open problem to study whether similar techniques can be adapted to the low V-type BE
dimension setting so that we can also obtain

√
T -regret.

B.2 Algorithm V-type OLIVE

In this section, we describe the original OLIVE (i.e., V-type OLIVE) proposed by [1], and its theo-
retical guarantee in terms of V-type BE dimension.

The pseudocode is provided in Algorithm 4. Its only difference from Algorithm 2 is Line 9-10:
note that V-type Bellman rank needs the action at step t to be greedy with respect to the function f
instead of being picked by the roll-in policy πk, so we choose action at uniformly at random and
use the importance-weighted estimator to estimate the Bellman error for each f .

We have the following similar theoretical guarantee for Algorithm 4. Its proof is almost the same as
that of Theorem 18 and can be found in Appendix G.1.
Theorem 23 (V-type OLIVE). Assume realizability (Assumption 1) holds and F is finite. There
exists absolute constant c such that if we choose

ζact =
2ε

H
, ζelim =

ε

2H
√
d
, nact =

H2ι

ε2
, and nelim =

H2d|A| log(|F|) · ι
ε2

where d = dimVBE

(
F ,DF , ε/H

)
and ι = c log[Hd|A|/δε], then with probability at least 1 − δ,

Algorithm 4 will output anO(ε)-optimal policy using at mostO(H3d2|A| log(|F|) · ι/ε2) episodes.

For problems with Bellman rank d and finite function class F , Theorem 23 together with Proposi-
tion 21 guarantees Õ(H3d2|A| log(|F|)/ε2) samples suffice for finding an ε-optimal policy, which
matches the result in [1]. For function class F of infinite cardinality but with finite covering number,
we can first compute an O(ζelim)-cover of F , which we denote as Zρ, and then run Algorithm 4 on
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Zρ. By following almost the same arguments in the proof of Theorem 23 (the only difference is to
replace Q? by its proxy in Zρ), we can show Algorithm 4 will output an O(ε)-optimal policy using
at most Ω̃(H3d2|A| log(N)/ε2) episodes where N = NF (O(ζelim)).

B.3 Discussions on Q-type versus V-type

In this paper, we have introduced two complementary definitions of Bellman rank: Q-type Bellman
rank and V-type Bellman rank. And we prove they are upper bounds for Q-type and V-type BE
dimension, respectively. Here, we want to emphasize that both Q-type and V-type Bellman rank
have their own advantages. Specifically, the Q-type version has the following strengths.

1. There are natural RL problems whose Q-type Bellman rank is small, while their V-type
Bellman rank is very large, e.g., the linear function approximation setting studied in in [8].

2. All the existing sample complexity results for the V-type cases scale linearly with respect
to the number of actions, while those for the Q-type cases are independent of the number of
actions. Therefore, for control problems such as Linear Quadratic Regulator (LQR), which
has both small Q-type and V-type Bellman rank but infinite number of actions, the notion
of Q-type is more suitable.

On the other hand, there are problems that naturally induce low V-type Bellman rank but have large
Q-type Bellman rank, e.g., reactive POMDPs.

C Examples

In this section, we introduce examples with low BE dimension. We will start with linear models and
their variants, then introduce kernel MDPs, and finally present kernel reactive POMDPs which have
low BE dimension, but possibly large Bellman rank and large Eluder dimension. All the proofs for
this section are deferred to Appendix H.

C.1 Linear models and their variants

In this subsection, we review problems with linear structure in ascending order of generality. We
start with the definition of linear MDPs [e.g., 7].
Definition 24 (Linear MDPs). We say an MDP is linear of dimension d if for each h ∈ [H], there
exists feature mappings φh : S ×A → Rd, and d unknown signed measures ψh = (ψ

(1)
h , . . . , ψ

(d)
h )

over S, and an unknown vector θrh ∈ Rd, such that Ph(· | s, a) = φh(s, a)>ψh(·) and rh(s, a) =
φh(s, a)>θrh for all (s, a) ∈ S ×A.

We remark that existing works [e.g., 7] usually assumxe φ is known to the learner. Next, we review
a more general setting—the linear completeness setting [e.g., 8].
Definition 25 (Linear completeness setting). We say an MDP is in the linear completeness setting
of dimension d, if there exists a feature mapping φh : S ×A → Rd, such that for the linear function
class Fh = {φh(·)>θ | θ ∈ Rd}, both Assumption 1 and 2 are satisfied.

We make three comments here. Firstly, we note that linear MDPs automatically satisfy both linear
realizability and linear completeness assumptions, therefore are special cases of the linear com-
pleteness setting with the same ambient dimension. Secondly, only assuming linear realizability but
without completeness is insufficient for sample-efficient learning (see exponential lower bounds in
[44]). Finally, as mentioned in Appendix B.3, though MDPs in the linear completeness setting have
low Q-type Bellman rank, their V-type Bellman rank can be arbitrarily large.

Finally, we review the generalized linear completeness setting [6], which generalizes the linear
completeness setting by adding nonlinearity.
Definition 26 (Generalized linear completeness setting). We say an MDP is in the generalized linear
completeness setting of dimension d, if there exists a feature mapping φh : S × A → Rd, and a
link function σ, such that for the generalized linear function class Fh = {σ(φh(·)>θ) | θ ∈ Rd},
both Assumption 1 and 2 are satisfied, and the link function is strictly monotone, i.e., there exist
0 < c1 < c2 <∞ such that σ′(x) ∈ [c1, c2] for all x.
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One can directly verify by definition that when we choose link function σ(x) = x in the generalized
linear completeness setting, it will reduce to the standard linear version. Besides, it is known [18]
the generalized linear completeness setting is a special case of low Eluder dimension, thus belonging
to the low BE dimension family. Finally, we comment that despite the linear completeness setting
belongs to the low Bellman rank family, the generalized version does not because of the possible
nonlinearity of the link function.

C.2 Effective dimension and kernel MDPs

In this subsection, we introduce the notion of effective dimension. With this notion, we prove a
useful proposition that any linear kernel function class with low effective dimension also has low
Eluder dimension. This proposition directly implies that kernel MDPs are special cases of low
Eluder dimension, which are also special cases of low BE dimension.

Effective dimension We start with the definition of effective dimension for a set, which is also
known as critical information gain in Du et al. [41].
Definition 27 (ε-effective dimension of a set). The ε-effective dimension of a set X is the minimum
integer deff(X , ε) = n such that

sup
x1,...,xn∈X

1

n
log det

(
I +

1

ε2

n∑
i=1

xix
>
i

)
≤ e−1. (6)

Based on this definition, we can also define the effective dimension of a function class.
Definition 28 (ε-effective dimension of a function class). Given a function class F defined on X ,
its ε-effective dimension deff(F , ε) = n is the minimum integer n such that there exists a separable
Hilbert spaceH and a mapping φ : X → H so that

• for every f ∈ F there exists θf ∈ BH(1) satisfying f(x) = 〈θf , φ(x)〉H for all x ∈ X ,

• deff(φ(X ), ε) = n where φ(X ) = {φ(x) : x ∈ X}.

The following proposition shows that the Eluder dimension of any function class is always upper
bounded by its effective dimension.
Proposition 29 (low effective dimension ⊂ low Eluder dimension). For any function class F and
domain X , we have

dimE(F , ε) ≤ dimeff(F , ε/2).

On the other hand, we remark that effective dimension requires the existence of a benign linear
structure in certain Hilbert spaces. In constrast, Eluder dimension does not require such conditions.
Therefore, the function class of low Eluder dimension is more general than the function class of low
effective dimension.

Kernel MDPs Now, we are ready to define kernel MDPs and prove it is a subclass of low Eluder
dimension.
Definition 30 (Kernel MDPs). In a kernel MDP of effective dimension d(ε), for each step h ∈
[H], there exist feature mappings φh : S × A → H and ψh : S → H where H is a separable
Hilbert space, so that the transition measure can be represented as the inner product of features,
i.e., Ph(s′ | s, a) = 〈φh(s, a), ψh(s′)〉H. Besides, the reward function is linear in φ, i.e., rh(s, a) =
〈φh(s, a), θrh〉H for some θrh ∈ H. Here, φ is known to the learner while ψ and θr are unknown.
Moreover, a kernel MDP satisfies the following regularization conditions: for all h

• ‖θrh‖H ≤ 1 and ‖φh(s, a)‖H ≤ 1 for all s, a.

