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PDEBENCH: AN EXTENSIVE BENCHMARK FOR SCIENTIFIC MACHINE
LEARNING.
SUPPLEMENTARY MATERIAL

A RELATED WORK

PDE benchmarking has particular challenges. Unlike many classic datasets, PDE datasets can be
large on a gigabyte or terabyte scale and still contain only few data points. And unlike monolithic
benchmark datasets such as ImageNet, the datasets for each PDE approximation task are specific
to that task. Each set of governing equations or experiment design assumptions leads to a distinct
dataset of PDE samples. Recent works in PDEs have attempted to produce standardised datasets
covering well-known challenges (Otness et al., 2021; Huang et al., 2021; Stachenfeld et al., 2022).
Huang et al. (2021) targets non-ML uses. Stachenfeld et al. (2022) is specialised for particular
classes of equations. Of these, the excellent work of Otness et al. (2021) is most closely related,
but with only four physical systems, it still lacks sufficient scale and diversity of data to challenge
emerging ML algorithms. We expand the range of benchmarks in this domain by providing a larger,
more diverse problem selection and scale than these previous attempts (11 PDEs with different
parametrizations leading to 35 datasets). We additionally consider inverse problems for PDEs (Stu-
art, 2010; Tarantola, 2005), with the goal to identify unobserved latent parameters using ML. This
has not been covered by benchmarks so far, despite its increasing importance in the community. Fur-
thermore, most work in this scope considers classical statistical error measures such as the RMSE
over the whole domain and at most PDE-motivated variants such as the RMSE of the gradient Ot-
ness et al. (2021). Measures based on properties of the underlying physical systems, as studied in
this work, are lacking.

An overview and taxonomy of Scientific ML developments can be found in Lavin et al. (2021);
Brunton & Kutz (2019). For developing our baselines, we focus on using neural network models to
approximate the outputs of some ground truth PDE solver, given data generated by that solver, which
itself aims to directly implement the numerical solution of a given partial differential equation. A
range of methods aim to solve problems fitting this description, reviewed in Kashinath et al. (2021).
Methods include Physics-informed neural networks (PINNs) (Raissi et al., 2019), Neural operators
(NOs) (Li et al., 2021; Kovachki et al., 2021), treating ResNet as a PDE approximant (Ruthotto &
Haber, 2018), custom architectures for specific problems such as TFNet for turbulent fluid flows
(Wang et al., 2020), and generic image-to-image regression models such as the U-Net (Ronneberger
et al., 2015). These approaches each have different assumptions, domains of applicability, and data
processing requirements.

Benchmarks in machine learning are an ubiquitous feature of the field. In recent years, their design
and implementation has become a research area of its own right. Easily accessible and widely
used image classification benchmarks such as MNIST, CIFAR, and ImageNet are widely credited
with accelerating progress in machine learning. Various domains in machine learning have widely
influential datasets: In time series forecasting there are the Makridakis competitions (Makridakis
et al., 2020), in reinforcement learning there is the OpenAI Gym (Brockman et al., 2016). Generic
classification problems use, for example, the Penn Machine Learning Benchmark (Olson et al.,
2017).

Closely related to the chosen Scientific ML baselines is the problem of directly differentiating
through the numerical solver, which can itself be used in training an approximating model, or to
directly solve some optimization or control problem of interest. Differentiable direct PDE solvers
are increasingly available, e.g. Mitusch et al. (2019) and frequently built upon neural network tech-
nology stacks (Freeman et al., 2021; Bezgin et al., 2022; Holl & Koltun, 2020).

Recent efforts have attempted to unify Scientific ML surrogates for PDEs under a single interface.
For example, NVIDIA’s MODULUS/SimNet (Hennigh et al., 2020) implements a variety of meth-
ods in a single framework, although unfortunately under onerous intellectual property restrictions
and an opaque contribution process. The DeepXDE project (Lu et al., 2021) is available under an
open license and provides an impressive range of capabilities, but is largely restricted to PINN and
DeepONet methods (Raissi et al., 2019).
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B DETAILED METRICS DESCRIPTION

The classic loss metrics we use are (1) root-mean-squared-error (RMSE), (2) normalized RMSE
(nRMSE), (3) maximum error. These measure the emulating model’s global performance but neglect
local performance. Thus we include extra metrics to measure specific failure modes: (4) RMSE
of the conserved value (cRMSE), (5) RMSE at boundaries (bRMSE), (6) RMSE in Fourier space
(fRMSE) constrained to low, middle, and high-frequency regions.

The normalized RMSE is a variant of the RMSE to provide scale-independent information defined
as:

nRMSE ⌘

s
||upred � utrue||2

||utrue||2
, (1)

where ||u||2 is the L2-norm of a (vector-valued) variable u, and utrue, upred are true and predicted
value, respectively. The maximum error measures the model’s worst prediction, which quantifies
both local performance and models’ stability of their prediction. cRMSE is defined as nRMSE ⌘
||
P

upred �
P

utrue||2/N , which measure the deviation of the prediction from some physically
conserved value. bRMSE measures the error at the boundary, indicating if the model understand
the boundary condition properly. Finally, fRMSE measures the error in low/middle/high-frequency
ranges defined as qPkmax

kmin
|F(upred)� F(utrue))|2

kmax � kmin + 1
, (2)

where F is a discrete Fourier transformation, and kmin, kmax are the minimum and maximum indices
in Fourier coordinates. In our paper, we define the low/middle/high-frequency regions as Low:
kmin = 0, kmax = 4, Middle: kmin = 5, kmax = 12, and High: kmin = 13, kmax = 1. This allows
a quantitative discussion of the model performance’s dependence on the wavelength. In the multi-
dimensional cases, we first integrate the angular coordinate direction of |F [upred � utrue](k)|2, and
take the sum along the k-coordinate.

B.1 INVERSE PROBLEM METRICS

For the inverse problem setup, we selected various metrics. The major difference with respect to the
forward metrics is that we have two main quantities to measure:

• the error of the quantity we want to estimate, in our case the initial condition u0:

L(u0, û0)

where û0 is the estimated value;
• the error of the prediction based on the estimated initial condition u(t, x|u0),

L (u(t, x|u0), u(t, x|û0))

In general, we expect a larger error when we measure the error in the estimated quantity w.r.t.
the predicted quantity. This is mainly due to the early decay of high frequencies of the PDE. We
evaluated the error of the prediction at a specific instant in time t = T , that has been selected as
T = 15 for all the tested datasets, expect T = 5 for the CFD dataset.

The metrics that we used for the inverse problem are: 1) MSE 2) the normalized `2 norm (L2), 3)
the normalized `3 norm (L3); 4) the FFT MSE, the FFT L2 and 5) the FFT L3. For the frequency
metrics we investigated the low frequency (between 0 and 1/4 of the max frequency), the middle
frequency (between 1/4 and 3/4) and high frequency (between 3/4 and the maximum frequency)
ranges. In Fig.9, the right figure shows the frequency power density, where we see that the largest
error is found in the middle frequency range.

C TRAINING PROTOCOL AND HYPERPARAMETERS

The model was trained for 500 epochs with the Adam optimizer (Kingma & Ba, 2014) as per the
protocol of the original FNO. The initial learning rate was set as 10�3 and reduced by half after each
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100 epochs. The datasets are split into 90% training and 10% validation and testing. For the PINNs,
we use DeepXDE (Lu et al., 2021) implementation. The training was performed for 15,000 epochs
with the Adam optimizer, with the learning rate set to 10�3. As with the example problems from
that library we use a fully-connected network of depth 6 with 40 neurons each. In contrast to the
other surrogate models, the PINN baseline can be trained and tested only on a single sample, and is
valid only for a specific initial and boundary condition. To get more reliable error bounds, we thus
chose to train the PINN baseline for 10 different samples per dataset and average the resulting error
metrics.