• ‖
∑
s∈S V(s)ψh(s)‖H ≤ 1 for any function V : S → [0, 1].

• dimeff(Xh, ε) ≤ d(ε) for all h and ε, where Xh = {φh(s, a) : (s, a) ∈ S ×A}.

In order to learn kernel MDPs, we need to construct a proper function class F . Formally, for each
h ∈ [H], we choose Fh = {φh(·, ·)>θ | θ ∈ BH(H + 1 − h)}. One can easily verify F satisfies
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both realizability and completeness by following the same arguments as in linear MDPs [7]. In order
to apply GOLF or OLIVE, we also need to show it has low BE dimension and bounded log-covering
number. Below, we prove in sequence that F has low Eluder dimension and low log-covering
number. Therefore, kernel MDPs fall into our low BE dimension framework.
Proposition 31 (kernel MDPs ⊂ low Eluder dimension). Let M be a kernel MDP of effective
dimension d(ε), then

dimE(F , ε) ≤ d(ε/2H).

Proposition 31 follows directly from Proposition 29 by rescaling the parameters. Utilizing Proposi-
tion 31, we can further prove the log-covering number of F is also upper bounded by the effective
dimension of the kernel MDP up to some logarithmic factor.
Proposition 32 (bounded covering number). LetM be a kernel MDP of effective dimension d(ε),
then

logNF (ε) ≤ O
(
Hd(ε) · log(1 + d(ε)H/ε)

)
.

C.3 Effective Bellman rank and kernel reactive POMDPs

To begin with, we introduce the definition of effective Bellman rank and prove that it is always
an upper bound for BE dimension. We will see effective Bellman rank serves as a useful tool for
controlling the BE dimension of the example discussed in this section—kernel reactive POMDPs.

Q-type effective Bellman rank We start with Q-type ε-effective Bellman rank which is simply
the ε-effective dimension of a special feature set.
Definition 33 (Q-type ε-effective Bellman rank). The Q-type ε-effective Bellman rank is the mini-
mum integer d so that

• There exists φh : F → H and ψh : F → H for each h ∈ [H] where H is a separable
Hilbert space, such that for any f, f ′ ∈ F , the average Bellman error

E(f, πf ′ , h) := Eπf′ [(fh − Thfh+1)(sh, ah)] = 〈φh(f), ψh(f ′)〉H

where ‖φh(f)‖H ≤ ζ, and ζ is the normalization parameter.

• d = maxh∈[H] deff(Xh(ψ,F), ε/ζ) where Xh(ψ,F) = {ψh(fh) : fh ∈ Fh}.

One can easily verify that when H is a finite-dimensional Euclidean space, the ε-effective Bellman
rank is always upper bounded by the original Bellman rank up to a logarithmic factor in ζ and
ε−1. Moreover, the effective Bellman rank can be much smaller than the original Bellman rank if
the induced feature set {Xh(ψ,F)}h∈[H] approximately lies in a low-dimensional linear subspace.
Therefore, effective Bellman rank can be viewed as a strict generalization of the original version.
Proposition 34 (low Q-type effective Bellman rank⊂ low Q-type BE dimension). Suppose function
class F has Q-type ε-effective Bellman rank d, then

dimBE(F ,DF , ε) ≤ d.

Proposition 34 claims that problems with low Q-type effective Bellman rank also have low Q-type
BE dimension.

V-type effective Bellman rank We can similarly define the V-type variant of effective Bellman
rank, and prove it is always an upper bound for V-type BE dimension.
Definition 35 (V-type ε-effective Bellman rank). The V-type ε-effective Bellman rank is the minimum
integer d so that

• There exists φh : F → H and ψh : F → H for each h ∈ [H] where H is a separable
Hilbert space, such that for any f, f ′ ∈ F , the average Bellman error

EV(f, πf ′ , h) := E[(fh − Thfh+1)(sh, ah) | sh ∼ πf ′ , ah ∼ πf ] = 〈φh(f), ψh(f ′)〉H
where ‖φh(f)‖H ≤ ζ, and ζ is the normalization parameter.

• d = maxh∈[H] deff(Xh(ψ,F), ε/ζ) where Xh(ψ,F) = {ψh(fh) : fh ∈ Fh}.
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Proposition 36 (low V-type effective Bellman rank⊂ low V-type BE dimension). Suppose function
class F has V-type ε-effective Bellman rank d, then

dimVBE(F ,DF , ε) ≤ d.

The proof of Proposition 36 is almost the same as that of Proposition 34. We omit it since the only
modification is to replace Q-type effective Bellman rank with its V-type variant wherever it is used.

We want to briefly comment that the majority of examples introduced in [41] have low effective
Bellman rank. For example, low occupancy complexity, linearQ∗/V ∗, linear Bellman complete and
Q∗ state aggregation have low Q-type effective Bellman rank. And the feature selection problem
has low V-type Bellman rank.

Kernel reactive POMDPs We start with the definition of POMDPs. A POMDP is defined by a
tuple (S,A,O,T,O, r,H) where S denotes the set of hidden states,A denotes the set of actions,O
denotes the set of observations, T denotes the transition measure, O denotes the emission measure,
r = {rh}Hh=1 denotes the collections of reward functions, and H denotes the length of each episode.
At the beginning of each episode, the agent always starts from a fixed initial state. At each step
h ∈ [H], after reaching sh, the agent will observe oh ∼ Oh(· | sh). Then the agent picks action ah,
receives rh(oh, ah) and transits to sh+1 ∼ Th(· | sh, ah). In POMDPs, the agent can never directly
observe the states s1:H . It can only observe o1:H and r1:H . Now we are ready to formally define
kernel reactive POMDPs.

Definition 37 (Kernel reactive POMDPs). A kernel reactive POMDP is a POMDP that additionally
satisfies the following two conditions

• For each h ∈ [H], there exist mappings φh : S × A → H and ψh : S → H where H
is a separable Hilbert space, such that Th(s′ | s, a) = 〈φh(s, a), ψh(s′)〉H for all s′, a, s.
Moreover, for any function V : S → [0, 1], ‖

∑
s′∈S V(s′)ψh(s′)‖H ≤ 1.

• (Reactiveness) The optimal action-value function Q∗ only depends on the current observa-
tion and action, i.e., for each h ∈ [H], there exists function f∗h : O ×A → [0, 1] such that
for all τh = [o1, a1, r1, . . . , oh] and ah

Q∗h(τh, ah) = f∗h(oh, ah).

The following proposition shows that when a kernel reactive POMDP has low effective dimension,
it also has low V-type BE dimension.

Proposition 38 (kernel reactive POMDPs ⊂ low V-type BE dimension). Any kernel reactive
POMDP and function class F ⊆ (O ×A → [0, 1]) satisfy

dimVBE(F ,DF , ε) ≤ max
h∈[H]

deff(Xh, ε/2),

where Xh = {Eπf [φh(sh, ah)] : f ∈ F}.

We comment that whenH approximately aligns with a low-dimensional linear subspace, the V-type
effective Bellman rank in Proposition 38 will also be low. However, the Eluder dimension of F can
be arbitrarily large because we basically pose no structural assumption on F . Besides, its V/Q-type
original Bellman rank can also be arbitrarily large, because H may be infinite-dimensional and the
observation set O may be exponentially large. If we additionally assume F satisfies realizability
(f∗ ∈ F), then we can apply V-type OLIVE and obtain polynomial sample-complexity guarantee.

D Proofs for BE Dimension

In this section, we provide formal proofs for the results stated in Section 3.

D.1 Proof of Proposition 11

The proof is basically the same as that of Example 3 in [18] with minor modification.
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Proof. Without loss of generality, assume max{‖φh(f)‖2, ‖ψh(f)‖2} ≤
√
ζ, otherwise we can

satisfy this assumption by rescaling the feature mappings. Assume there exists h ∈ [H] such
that dimDE((I − Th)F ,DF,h, ε) ≥ m. Let µ1, . . . , µm ∈ DF,h be a an ε-independent sequence
with respect to (I − Th)F . By Definition 6, there exists f1, . . . , fm such that for all i ∈ [m],√∑i−1

t=1(Eµt [f ih − Thf ih+1])2 ≤ ε and |Eµi [f ih − Thf ih+1]| > ε. Since µ1, . . . , µn ∈ DF,h, there
exist g1, . . . , gn ∈ F so that µi is generated by executing πgi for all i ∈ [n].