C.1 INVERSE PROBLEM

For testing the power of surrogate models to solve inverse problems, we consider a simplified sce-
nario where the machine learning model directly predicts a specific time in the future t = T . When
training to predict a specific time in the future, we reduce the training time and avoid to consider
the effect of training approaches (as discussed in the temporal analysis section ??) in evaluating the
surrogate models. We trained over Nepoch = 20 epochs and we selected as final time step T = 15
for all tested datasets, expect for the CFD dataset where we selected T = 5. We used similar param-
eters used in the forward training, while we selected 64 hidden values to be estimated for the initial
condition and 100 samples to test and 0.2 as learning rate for the gradient method. The loss function
for the gradient computation is the MSE.

D DETAILED PROBLEM DESCRIPTION

In this section, we provide more detailed descriptions of each PDE and its applications. Note that
PDE is the basic mathematical tool to describe the evolution of the system in physics. Interested
readers are referred to representative textbooks of physics, for example, (Feynman, 1963).

D.1 1D ADVECTION EQUATION

1D Advection (� = 0.4) 1D Reaction-Diffusion (⌫ = 0.5, ⇢ = 1)

Figure 3: Visualization of the time evolution of 1D Advection equation and Reaction-Diffusion
equation.

The advection equation models pure advection behavior without non-linearity whose expression is
given as:

@tu(t, x) + �@xu(t, x) = 0, x 2 (0, 1), t 2 (0, 2], (3)
u(0, x) = u0(x), x 2 (0, 1), (4)

where � is a constant advection speed. Note that the exact solution of the system is given as:
u(t, x) = u0(x� �t).

In our dataset, we only considered the periodic boundary condition. As an initial condition, we use
a super-position of sinusoidal waves as:

u0(x) =
X

ki=k1,...,kN

Ai sin(kix+ �i), (5)

where ki = 2⇡{ni}/Lx are wave numbers whose {ni} are integer numbers selected randomly in
[1, nmax], N is the integer determining how many waves to be added, Lx is the calculation domain
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size, Ai is a random float number uniformly chosen in [0, 1], and �i is the randomly chosen phase
in (0, 2⇡). In 1D-advection case, we set kmax = 8 and N = 2. After calculating Equation 5, we
randomly operate the absolute value function with random signature and the window-function with
10% probability, respectively.

The numerical solution was calculated with the temporally and spatially 2nd-order upwind finite
difference scheme.

D.2 1D DIFFUSION-REACTION EQUATION

Here, we consider a one-dimensional diffusion-reaction type PDE, that combines a diffusion process
and a rapid evolution from a source term Krishnapriyan et al. (2021). The equation is expressed as:

@tu(t, x)� ⌫@xxu(t, x)� ⇢u(1� u) = 0, x 2 (0, 1), t 2 (0, 1], (6)
u(0, x) = u0(x), x 2 (0, 1). (7)

Note that the variable u develops at potentially exponential rate because of the force term which
depends on u. measure the ability to capture very rapid dynamics.

Similar to the 1D advection equation case, we use the periodic boundary condition and Equation 5
as the initial condition. To avoid an ill-defined initial condition, we also applied the absolute value
function and a normalization operation, dividing the initial condition by the maximum value. The
numerical solution was calculated with the temporally and spatially 2nd-order central difference
scheme. For the source term part, we use the piecewise-exact solution (PES) method (Inoue et al.,
2007).

D.3 BURGERS EQUATION

1D Burgers (⌫ = 0.01) 2D Darcy Flow (� = 1.0)

Figure 4: Visualization of the time evolution of 1D Burgers equation and 2D Darcy Flow.

The Burgers’ equation is a PDE modeling the non-linear behavior and diffusion process in fluid
dynamics as

@tu(t, x) + @x(u
2(t, x)/2) = ⌫/⇡@xxu(t, x), x 2 (0, 1), t 2 (0, 2], (8)

u(0, x) = u0(x), x 2 (0, 1), (9)
where ⌫ is the diffusion coefficient, which is assumed constant in our dataset.

Note that setting R ⌘ ⇡uL/⌫ describes the system’s evolution as the Reynolds number of the
Navier-Stokes equation equation ??; R > 1 means the strong non-linear case support forming shock
phenomena, and R < 1 means the diffusive case.

Similar to the 1D advection equation case, we use the periodic boundary condition and Equation 5
as the initial condition. The numerical solution was calculated with the temporally and spatially
2nd-order upwind difference scheme for the advection term, and the central difference scheme for
the diffusion term.

D.4 DARCY FLOW

We experiment with the steady-state solution of 2D Darcy Flow over the unit square, whose viscosity
term a(x) is an input of the system. The solution of the steady-state is defined by the following
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equation

�r(a(x)ru(x)) = f(x), x 2 (0, 1)2, (10)

u(x) = 0, x 2 @(0, 1)2. (11)

In this paper, the force term f is set as a constant value �, changing the scale of the solution u(x).
Instead of directly solving Equation 10, we obtained the solution by solving a temporal evolution
equation:

@tu(x, t)�r(a(x)ru(x, t)) = f(x), x 2 (0, 1)2, (12)

with random field initial condition, until reaching a steady state. The numerical calculation was
performed the same as the case of the 1D Diffusion-Reaction equation.

D.5 COMPRESSIBLE NAVIER-STOKES EQUATION

Figure 5: Visualization of the time evolution of the density in the case of 2D Compressible Navier-
Stokes equations (inviscid, M = 0.1).

The compressible fluid dynamic equations describe a fluid flow,

@t⇢+r · (⇢v) = 0, (13a)
⇢(@tv + v ·rv) = �rp+ ⌘4v + (⇣ + ⌘/3)r(r · v), (13b)

@t


✏+

⇢v2

2

�
+r ·

✓
✏+ p+

⇢v2

2

◆
v � v · �0

�
= 0, (13c)

where ⇢ is the mass density, v is the velocity, p is the gas pressure, ✏ = p/(� � 1) is the internal
energy, � = 5/3, �0 is the viscous stress tensor, and ⌘, ⇣ are the shear and bulk viscosity, respectively.

PDEBENCH provides the following training datasets for the compressible Navier-Stokes equations:

Nd initial field boundary condition (⌘, ⇣,M)

1D random field periodic (10�8, 10�8, �)
1D random field periodic (10�2, 10�2, �)
1D random field periodic (10�1, 10�1, �)
1D random field out-going (10�8, 10�8, �)
1D shock-tube out-going (10�8, 10�8, �)

2D random field periodic (10�8, 10�8, 0.1)
2D random field periodic (10�2, 10�2, 0.1)
2D random field periodic (10�1, 10�1, 0.1)
2D random field periodic (10�8, 10�8, 1.0)
2D random field periodic (10�2, 10�2, 1.0)
2D random field periodic (10�1, 10�1, 1.0)
2D turbulence periodic (10�8, 10�8, 0.1)
2D turbulence periodic (10�8, 10�8, 1.0)

3D random field periodic (10�8, 10�8, 1.0)
3D random field periodic (10�2, 10�2, 1.0)
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where Nd is the number of spatial dimensions, M = |v|/cs is the Mach number, cs =
p

�p/⇢ is
the sound velocity. The outgoing boundary condition is copying the neighbor cell to the boundary
region which allows waves and fluid to escape from the computational domain, and is popular for
astrohydrodynamics simulations (Stone & Norman, 1992). The random field initial condition is
applying Equation 5 which is extended to higher dimensions for the 2D and 3D cases. Note that
density and pressure are prepared by adding a uniform background to the perturbation field Equa-
tion 5. The turbulence initial condition considers turbulent velocity with uniform mass density and
pressure. The velocity is calculated similarly to Equation 5 as

v(x, t = 0) =
nX

i=1

Ai sin(kix+ �i), (14)

where n = 4 and Ai = v̄/|k|d, and d = 1, 2 when considering 2D and 3D, respectively. v̄ is
determined by the initial Mach number as v̄ = csM . To reduce the compressibility effect, we
subtracted the compressible field from Equation 14 by the Helmholtz-decomposition in the Fourier
space.