By the definition of Bellman rank, this is equivalent to: for all i ∈ [m],√∑i−1
t=1(〈φh(gi), ψh(f t)〉)2 ≤ ε and |〈φh(gi), ψh(f i)〉| > ε.

For notational simplicity, define xi = φh(gi), zi = ψh(f i) and Vi =
∑i−1
t=1 ztz

>
t + ε2

ζ · I. The
previous argument directly implies: for all i ∈ [m], ‖xi‖Vi

≤
√

2ε and ‖xi‖Vi
· ‖zi‖V−1

i
> ε.

Therefore, we have ‖zi‖V−1
i
≥ 1√

2
.

By the matrix determinant lemma,

det[Vm] = det[Vm−1](1+‖zm‖2V−1
m

) ≥ 3

2
det[Vm−1] ≥ . . . ≥ det[

ε2

ζ
·I](3

2
)m−1 = (

ε2

ζ
)d(

3

2
)m−1.

On the other hand,

det[Vm] ≤ (
trace[Vm]

d
)d ≤ (

ζ(m− 1)

d
+
ε2

ζ
)d.

Therefore, we obtain

(
3

2
)m−1 ≤ (

ζ2(m− 1)

dε2
+ 1)d.

Take logarithm on both sides,

m ≤ 4

[
1 + d log(

ζ2(m− 1)

dε2
+ 1)

]
,

which, by simple calculation, implies

m ≤ O
(

1 + d log(
ζ2

ε2
+ 1)

)
.

D.2 Proof of Proposition 12

Proof. Assume δz1 , . . . , δzm is an ε-independent sequence of distributions with respect to (I−Th)F ,
where δzi ∈ D∆. By Definition 6, there exist functions f1, . . . , fm ∈ F such that for all i ∈ [m], we

have |(f ih − Thf ih+1)(zi)| > ε and
√∑i−1

t=1 |(f ih − Thf ih+1)(zt)|2 ≤ ε. Define gih = Thf ih+1. Note
that gih ∈ Fh because ThFh+1 ⊂ Fh. Therefore, we have for all i ∈ [m], |(f ih − gih)(zi)| > ε and√∑i−1

t=1 |(f ih − gih)(zt)|2 ≤ ε with f ih, g
i
h ∈ Fh. By Definition 4 and 5, this implies dimE(Fh, ε) ≥

m, which completes the proof.

D.3 Proof of Proposition 13

Proof. For any m ∈ N+, denote by e1, . . . , em the basis vectors in Rm, and consider the following
linear bandits (|S| = H = 1) problem.

• The action set A = {ai = (1; ei) ∈ Rm+1 : i ∈ [m]}.

• The function set F1 = {fθi(a) = a>θi : θi = (1; ei), i ∈ [m]}.

• The reward function is always zero, i.e., r ≡ 0.

Eluder dimension For any ε ∈ (0, 1], a1, . . . , am−1 is an ε-independent sequence of points be-
cause: (a) for any t ∈ [m − 1],

∑t−1
i=1(fθt(ai) − fθt+1

(ai))
2 = 0; (b) for any t ∈ [m − 1],

fθt(at)− fθt+1
(at) = 1 ≥ ε. Therefore, minh∈[H] dimE(Fh, ε) = dimE(F1, ε) ≥ m− 1.

23



Bellman rank It is direct to see the Bellman residual matrix is E := Θ>Θ ∈ Rm×m with rank m,
where Θ = [θ1, θ2, . . . , θm]. As a result, the Bellman rank is at least m.

BE dimension First, note in this setting (I − T1)F is simply F1 (because F2 = {0} and r ≡ 0),
and DF coincides with D∆, so it suffices to show dimDE(F1,D∆, ε) ≤ 5.

Assume dimDE(F1,D∆, ε) = k. Then there exist q1, . . . , qk ∈ A and w1, . . . , wk ∈ A such that for

all t ∈ [k],
√∑t−1

i=1(〈qt, wi〉)2 ≤ ε and |〈qt, wt〉| > ε. By simple calculation, we have q>i wj ∈ [1, 2]

for all i, j ∈ [k]. Therefore, if ε > 2, then k = 0 because |〈qt, wt〉| ≤ 2; if ε ≤ 2, then k ≤ 5 because
√
k − 1 ≤

√∑k−1
i=1 (〈qk, wi〉)2 ≤ ε.

E Proofs for GOLF

In this section, we provide formal proofs for the results stated in Section 4.

E.1 Proof of Theorem 15

We start the proof with the following two lemmas. The first lemma shows that with high probability
any function in the confidence set has low Bellman-error over the collected datasets D1, . . . ,DH as
well as the distributions from which D1, . . . ,DH are sampled.
Lemma 39. Let ρ > 0 be an arbitrary fixed number. If we choose β = c

(
log[KHNF∪G(ρ)/δ] +

Kρ
)

with some large absolute constant c in Algorithm 1, then with probability at least 1− δ, for all
(k, h) ∈ [K]× [H], we have

(a)
∑k−1
i=1 E[

(
fkh (sh, ah)− (T fkh+1)(sh, ah)

)2 | sh, ah ∼ πi]≤O(β).

(b)
∑k−1
i=1

(
fkh (sih, a

i
h)− (T fkh+1)(sih, a

i
h)
)2≤O(β),

where (si1, a
i
1, . . . , s

i
H , a

i
H , s

i
H+1) denotes the trajectory sampled by following πi in the ith episode.

The second lemma guarantees that the optimal value function is inside the confidence with high
probability. As a result, the selected value function fk in each iteration shall be an upper bound of
Q? with high probability.
Lemma 40. Under the same condition of Lemma 39, with probability at least 1 − δ, we have
Q? ∈ Bk for all k ∈ [K].

The proof of Lemma 39 and 40 relies on standard martingale concentration (e.g. Freedman’s in-
equality) and can be found in Appendix E.3.

Step 1. Bounding the regret by Bellman error By Lemma 40, we can upper bound the cumula-
tive regret by the summation of Bellman error with probability at least 1− δ:

K∑
k=1

(
V ?1 (s1)− V π

k

1 (s1)
)
≤

K∑
k=1

(
max
a

fk1 (s1, a)− V π
k

1 (s1)
)

(i)
=

K∑
k=1

H∑
h=1

E(fk, πk, h), (7)

where (i) follows from standard policy loss decomposition (e.g. Lemma 1 in [1]).

Step 2. Bounding cumulative Bellman error using DE dimension Next, we focus on a fixed
step h and bound the cumulative Bellman error

∑K
k=1 E(fk, πk, h) using Lemma 39. To proceed,

we need the following lemma to control the accumulating rate of Bellman error.
Lemma 41. Given a function class Φ defined on X with |φ(x)| ≤ C for all (g, x) ∈ Φ × X , and
a family of probability measures Π over X . Suppose sequence {φk}Kk=1 ⊂ Φ and {µk}Kk=1 ⊂ Π

satisfy that for all k ∈ [K],
∑k−1
t=1 (Eµt [φk])2 ≤ β. Then for all k ∈ [K] and ω > 0,

k∑
t=1

|Eµt [φt]| ≤ O
(√

dimDE(Φ,Π, ω)βk + min{k,dimDE(Φ,Π, ω)}C + kω
)
.
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Lemma 41 is a simple modification of Lemma 2 in [18] and its proof can be found in Appendix E.4.
We provide two ways to apply Lemma 41, which can produce regret bounds in term of two different
complexity measures. If we invoke Lemma 39 (a) and Lemma 41 with

ρ =
1

K
, ω =

√
1

K
, C = 1,

X = S ×A, Φ = (I − Th)F , Π = DF,h,

φk = fkh − Thfkh+1 and µk = Pπ
k

(sh = ·, ah = ·),
we obtain

k∑
t=1

E(f t, πt, h) ≤ O
(√

k · dimBE(F ,DF ,
√

1/K) log[KHNF∪G(1/K)/δ]

)
. (8)

We can also invoke Lemma 39 (b) and Lemma 41 with
ρ =

1

K
, ω =

√
1

K
, C = 1,

X = S ×A, Φ = (I − Th)F , and Π = D∆,h,

φk = fkh − Thfkh+1 and µk = 1{· = (skh, a
k
h)},

and obtain
k∑
t=1

E(f t, πt, h) ≤
k∑
t=1

(f th − T f th+1)(sth, a
t
h) +O

(√
k log(k)

)
≤O

(√
k · dimBE(F ,D∆,

√
1/K) log[KHNF∪G(1/K)/δ]

)
,

(9)

where the first inequality follows from standard martingale concentration.