The shock-tube initial field is composed as Q(x, t = 0) = (QL, QR), where Q = (⇢,v, p) and
QL, QR are randomly determined constant values. The location of the initial discontinuity is also
randomly determined. This problem is called the ”Riemann problem”, and the initial discontinuity
generates shocks and rarefaction depending on the values of QL, QR, which are very difficult to
obtain without solving the PDEs. This scenario can be used for a rigorous test if ML models fully
understand Equation 13a - Equation 13c. The numerical solution was calculated with the temporally
and spatially 2nd-order HLLC scheme (Toro et al., 1994) with the MUSCL method (van Leer, 1979)
for the inviscid part, and the central difference scheme for the viscous part.

D.6 INHOMOGENOUS, INCOMPRESSIBLE NAVIER-STOKES

A popular simplification of the Navier-Stokes equation is the incompressible version, commonly
used to model dynamics supposed to be far lower than the speed of propagation of waves in the
medium,

r · v = 0, ⇢(@tv + v ·rv) = �rp+ ⌘4v. (15)

These simplify the compressible Navier-Stokes equations Eq. equation ??, by substituting the first
term in Eq. equation 15 instead of the first term in equation 13, from which we can eliminate several
elements in the second terms of Eq. equation 15. Additionally, we have introduced the assumption
that the fluid is homogeneous (i.e. not a fluid comprising two or more substances of different density
or viscosity).

We employ an augmented form of equation 15 which includes a vector field forcing term u,

⇢(@tv + v ·rv) = �rp+ ⌘4v + u. (16)

Non-periodic conditions are included to challenge models which perform well upon periodic do-
mains, such as the FNO (Li et al., 2021). The forcing term poses challenges based upon spatially
heterogeneous dynamics. Firstly, this allows us to see if the prediction methods can successfully
learn to predict in the presence of heterogeneity. Secondly, this permits us to use the spatially vary-
ing random field as a target for inverse inference.

Initial conditions v0 and inhomogeneous forcing parameters u are each drawn from isotropic Gaus-
sian random fields with truncated power-law decay ⌧ of the power spectral density and scale �,
where ⌧v0 = �3,�v0 = 0.15, ⌧u = �1,�u = 0.4. The variation in the resulting field is due to the
alteration in the random seed. We set the domain to the unit square ⌦ = [0, 1]2, the viscosity to
⌫ = 0.01. Simulations are implemented using Phiflow Holl & Koltun (2020). Boundary conditions
are Dirichlet, clamping field velocity to null at the perimeter.

D.7 2D SHALLOW-WATER EQUATIONS

The shallow-water equations, derived from the general Navier-Stokes equations, present a suitable
framework for modelling free-surface flow problems. In 2D, these come in the form of the following
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Figure 6: Visualization of the time evolution of the 2D shallow-water equations data.

system of hyperbolic PDEs,

@th+ @xhu+ @yhv = 0 , (17a)

@thu+ @x

✓
u2h+

1

2
grh

2

◆
+ @yuvh = �grh@xb , (17b)

@thv + @y

✓
v2h+

1

2
grh

2

◆
+ @xuvh = �grh@yb , (17c)

with u, v being the velocities in horizontal and vertical direction, h describing the water depth and
b describing a spatially varying bathymetry. hu, hv can be interpreted as the directional momentum
components and gr describes the gravitational acceleration.

The specific simulation we include in our benchmark for the shallow-water equations problem as
introduced in D.7 is a 2D radial dam break scenario. On a square domain ⌦ = [�2.5, 2.5]2 we
initialize the water height as a circular bump in the center of the domain

h(t = 0, x, y) =

(
2.0, for r <

p
x2 + y2

1.0, for r �
p
x2 + y2

(18)

with the radius r randomly sampled from U(0.3, 0.7). For generating the datasets we simulate this
problem using the PyClaw Ketcheson et al. (2012) Python package which offers a comprehensive
finite volume solver. A time evolution visualization of the equation is shown in Figure 6.

D.8 DIFFUSION-SORPTION EQUATION

The diffusion-sorption equation models a diffusion process which is retarded by a sorption process.
The equation is written as

@tu(t, x) = D/R(u)@xxu(t, x), x 2 (0, 1), t 2 (0, 500]. (19)

where D is the effective diffusion coefficient, R is the retardation factor representing the sorption
that hinders the diffusion process. Note that R is dependent on the variable u. This equation is appli-
cable to real world scenarios, one of the most prominent being groundwater contaminant transport.