Plugging either equation (8) or (9) back into equation (7) completes the proof.

E.2 Proof of Corollary 16

Step 1. Bounding the regret by Bellman error By Lemma 40, we can upper bound the cumula-
tive regret by the summation of Bellman error with probability at least 1− δ:

K∑
k=1

(
V ?1 (s1)− V π

k

1 (s1)
)
≤

K∑
k=1

(
max
a

fk1 (s1, a)− V π
k

1 (s1)
)

(i)
=

K∑
k=1

H∑
h=1

E(fk, πk, h), (10)

where (i) follows from standard policy loss decomposition (e.g. Lemma 1 in [1]).

Step 2. Bounding cumulative Bellman error using DE dimension Next, we focus on a fixed
step h and bound the cumulative Bellman error

∑K
k=1 E(fk, πk, h) using Lemma 39.

If we invoke Lemma 39 (a) with

ρ =
ε2

H2 · dimBE(F ,DF , ε/H)
,

and Lemma 41 with 
ω =

ε

H
, C = 1,

X = S ×A, Φ = (I − Th)F , Π = DF,h,

φk = fkh − Thfkh+1 and µk = Pπ
k

(sh = ·, ah = ·),
we obtain with probability at least 1− 10−3,

1

K

K∑
k=1

E(fk, πk, h) ≤O

(√
dimBE(F ,DF , ε/H)[

log[KHNF∪G(ρ)]

K
+ ρ] +

ε

H

)

≤O

(
ε

H
+

√
d log[KHNF∪G(ρ)]

K

)
,

(11)
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where the second inequality follows from the choice of ρ and d := dimBE(F ,DF , ε/H). Now we
need to choose K such that √

d log[KHNF∪G(ρ)]

K
≤ ε

H
. (12)

By simple calculation, one can verify it suffices to choose

K =
H2d log(HdNF∪G(ρ)/ε)

ε2
. (13)

Plugging equation (11) back into equation (10) completes the proof. We can similarly prove the
bound in terms of the BE dimension with respect to D∆.

E.3 Proofs of concentration lemmas

To begin with, recall the Freedman’s inequality that controls the sum of martingale difference by the
sum of their predicted variance.

Lemma 42 (Freedman’s inequality [e.g., 49]). Let (Zt)t≤T be a real-valued martingale difference
sequence adapted to filtration Ft, and let Et[·] = E[· | Ft]. If |Zt| ≤ R almost surely, then for any
η ∈ (0, 1

R ) it holds that with probability at least 1− δ,

T∑
t=1

Zt ≤ O

(
η

T∑
t=1

Et−1[Z2
t ] +

log(δ−1)

η

)
.

E.3.1 Proof of Lemma 39

Proof. We prove inequality (b) first.

Consider a fixed (k, h, f) tuple. Let

Xt(h, f) := (fh(sth, a
t
h)−rth−fh+1(sth+1, πf (sth+1)))2−((T fh+1)(sth, a

t
h)−rth−fh+1(sth+1, πf (sth+1)))2

and Ft,h be the filtration induced by {si1, ai1, ri1, . . . , siH}
t−1
i=1

⋃
{st1, at1, rt1, . . . , sth, ath}. We have

E[Xt(h, f) | Ft,h] = [(fh − T fh+1)(sth, a
t
h)]2

and

Var[Xt(h, f) | Ft,h] ≤ E[(Xt(h, f))2 | Ft,h] ≤ 36[(fh−T fh+1)(sth, a
t
h)]2 = 36E[Xt(h, f) | Ft,h].

By Freedman’s inequality, we have, with probability at least 1− δ,

∣∣∣∣∣
k∑
t=1

Xt(h, f)−
k∑
t=1

E[Xt(h, f) | Ft,h]

∣∣∣∣∣ ≤ O

√√√√log(1/δ)

k∑
t=1

E[Xt | Ft,h] + log(1/δ)

.
Let Zρ be a ρ-cover of F . Now taking a union bound for all (k, h, φ) ∈ [K]× [H]×Zρ, we obtain
that with probability at least 1− δ, for all (k, h, φ) ∈ [K]× [H]×Zρ∣∣∣∣∣

k∑
t=1

Xt(h, φ)−
k∑
t=1

[(φh − T φh+1)(sth, a
t
h)]2

∣∣∣∣∣ ≤ O

√√√√ι

k∑
t=1

[(φh − T φh+1)(sth, a
t
h)]2 + ι

,
(14)

where ι = log(HK|Zρ|/δ). From now on, we will do all the analysis conditioning on this event
being true.
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Consider an arbitrary (h, k) ∈ [H]× [K] pair. By the definition of Bk and Assumption 14

k−1∑
t=1

Xt(h, f
k) =

k−1∑
t=1

[fkh (sth, a
t
h)− rth − fkh+1(sth+1, πfk(sth+1))]2

−
k−1∑
t=1

[(T fkh+1)(sth, a
t
h)− rth − fkh+1(sth+1, πfk(sth+1))]2

≤
k−1∑
t=1

[fkh (sth, a
t
h)− rth − fkh+1(sth+1, πfk(sth+1))]2

− inf
g∈G

k−1∑
t=1

[gh(sth, a
t
h)− rth − fkh+1(sth+1, πfk(sth+1))]2 ≤ β.

Define φk = argminφ∈Zρ maxh∈[H] ‖fkh − φkh‖∞. By the definition of Zρ, we have∣∣∣∣∣
k−1∑
t=1

Xt(h, f
k)−

k−1∑
t=1

Xt(h, φ
k)

∣∣∣∣∣ ≤ O(kρ).

Therefore,
k−1∑
t=1

Xt(h, φ
k) ≤ O(kρ) + β. (15)

Recall inequality (14) implies∣∣∣∣∣
k−1∑
t=1

Xt(h, φ
k)−

k−1∑
t=1

[(φkh − T φkh+1)(sth, a
t
h)]2

∣∣∣∣∣ ≤ O

√√√√ι

k−1∑
t=1

[(φkh − T φkh+1)(sth, a
t
h)]2 + ι

.
(16)

Putting (15) and (16) together, we obtain

k−1∑
t=1

[(φkh − T φkh+1)(sth, a
t
h)]2 ≤ O(ι+ kρ+ β).

Because φk is an ρ-approximation to fk, we conclude

k−1∑
t=1

[(fkh − T fkh+1)(sth, a
t
h)]2 ≤ O(ι+ kρ+ β).

Therefore, we prove inequality (b) in Lemma 39.

To prove inequality (a), we only need to redefine Ft,h to be the filtration induced by
{si1, ai1, ri1, . . . , siH}

t−1
i=1 and then repeat the arguments above verbatim.

E.3.2 Proof of Lemma 40

Proof. Let Vρ be a ρ-cover of G.

Consider an arbitrary fixed tuple (k, h, g) ∈ [K]× [H]× G. Let

Wt(h, g) := (gh(sth, a
t
h)−rth−Q?h+1(sth+1, πQ?(sth+1)))2−(Q?h(sth, a

t
h)−rth−Q?h+1(sth+1, πQ?(sth+1)))2

and Ft,h be the filtration induced by {si1, ai1, ri1, . . . , siH}
t−1
i=1

⋃
{st1, at1, rt1, . . . , sth, ath}. We have

E[Wt(h, g) | Ft,h] = [(gh −Q?h)(sth, a
t
h)]2

and

Var[Wt(h, g) | Ft,h] ≤ E[(Wt(h, g))2 | Ft,h] ≤ 36((gh −Q?h)(sth, a
t
h))2 = 36E[Wt(h, g) | Ft,h].
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By Freedman’s inequality, with probability at least 1− δ,∣∣∣∣∣
k∑
t=1

Wt(h, g)−
k∑
t=1

[(gh −Q?h)(sth, a
t
h)]2

∣∣∣∣∣ ≤ O

√√√√log(1/δ)

k∑
t=1

[(gh −Q?h)(sth, a
t
h)]2 + log(1/δ)

.
By taking a union bound over [K]× [H]×Vρ and the non-negativity of

∑k
t=1[(gh−Q?h)(sth, a

t
h)]2,

we obtain that with probability at least 1− δ, for all (k, h, ψ) ∈ [K]× [H]× Vρ

−
k∑
t=1

Wt(h, ψ) ≤ O(ι),

where ι = log(HK|Vρ|/δ). This directly implies for all (k, h, g) ∈ [K]× [H]× G
k−1∑
t=1

[Q?h(sth, a
t
h)− rth −Q?h+1(sth+1, πQ?(sth+1))]2

≤
k−1∑
t=1

[gh(sth, a
t
h)− rth −Q?h+1(sth+1, πQ?(sth+1))]2 +O(ι+ kρ).

Finally, by recalling the definition of Bk, we conclude that with probability at least 1− δ, Q? ∈ Bk
for all k ∈ [K].

E.4 Proof of Lemma 41

The proof in this subsection basically follows the same arguments as in Appendix C of [18]. We
firstly prove the following proposition which bounds the number of times |Eµt [φt]| can exceed a
certain threshold.
Proposition 43. Given a function class Φ defined on X , and a family of probability measures
Π over X . Suppose sequence {φk}Kk=1 ⊂ Φ and {µk}Kk=1 ⊂ Π satisfy that for all k ∈ [K],∑k−1
t=1 (Eµt [φk])2 ≤ β. Then for all k ∈ [K],

k∑
t=1

1
{
|Eµt [φt]| > ε

}
≤ (

β

ε2
+ 1) dimDE(Φ,Π, ε).

Proof of Proposition 43. We first show that if for some k we have |Eµk [φk]| > ε, then µk is ε-
dependent on at most β/ε2 disjoint subsequences in {µ1, . . . , µk−1}. By definition of DE dimen-
sion, if |Eµk [φk]| > ε and µk is ε-dependent on a subsequence {ν1, . . . , ν`} of {µ1, . . . , µk−1},
then we should have

∑`
t=1(Eνt [φk])2 ≥ ε2. It implies that if µk is ε-dependent on L disjoint

subsequences in {µ1, . . . , µk−1}, we have

β ≥
k−1∑
t=1

(Eµt [φk])2 ≥ Lε2

resulting in L ≤ β/ε2.

Now we want to show that for any sequence {ν1, . . . , νκ} ⊆ Π, there exists j ∈ [κ] such that νj is
ε-dependent on at least L = d(κ − 1)/dimDE(Φ,Π, ε)e disjoint subsequences in {ν1, . . . , νj−1}.
We argue by the following mental procedure: we start with singleton sequencesB1 = {ν1}, . . . , BL
= {νL} and j = L + 1. For each j, if νj is ε-dependent on B1, . . . , BL we already achieved our
goal so we stop; otherwise, we pick an i ∈ [L] such that νj is ε-independent of Bi and update
Bi = Bi ∪ {νj}. Then we increment j by 1 and continue this process. By the definition of DE
dimension, the size of each B1, . . . , BL cannot get bigger than dimDE(Φ,Π, ε) at any point in this
process. Therefore, the process stops before or on j = LdimDE(Φ,Π, ε) + 1 ≤ κ.

Fix k ∈ [K] and let {ν1, . . . , νκ} be subsequence of {µ1, . . . , µk}, consisting of elements for which
|Eµt [φt]| > ε. Using the first claim, we know that each νj is ε-dependent on at most β/ε2 disjoint
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subsequences of {ν1, . . . , νj−1}. Using the second claim, we know there exists j ∈ [κ] such that
νj is ε-dependent on at least (κ/dimDE(Φ,Π, ε)) − 1 disjoint subsequences of {ν1, . . . , νj−1}.
Therefore, we have κ/dimDE(Φ,Π, ε)− 1 ≤ β/ε2 which results in

κ ≤ (
β

ε2
+ 1) dimDE(Φ,Π, ε)

and completes the proof.

Proof of Lemma 41. Fix k ∈ [K]; let d = dimDE(Φ,Π, ω). Sort the sequence {|Eφ1
[φ1]|, . . . ,

|Eµk [φk]|} in a decreasing order and denote it by {e1, . . . , ek} (e1 ≥ e2 ≥ · · · ≥ ek).

k∑
t=1

|Eµt [φt]| =
k∑
t=1

et =

k∑
t=1

et1
{
et ≤ ω

}
+

k∑
t=1

et1
{
et > ω

}
≤ kω +

k∑
t=1

et1
{
et > ω

}
.

For t ∈ [k], we want to prove that if et > ω, then we have et ≤ min{
√

dβ
t−d , C}. Assume t ∈ [k]

satisfies et > ω. Then there exists α such that et > α ≥ ω. By Proposition 43, we have

t ≤
k∑
i=1

1
{
ei > α

}
≤
( β
α2

+ 1
)

dimDE(Φ,Π, α) ≤
( β
α2

+ 1
)

dimDE(Φ,Π, ω),

which implies α ≤
√

dβ
t−d . Besides, recall et ≤ C, so we have et ≤ min{

√
dβ
t−d , C}.

Finally, we have
k∑
t=1

et1
{
et > ω

}
≤ min{d, k}C +

k∑
t=d+1

√
dβ

t− d
≤ min{d, k}C +

√
dβ

∫ k

0

1√
t
dt

≤ min{d, k}C + 2
√
dβk,

which completes the proof.

F Proofs for OLIVE

In this section, we provide the formal proof for the results stated in Appendix A.

F.1 Full proof of Theorem 18

Proof of Theorem 18. By standard concentration arguments (Hoeffding’s inequality plus union
bound argument), with probability at least 1 − δ, the following events hold for the first dH + 1
phases (please refer to Appendix F.2 for the proof)

1. If the elimination procedure is activated at the hth step in the kth phase, then
E(fk, πk, h) > ζact/2 and all f ∈ F satisfying |E(f, πk, h)| ≥ 2ζelim get eliminated.

2. If the elimination procedure is not activated in the kth phase, then,
∑H
h=1 E(fk, πk, h) <

2Hζact = 4ε.

3. Q? is not eliminated.

Therefore, if we can show OLIVE terminates within dH + 1 phases, then with high probability
the output policy is 4ε-optimal by the optimism of fk and simple policy loss decomposition (e.g.
Lemma 1 in [1]):(

V ?1 (s1)− V π
k

1 (s1)
)
≤ max

a
fk(s1, a)− V π

k

(s1)=

H∑
h=1

E(fk, πk, h) ≤ 4ε. (17)

In order to prove that OLIVE terminates within dH + 1 phases, it suffices to show that for each
h ∈ [H], we can activate the elimination procedure at the hth step for at most d times.
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For the sake of contradiction, assume that OLIVE does not terminate in dH + 1 phases. Within
these dH + 1 phases, there exists some h ∈ [H] for which the activation process has been activated
for at least d + 1 times. Denote by k1 < · · · < kd+1 ≤ dH + 1 the indices of the phases where
the elimination is activated at the hth step. By the high-probability events, for all i < j ≤ d + 1,
we have |E(fkj , πki , h)| < 2ζelim and for all l ≤ d + 1, we have E(fkl , πkl , h) > ζact/2. This

means for all l ≤ d + 1, we have both
√∑l−1

i=1

(
E(fkl , πki , h)

)2
<
√
d × 2ζelim = ε/H and

E(fkl , πkl , h) > ζact/2 = ε/H . Therefore, the roll-in distribution of πk1 , . . . , πkd+1 at step h is an
ε/H-independent sequence of length d+ 1, which contradicts with the definition of BE dimension.
So OLIVE should terminate within dH + 1 phases.

In sum, with probability at least 1 − δ, Algorithm 2 will terminate and output a 4ε-optimal policy
using at most

(dH + 1)(nact + nelim) ≤ 3cH3d2 log(N (F , ζelim/8)) · ι
ε2

episodes.

F.2 Concentration arguments for Theorem 18

Recall in Algorithm 2 we choose

ζact =
2ε

H
, ζelim =

ε

2H
√
d
, nact =

cH2ι

ε2
, and nelim =

cH2d log(N (F , ζelim/8)) · ι
ε2

,

where d = maxh∈[H] dimBE

(
F ,DF,h, ε/H

)
, ι = log[Hd/δε] and c is a large absolute constant.Our

goal is to prove with probability at least 1− δ, the following events hold for the first dH + 1 phases

1. If the elimination procedure is activated at the hth step in the kth phase, then
E(fk, πk, h) > ζact/2 and all f ∈ F satisfying |E(f, πk, h)| ≥ 2ζelim get eliminated.