This equation is retarded by the retardation factor R which is dependent on u based on the Freundlich
sorption isotherm Limousin et al. (2007):

R(u) = 1 +
1� �

�
⇢sknfu

nf�1, (20)

where � = 0.29 is the porosity of the porous medium, ⇢s = 2880 is the bulk density, k = 3.5⇥10�4

is the Freundlich’s parameter, nf = 0.874 is the Freundlich’s exponent, and the effective diffusion
coefficient D = 5 ⇥ 10�4. The initial condition is generated with a uniform distribution u(0, x) ⇠
U(0, 0.2) for x 2 (0, 1). We provide datasets discretized into Nx = 1024 and Nt = 501, as
well as the temporally downsampled version for the models training with Nt = 101. The spatial
discretization is performed using the finite volume method Moukalled et al. (2016) and the time
integration using the built-in fourth order Runge-Kutta method in the scipy package Virtanen et al.
(2020).

15



Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

Figure 7: Visualization of the time evolution of the 1D diffusion-sorption equations data.

This particular example is interesting because of a few things. First, the diffusion coefficient be-
comes non-linear with dependency on u. And based on Equation 20, it is clear that there is a
singularity when u = 0. Second, it is highly applicable to a real-world problem, namely the ground-
water contaminant transport Nowak & Guthke (2016). To date, application of machine learning to
real-world physics problems is still rare. Third, we employ boundary conditions that are not the
usual zero or periodic conditions that can be easily padded in models with a convolutional structure.
Here, we use u(t, 0) = 1.0 and u(t, 1) = D@xu(t, 1). The second boundary condition is particu-
larly challenging since it uses a derivative instead of a constant value. For generating the datasets
we simulate this problem using a standard finite volume solver. A time evolution visualization of
the equation is shown in Figure 7.

D.9 2D DIFFUSION-REACTION EQUATION

In addition to the 1D diffusion-reaction equation, which involves only a single variable, we also
consider extending the application to a 2D domain, with two non-linearly coupled variables, namely
the activator u = u(t, x, y) and the inhibitor v = v(t, x, y). The equation is written as

@tu = Du@xxu+Du@yyu+Ru, @tv = Dv@xxv +Dv@yyv +Rv , (21)

where Du and Dv are the diffusion coefficient for the activator and inhibitor, respectively, Ru =
Ru(u, v) and Rv = Rv(u, v) are the activator and inhibitor reaction function, respectively. The
domain of the simulation includes x 2 (�1, 1), y 2 (�1, 1), t 2 (0, 5]. This equation is applicable
most prominently for modeling biological pattern formation.

The reaction functions for the activator and inhibitor are defined by the Fitzhugh-Nagumo equation
Klaasen & Troy (1984), written as:

Ru(u, v) = u� u3 � k � v, (22)
Rv(u, v) = u� v, (23)

where k = 5⇥10�3, and the diffusion coefficients for the activator and inhibitor are Du = 1⇥10�3

and Dv = 5 ⇥ 10�3, respectively. The initial condition is generated as standard normal random
noise u(0, x, y) ⇠ N (0, 1.0) for x 2 (�1, 1) and y 2 (�1, 1). We provide datasets discretized into
Nx = 512, Ny = 512 and Nt = 501, as well as the downsampled version for the models training
with Nx = 128, Ny = 128, and Nt = 101. As in the 1D diffusion-sorption equation, the spatial
discretization is performed using the finite volume method Moukalled et al. (2016), and the time
integration is performed using the built-in fourth order Runge-Kutta method in the scipy package
Virtanen et al. (2020).

We included the 2D diffusion-reaction equation as an example because it serves as a challenging
benchmark problem. First, there are two variables of interest, namely the activator and inhibitor,
which are non-linearly coupled. Second, it also has applicability in real-world problems, namely
biological pattern formation Turing (1952). Third, we also employ a no-flow Neumann boundary
condition, meaning that Du@xu = 0, Dv@xv = 0, Du@yu = 0, and Dv@yv = 0 for x, y 2 (�1, 1)2.
For generating the datasets we simulate this problem using a standard finite volume solver. A time
evolution visualization of the equation is shown in Figure 8.
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Figure 8: Visualization of the time evolution of the 2D diffusion-reaction equations data.

Figure 9: Inverse problem for the 1d advection equation with � = 0.1. The spectra density where
most of the error is concentrated in the higher frequencies is depicted on the right.

D.10 GRADIENT-BASED INVERSE METHOD

The inverse problem aims at solving an inverse inference by minimising the prediction loss(Cao,
2018; Nocedal & Wright, 1999),

L(u(t = T, x|u0), u(t = T, x|û0))

where û0 ⇠ p✓(u0|u(t = T, x)) .

The generation process p✓(u0|u(t = T, x)) is a deterministic function, whose parameters ✓ use a
bilinear interpolation to recover the initial condition (MacKinlay et al., 2021).

Figure 9 shows the solution of the inverse problem for the 1d advection equation. On the left, we see
the true and estimated initial condition, and on the right the power density in the frequency domain.
As we can see, the error is concentrated in the mid-high frequencies. In the middle we have the true
and predicted value at time t = T . The error is smaller then in the plot on the left.

Table 1, Table 2 and Table 3 show the error in the spatial and frequency domain of 4 datasets and
using FNO and U-Net as surrogate models. In Fig.9, the left figure visualizes the true and the
estimated initial condition, while the middle figure is the predicted and the true value. As shown in
the figure on the right, the largest error is in the higher frequencies. This effect is also visible from
the frequency metrics of Tab.2 and Tab.3. In the experiment we use the same initial and boundary
conditions of the forward problem.

E DETAILED BASELINE SCORE

F DETAILED RUNTIME COMPARISON

In this section we present the detailed comparison of computation time between the PDE solver used
to generate the data and the baseline models used in this work, summarized in Table 14. The system
listed in Table 13 was used to run all timing measurements regarding the Diffusion-sorption, 2D
diffusion-reaction and Shallow-water equation scenarios. PyClaw (Ketcheson et al., 2012), a well-
optimized finite-volume Fortran code, is used as PDE solver for the shallow-water equation data
generation. Note that the experiment is only running on a single core due to its small size. Because
the PINN model is not discretized, the inference time includes evaluating the trained model at the
same discretization points of the reference simulation for the last 20 time steps of the data. E.g. the
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Forward model
PDE Metric FNO U-Net