2. If the elimination procedure is not activated in the kth phase, then,
∑H
h=1 E(fk, πk, h) <

2Hζact = 4ε.

3. Q? is not eliminated.

We begin with the activation procedure.

Concentration in the activation procedure Consider a fixed (k, h) ∈ [dH + 1] × [H] pair. By
Azuma-Hoefdding’s inequality, with probability at least 1− δ

8H(dH2+1) , we have

|Ê(fk, πk, h)− E(fk, πk, h)| ≤ O
(√

ι

nact

)
≤ ε

2H
≤ ζact/4,

where the second inequality follows from nact = CH2ι
ε2 with C being chosen large enough.

Take a union bound for all (k, h) ∈ [dH + 1]× [H], we have with probability at least 1− δ/4, the
following holds for all (k, h) ∈ [dH + 1]× [H]

|Ê(fk, πk, h)− E(fk, πk, h)| ≤ ζact/4.

By Algorithm 2, if the elimination procedure is not activated in the kth phase, we have∑H
h=1 Ê(fk, πk, h) ≤ Hζact. Combine it with the concentration argument we just proved,

H∑
h=1

E(fk, πk, h) ≤
H∑
h=1

Ê(fk, πk, h) +
Hζact

4
<

5Hζact

4
.

On the other hand, if the elimination procedure is activated at the hth step in the kth phase, then
Ê(fk, πk, h) > ζact. Again combine it with the concentration argument we just proved,

E(fk, πk, h) ≥ Ê(fk, πk, h)− ζact

4
>

3ζact

4
.
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Concentration in the elimination procedure Now, let us turn to the elimination procedure. First,
let Z be an ζelim/8-cover of F with cardinality N (F , ζelim/8). With a little abuse of notation, for
every f ∈ F , define f̂ = argming∈Z maxh∈[H] ‖fh − gh‖∞. By applying Azuma-Hoeffding’s
inequality to all (k, g) ∈ [dH + 1]×Z and taking a union bound, we have with probability at least
1− δ/4, the following holds for all (k, g) ∈ [dH + 1]×Z

|Ê(g, πk, hk)− E(g, πk, hk)| ≤ ζelim/4.

Recall that Algorithm 2 eliminates all f satisfying |Ê(f, πk, hk)| > ζelim when the elimination
procedure is activated at the hth

k step in the kth phase. Therefore, if |E(f, πk, hk)| ≥ 2ζelim, f will
be eliminated because

|Ê(f, πk, hk)| ≥ |Ê(f̂ , πk, hk)| − 2× ζelim

8

≥ |E(f̂ , πk, hk)| − ζelim

2

≥ |E(f, πk, hk)| − ζelim

2
− 2× ζelim

8
> ζelim.

Finally, note that E(Q?, π, h) ≡ 0 for any π and h. As a result, it will never be eliminated within
the first dH + 1 phases because we can similarly prove

|Ê(Q?, πk, hk)| ≤ |E(Q?, πk, hk)|+ 3ζelim

4
< ζelim.

Wrapping up: take a union bound for the activation and elimination procedure, and conclude that
the three events, listed at the beginning of this section, hold for the the first dH + 1 phases with
probability at least 1− δ/2.

G Proofs for V-type Variants

In this section, we provide formal proofs for the results stated in Section B.

G.1 Proof of Theorem 23

The proof is similar to that in Appendix F.

Proof of Theorem 23. By standard concentration arguments (Hoeffding’s inequality, Bernstein’s in-
equality, and union bound argument), with probability at least 1 − δ, the following events hold for
the first dH + 1 phases (please refer to Appendix G.1.1 for the proof)

1. If the elimination procedure is activated at the hth step in the kth phase, then
EV(fk, πk, h) > ζact/2 and all f ∈ F satisfying |EV(f, πk, h)| ≥ 2ζelim get eliminated.

2. If the elimination procedure is not activated in the kth phase, then,
∑H
h=1 EV(fk, πk, h) <

2Hζact = 4ε.

3. Q? is not eliminated.

Therefore, if we can show OLIVE terminates within dH + 1 phases, then with high probability
the output policy is 4ε-optimal by the optimism of fk and simple policy loss decomposition (e.g.,
Lemma 1 in [1]):(

V ?1 (s1)− V π
k

1 (s1)
)
≤ max

a
fk(s1, a)− V π

k

(s1)=
H∑
h=1

EV(fk, πk, h) ≤ 4ε. (18)

In order to prove that OLIVE terminates within dH + 1 phases, it suffices to show that for each
h ∈ [H], we can activate the elimination procedure at the hth step for at most d times.
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For the sake of contradiction, assume that OLIVE does not terminate in dH + 1 phases. Within
these dH + 1 phases, there exists some h ∈ [H] for which the activation process has been activated
for at least d + 1 times. Denote by k1 < · · · < kd+1 ≤ dH + 1 the indices of the phases where
the elimination is activated at the hth step. By the high-probability events, for all i < j ≤ d + 1,
we have |EV(fkj , πki , h)| < 2ζelim and for all l ≤ d + 1, we have EV(fkl , πkl , h) > ζact/2. This

means for all l ≤ d + 1, we have both
√∑l−1

i=1

(
EV(fkl , πki , h)

)2
<
√
d × 2ζelim = ε/H and

EV(fkl , πkl , h) > ζact/2 = ε/H . Therefore, the roll-in distribution of πk1 , . . . , πkd+1 at step h is
an ε/H-independent sequence of length d + 1 with respect to (I − Th)VF , which contradicts with
the definition of BE dimension. So OLIVE should terminate within dH + 1 phases.

In sum, with probability at least 1 − δ, Algorithm 2 will terminate and output a 4ε-optimal policy
using at most

(dH + 1)(nact + nelim) ≤ 3cH3d2|A| log(|F|) · ι
ε2

episodes.

G.1.1 Concentration arguments for Theorem 23

Recall in Algorithm 4 we choose

ζact =
2ε

H
, ζelim =

ε

2H
√
d
, nact =

cH2ι

ε2
, and nelim =

c|A|H2d log(N (F , ζelim/8)) · ι
ε2

,

where d = maxh∈[H] dimVBE

(
F ,DF,h, ε/H

)
, ι = log[Hd/δε] and c is a large absolute constant.

Our goal is to prove with probability at least 1 − δ, the following events hold for the first dH + 1
phases

1. If the elimination procedure is activated at the hth step in the kth phase, then
EV(fk, πk, h) > ζact/2 and all f ∈ F satisfying |EV(f, πk, h)| ≥ 2ζelim get eliminated.

2. If the elimination procedure is not activated in the kth phase, then,
∑H
h=1 EV(fk, πk, h) <

2Hζact = 4ε.
3. Q? is not eliminated.

We begin with the activation procedure.

Concentration in the activation procedure Consider a fixed (k, h) ∈ [dH + 1] × [H] pair. By
Azuma-Hoefdding’s inequality, with probability at least 1− δ

8H(dH+1) , we have

|ẼV(fk, πk, h)− EV(fk, πk, h)| ≤ O
(√

ι

nact

)
≤ ε

2H
≤ ζact/4,

where the second inequality follows from nact = CH2ι
ε2 with C being chosen large enough.

Take a union bound for all (k, h) ∈ [dH + 1]× [H], we have with probability at least 1− δ/4, the
following holds for all (k, h) ∈ [dH + 1]× [H]

|ẼV(fk, πk, h)− EV(fk, πk, h)| ≤ ζact/4.

By Algorithm 4, if the elimination procedure is not activated in the kth phase, we have∑H
h=1 ẼV(fk, πk, h) ≤ Hζact. Combine it with the concentration argument we just proved,

H∑
h=1

EV(fk, πk, h) ≤
H∑
h=1

ẼV(fk, πk, h) +
Hζact

4
≤ 5Hζact

4
.

On the other hand, if the elimination procedure is activated at the hth step in the kth phase, then
ẼV(fk, πk, h) > ζact. Again combine it with the concentration argument we just proved,

EV(fk, πk, h) ≥ ẼV(fk, πk, h)− ζact

4
>

3ζact

4
.
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Concentration in the elimination procedure Now, let us turn to the elimination procedure. We
start by bounding the the second moment of

1[πf (sh) = ah]

1/|A|
(
fh(sh, ah)− rh −max

a′∈A
fh+1(sh+1, a

′)
)

for all f ∈ F . Let y(sh, ah, rh, sh+1) = fh(sh, ah) − rh − maxa′∈A fh+1(sh+1, a
′) ∈ [−2, 1],

then we have

E[
(
|A|1[πf (sh) = ah]y(sh, ah, rh, sh+1)

)2 | sh ∼ πk, ah ∼ Uniform(A)]

≤4|A|2E[1[πf (sh) = ah] | sh ∼ πk, ah ∼ Uniform(A)] = 4|A|.

For a fixed (k, f) ∈ [dH + 1] × F , by applying Azuma-Bernstein’s inequality, with probability at
least 1− δ

8(dH+1)|F| we have

|ÊV(f, πk, hk)− EV(f, πk, hk)| ≤ O

√ |A|ι′
nelim

+
|A|ι′

nelim

 ≤ O
√ |A|ι′

nelim

 ≤ ζelim/2,

where ι′ = log[8(dH + 1)|F|/δ], and the third inequality follows from nelim = C|A|ι/ζ2
elim with C

being chosen large enough.

Taking a union bound over [dH + 1]× F , we have with probability at least 1− δ/4, the following
holds for all (k, f) ∈ [dH + 1]×F

|ÊV(f, πk, hk)− EV(f, πk, hk)| ≤ ζelim/2.

Recall that Algorithm 4 eliminates all f satisfying |ÊV(f, πk, hk)| > ζelim when the elimination
procedure is activated at the hth

k step in the kth phase. Therefore, if |EV(f, πk, hk)| ≥ 2ζelim, f will
be eliminated because

|ÊV(f, πk, hk)| ≥ |EV(f, πk, hk)| − ζelim

2
> ζelim.

Finally, note that EV(Q?, π, h) ≡ 0 for any π and h. As a result, it will never be eliminated within
the first dH + 1 phases because we can similarly prove

|ÊV(Q?, πk, hk)| ≤ |EV(Q?, πk, hk)|+ ζelim

2
< ζelim.

Wrapping up: take a union bound for the activation and elimination procedure, and conclude that
the three events, listed at the beginning of this section, hold for the the first dH + 1 phases with
probability at least 1− δ/2.

G.2 Proof of Theorem 22

The proof is basically the same as that of Theorem 15 in Appendix E.

To begin with, we have the following lemma (akin to Lemma 39 and 40) showing that with high
probability: (i) any function in the confidence set has low Bellman-error over the collected Datasets
D1, . . . ,DH as well as the distributions from whichD1, . . . ,DH are sampled; (ii) the optimal value
function is inside the confidence set. Its proof is almost identical to that of Lemma 39 and 40 which
can be found in Appendix E.3.
Lemma 44 (Akin to Lemma 39 and 40). Let ρ > 0 be an arbitrary fixed number. If we choose
β = c

(
log[KHNF∪G(ρ)/δ] + Kρ

)
with some large absolute constant c in Algorithm 3, then with

probability at least 1− δ, for all (k, h) ∈ [K]× [H], we have

(a)
∑k−1
i=1 E[

(
fkh (sh, ah)− (T fkh+1)(sh, ah)

)2 | sh ∼ πi, ah ∼ Uniform(A)]≤O(β),

(b) 1
|A|
∑k−1
i=1

∑
a∈A

(
fkh (sih, a)− (T fkh+1)(sih, a)

)2≤O(β),

(c) Q? ∈ Bk,
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where sih denotes the state at step h collected according to Line 5 in Algorithm 3 following πi.

Proof of Lemma 44. To prove inequality (a), we only need to redefine the filtration Ft,h in Appendix
E.3.1 to be the filtration induced by {si1, ai1, ri1, . . . , siH}

t−1
i=1 and repeat the arguments there verbatim.

To prove inequality (b), we only need to redefine the filtration Ft,h in Appendix E.3.1 to be the
filtration induced by {si1, ai1, ri1, . . . , siH}

t−1
i=1

⋃
{st1, at1, rt1, . . . , sth} and repeat the arguments there

verbatim.

The proof of (c) is the same as that of Lemma 40 in Appendix E.3.2.

Step 1. Bounding the regret by Bellman error By Lemma 44 (c), we can upper bound the
cumulative regret by the summation of Bellman error with probability at least 1− δ:

K∑
k=1

(
V ?1 (s1)− V π

k

1 (s1)
)
≤

K∑
k=1

(
max
a

fk1 (s1, a)− V π
k

1 (s1)
)

(i)
=

K∑
k=1

H∑
h=1

EV(fk, πk, h), (19)

where (i) follows from standard policy loss decomposition (e.g. Lemma 1 in [1]).

Step 2. Bounding cumulative Bellman error using DE dimension Next, we focus on a fixed
step h and bound the cumulative Bellman error

∑K
k=1 EV(fk, πk, h) using Lemma 44.

Invoking Lemma 44 (a) with

ρ =
ε2

H2 · dimVBE(F ,DF , ε/H) · |A|
implies that with probability at least 1− δ, for all (k, h) ∈ [K]× [H], we have

k−1∑
i=1

E
[(
fkh (sh, πfkh (sh))− (T fkh+1)(sh, πfkh (sh))

)2

| sh ∼ πi
]
≤O(|A|β).

Further invoking Lemma 41 with
ω =

ε

H
, C = 1,

X = S, Φ = (I − Th)VF , Π = DF,h,

φk(s) := (fkh − Thfkh+1)(s, πfkh (s)) and µk = Pπ
k

(sh = ·),
we obtain

1

K

K∑
t=1

EV(f t, πt, h) ≤ O

(√
dimVBE(F ,DF , ε/H)|A| log[KHNF∪G(ρ)/δ]

K
+

ε

H

)
.

Plugging in the choice of K completes the proof.

Similarly, for D∆, we can invoke Lemma 44 (b) witht

ρ =
ε2

H2 · dimVBE(F ,D∆, ε/H) · |A|
,

and Lemma 41 with
ω =

ε

H
, C = 1,

X = S, Φ = (I − Th)VF , Π = D∆,h,

φk(s) := (fkh − Thfkh+1)(s, πfkh (s)) and µk = 1{· = skh},
and obtain

1

K

K∑
t=1

EV(f t, πt, h) ≤ 1

K

K∑
t=1

(f th − T f th+1)(sth, πfth(sth)) +O

(√
logK

K

)

≤O

(√
dimVBE(F ,D∆, ε/H)|A| log[KHNF∪G(ρ)/δ]

K
+

ε

H
+

√
logK

K

)
,
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where the first inequality follows from standard martingale concentration.

Plugging in the choice of K completes the proof.

H Proofs for Examples

H.1 Proof of Proposition 29

Proof. Suppose F has finite ε-effective dimension and denote the corresponding mapping by φ.
Then we can rewrite F in the form of F = {fθ(·) = 〈φ(·), θ〉H | θ ∈ Θ}, where Θ ⊂ BH(1).

Suppose there exists an ε′-independent sequence x′1, . . . , x
′
n ∈ X with respect to F where ε′ ≥ ε.

By the definition of independent sequence, this is equivalent to the existence of θ1, . . . , θn ∈ (Θ−Θ)
and x1, . . . , xn ∈ φ(X ) such that 

t−1∑
i=1

(x>i θt)
2 ≤ ε′2, t ∈ [n]

|x>t θt| ≥ ε′, t ∈ [n].

(20)

Define Σt =
∑t−1
i=1 xix

>
i + ε′2

4 · I. We have

‖θt‖Σt ≤
√

2ε′ =⇒ ε′ ≤ |x>t θt| ≤ ‖θt‖Σt · ‖xt‖Σ−1
t
≤
√

2ε′‖xt‖Σ−1
t
, t ∈ [n]. (21)

As a result, we should have ‖xt‖2Σ−1
t

≥ 1/2 for all t ∈ [n]. Now we can apply the standard log-
determinant argument,

n∑
t=1

log(1 + ‖xt‖2Σ−1
t

) = log

(
det(Σn+1)

det(Σ1)

)
= log det

(
I +

4

ε′2

n∑
i=1

xix
>
i

)
,

which implies

0.5 ≤ min
t∈[n]
‖xt‖2Σ−1

t
≤ exp

(
1

n
log det

(
I +

4

ε′2

n∑
i=1

xix
>
i

))
− 1. (22)

Choose n = deff(F , ε/2) that is the minimum positive integer satisfying

sup
x1,...,xn∈φ(X )

1

n
log det

(
I +

4

ε2

n∑
i=1

xix
>
i

)
≤ e−1. (23)

This leads to a contradiction because ε′ ≥ ε and 0.5 > ee
−1 − 1. So we must have

dimE(F , ε) ≤ deff(F , ε/2).

H.2 Proof of Proposition 32

Proof. Consider fixed ε ∈ R+ and h ∈ [H], and denote n = dimE(F , ε). Then by the definition of
Eluder dimension, there must exist x1, . . . , xn ∈ Xh where Xh = {φh(s, a) : (s, a) ∈ S × A} so
that for any θ, θ′ ∈ BH(H + 1− h), if

∑n
i=1(〈xi, θ − θ′〉H)2 ≤ ε2, then |〈z, θ − θ′〉H| ≤ ε for any

z ∈ Xh. In other words, x1, . . . , xn is one of the longest independent subsequences. Therefore, in
order to cover Fh, we only need cover the projection of BH(H + 1 − h) onto the linear subspace
spanned by x1, . . . , xn, which is at most n dimensional.

By standard ε-net argument, there exists C ⊂ BH(H + 1−h) such that: (a) log |C| ≤ O(n · log(1 +

nH/ε)), (b) for any θ ∈ BH(H+1−h), there exists θ̂ ∈ C satisfying
∑n
i=1(〈xi, θ−θ̂〉H)2 ≤ ε2. By

the property of x1, . . . , xn, {φh(·, ·)>θ̂ | θ̂ ∈ C} is an ε-cover of Fh. Since F = F1 × · · · × FH ,
we obtain logNF (ε) ≤ O

(
Hn · log(1 + nH/ε)

)
. Finally, by Proposition 31, n ≤ d(ε), which

concludes the proof.
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H.3 Proof of Proposition 34

Proof. Assume there exists h ∈ [H] such that dimDE((I − Th)F ,DF,h, ε) ≥ m. Let µ1, . . . , µn ∈
DF,h be a an ε-independent sequence with respect to (I − Th)F . By Definition 6, there exist

f1, . . . , fn such that for all t ∈ [n],
√∑t−1

i=1(Eµi [f th − Thf th+1])2 ≤ ε and |Eµt [f th−Thf th+1]| > ε.
Since µ1, . . . , µn ∈ DF,h, there exist g1, . . . , gn ∈ F so that µi is generated by executing πgi , for
all i ∈ [n].

By the definition of effective Bellman rank, this is equivalent to:
√∑t−1

i=1(〈φh(f t), ψh(gi)〉)2 ≤ ε

and |〈φh(f t), ψh(gt)〉| > ε for all t ∈ [n]. For notational simplicity, define xi = ψh(gi) and
θi = φh(f i). Then 

t−1∑
i=1

(x>i θt)
2 ≤ ε2, t ∈ [n]

|x>t θt| ≥ ε, t ∈ [n].

(24)

The remaining arguments follow the same as in the proof of Proposition 29 except that we replace ε
by ε/ζ.

H.4 Proof of Proposition 38

Proof. Note that the case h = 1 is trivial because each episode always starts from a fixed initial state
independent of the policy. For any policy π, function f ∈ F , and step h ≥ 2

EV(f, π, h) =E[fh(oh, ah)− rh(oh, ah)− fh+1(oh+1, ah+1) | sh ∼ π, ah:h+1 ∼ πf ]

=E[fh(oh, ah)− rh(oh, ah)− fh+1(oh+1, ah+1) | (sh−1, ah−1) ∼ π, ah:h+1 ∼ πf ]

=
∑
s,a∈S

∑
s′∈S

Pπ(sh−1 = s, ah−1 = a) · 〈φh−1(s, a), ψh−1(s′)〉H · V(s′),

where

V(s′) = E[fh(oh, ah)− rh(oh, ah)− fh+1(oh+1, ah+1) | sh = s′, ah:h+1 ∼ πf ].

As a result, we obtain

E[fh(oh, ah)− rh(oh, ah)− fh+1(oh+1, ah+1) | sh ∼ π, ah:h+1 ∼ πf ]

=

〈
Eπ[φh−1(sh−1, ah−1)],

∑
s′∈S

ψh−1(s′)V(s′)

〉
H
.

Notice that the left hand side of the inner product only depends on π while the right hand side only
depends on f . Moreover, by the definition of kernel reactive POMDPs, the RHS has norm at most
2. Therefore, we conclude the proof by revoking Proposition 36 with ζ = 2.

I Discussions on DF versus D∆ in BE Dimension

In this paper, we have mainly focused on the BE dimension induced by two special distribution
families: (a) DF — the roll-in distributions produced by executing the greedy policies induced by
the functions in F , (b) D∆ — the collection of all Dirac distributions. And we prove that both low
dimBE

(
F ,DF , ε

)
and low dimBE

(
F ,D∆, ε

)
can imply sample-efficient learning. As a result, it is

natural to ask what is the relation between dimBE

(
F ,DF , ε

)
and dimBE

(
F ,D∆, ε

)
? Is it possible

that one of them is always no larger than the other so that we only need to use the smaller one? We
answer this question with the following proposition, showing that either of them can be arbitrarily
larger than the other.

Proposition 45. There exists absolute constant c such that for any m ∈ N+,

(a) there exist an MDP and a function class F satisfying for all ε ∈ (0, 1/2],
dimBE(F ,DF , ε) ≤ c while dimBE(F ,D∆, ε) ≥ m.
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(b) there exist an MDP and a function class F satisfying for all ε ∈ (0, 1/2],
dimBE(F ,D∆, ε) ≤ c while dimBE(F ,DF , ε) ≥ m.

Proof. We prove (a) first. Consider the following contextual bandits problem (H = 1).

• There are m states s1, . . . , sm but the agent always starts at s1. This means the agent can
never visit other states because each episode contains only one step (H = 1).

• There are two actions a1 and a2. The reward function is zero for any state-action pair.

• The function class F1 = {fi(s, a) = 1(s = si) + 1(a = a1) : i ∈ [m]}.

First of all, note in this setting D∆ is the collection of all Dirac distributions over S × A, DF,1
is a singleton containing only δ(s1,a1), and (I − T1)F is simply F1 because H = 1 and r ≡ 0.
Since DF,1 has cardinality one, it follows directly from definition that dimBE(F ,D∆, ε) is at most
1. Moreover, it is easy to verify that (s1, a2), (s2, a2), . . . , (sm, am) is a 1-independent sequence
with respect to F because we have fi(sj , a2) = 1(i = j) for all i, j ∈ [m]. As a result, we have
dimBE(F ,D∆, ε) ≥ m for all ε ∈ (0, 1].

Now we come to the proof of (b). Consider the following contextual bandits problem (H = 1).

• There are 2 states s1 and s2. In each episode, the agent starts at s1 or s2 uniformly at
random.

• There are m actions a1, . . . , am. The reward function is zero for any state-action pair.

• The function class F1 = {fi(s, a) = (2 · 1(s = s1)− 1) + 0.5 · 1(a = ai) : i ∈ [m]}.

First of all, note in this setting (I − T1)F is simply F1 and the roll-in distribution induced by
the greedy policy of fi is the uniform distribution over (s1, ai) and (s2, ai), which we denote as
µi. It is easy to verify that µ1, . . . , µm is a 0.5-independent sequence with respect to F because
E(s,a)∼µi [fj(s, a)] = 0.5 · 1(i = j). Therefore, for all ε ∈ (0, 0.5], dimBE(F ,DF , ε) ≥ m.

Next, we upper bound dimBE(F ,D∆, ε) which is equivalent to dimDE(F1,D∆, ε) in this problem.
Assume dimDE(F1,D∆, ε) = k. Then there exist g1, . . . , gk ∈ F1 and w1, . . . , wk ∈ S × A such

that for all i ∈ [k],
√∑i−1

t=1(gi(wi))2 ≤ ε and |gi(wi)| > ε. Note that we have |f(s, a)| ∈ [0.5, 1.5]

for all (s, a, f) ∈ S × A × F1. Therefore, if ε > 1.5, then k = 0; if ε ≤ 1.5, then k ≤ 10 because

0.5×
√
k − 1 ≤

√∑k−1
t=1 (gk(wt))2 ≤ ε ≤ 1.5.
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