Advection beta4

MSE 2.4⇥ 10�3 ± 3.4⇥ 10�3 1.0⇥ 10+0 ± 5.6⇥ 10�2

nL2 3.9⇥ 10�2 ± 2.9⇥ 10�2 1.0⇥ 10+0 ± 2.8⇥ 10�2

nL3 4.4⇥ 10�2 ± 3.3⇥ 10�2 1.0⇥ 10+0 ± 2.9⇥ 10�2

MSE’ 2.9⇥ 10�4 ± 5.8⇥ 10�4 9.9⇥ 10�1 ± 2.5⇥ 10�2

nL2’ 1.4⇥ 10�2 ± 1.1⇥ 10�2 1.0⇥ 10+0 ± 8.0⇥ 10�3

nL3’ 1.6⇥ 10�2 ± 1.3⇥ 10�2 1.0⇥ 10+0 ± 8.4⇥ 10�3

Burgers Nu1

MSE 1.0⇥ 10+0 ± 2.2⇥ 10�1 1.3⇥ 10+0 ± 2.3⇥ 10�1

nL2 1.0⇥ 10+0 ± 1.0⇥ 10�1 1.1⇥ 10+0 ± 1.0⇥ 10�1

nL3 1.0⇥ 10+0 ± 1.0⇥ 10�1 1.1⇥ 10+0 ± 1.1⇥ 10�1

MSE’ 1.3⇥ 10�4 ± 2.8⇥ 10�4 2.5⇥ 10�3 ± 1.9⇥ 10�3

nL2’ 7.0⇥ 10�1 ± 4.6⇥ 10�1 1.6⇥ 10+1 ± 2.0⇥ 10+1

nL3’ 7.0⇥ 10�1 ± 4.4⇥ 10�1 1.7⇥ 10+1 ± 2.1⇥ 10+1

CFD Shock Trans

MSE 3.4⇥ 10+0 ± 5.3⇥ 10�1 1.1⇥ 10+2 ± 2.0⇥ 10+1

nL2 1.8⇥ 10+0 ± 1.4⇥ 10�1 1.0⇥ 10+1 ± 1.1⇥ 10+0

nL3 1.9⇥ 10+0 ± 2.7⇥ 10�1 1.1⇥ 10+1 ± 1.6⇥ 10+0

MSE’ 1.0⇥ 10�1 ± 5.9⇥ 10�2 4.2⇥ 10�1 ± 9.2⇥ 10�1

nL2’ 3.3⇥ 10�1 ± 8.5⇥ 10�2 5.8⇥ 10�1 ± 3.9⇥ 10�1

nL3’ 3.6⇥ 10�1 ± 9.6⇥ 10�2 6.0⇥ 10�1 ± 4.0⇥ 10�1

ReacDiff Nu1 Rho2

MSE 1.7⇥ 10+0 ± 2.1⇥ 10�1 2.0⇥ 10+0 ± 3.8⇥ 10�1

nL2 1.3⇥ 10+0 ± 8.4⇥ 10�2 1.4⇥ 10+0 ± 1.3⇥ 10�1

nL3 1.3⇥ 10+0 ± 8.1⇥ 10�2 1.5⇥ 10+0 ± 1.3⇥ 10�1

MSE’ 5.4⇥ 10�2 ± 1.2⇥ 10�1 6.4⇥ 10�1 ± 3.5⇥ 10�1

nL2’ 1.2⇥ 10�1 ± 1.2⇥ 10�1 7.3⇥ 10�1 ± 5.1⇥ 10�2

nL3’ 1.2⇥ 10�1 ± 1.2⇥ 10�1 7.3⇥ 10�1 ± 5.0⇥ 10�2

Table 1: Error of the inverse problem. The prime indicates the error of the predition, for example
MSE’ is the MSE at time t = T . The MSE for example in the first row is one order of magnitude
lower. nL2 and nL3 are the normalized L2 and L3 norm error, nLp = ||ŷ � y||p/||y||p, p = 2, 3.
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Forward model
PDE Metric FNO U-Net

Advection beta4

fMSE 3.04⇥10�1 1.29⇥10+2

fMSE low 5.56⇥10�1 1.29⇥10+2

fMSE mid 5.26⇥10�2 1.29⇥10+2

fMSE high 3.03⇥10�1 1.29⇥10+2

fMSE’ 3.67⇥10�2 9.92⇥10�1

fMSE’ low 1.60⇥10�2 9.92⇥10�1

fMSE’ mid 5.74⇥10�2 9.92⇥10�1

fMSE’ high 3.68⇥10�2 9.92⇥10�1

fL2 3.91⇥10�2 1.00⇥10+0

fL2 low 3.75⇥10�2 1.01⇥10+0

fL2 mid 1.41⇥10+1 0.00⇥10+0

fL2 high 3.90⇥10�2 0.00⇥10+0

Burgers Nu1

fMSE 1.29⇥10+2 1.59⇥10+2

fMSE low 2.58⇥10+2 1.59⇥10+2

fMSE mid 1.19⇥10�1 1.59⇥10+2

fMSE high 1.29⇥10+2 1.59⇥10+2

fMSE’ 1.67⇥10�2 2.46⇥10�3

fMSE’ low 3.36⇥10�2 2.46⇥10�3

fMSE’ mid 9.26⇥10�7 2.46⇥10�3

fMSE’ high 1.66⇥10�2 2.46⇥10�3

fL2 9.98⇥10�1 1.11⇥10+0

fL2 low 9.98⇥10�1 1.11⇥10+0

fL2 mid 3.50⇥10+0 0.00⇥10+0

fL2 high 9.98⇥10�1 0.00⇥10+0

CFD Shock Trans

fMSE 4.37⇥10+2 1.40⇥10+4

fMSE low 4.37⇥10+2 1.40⇥10+4

fMSE mid 4.37⇥10+2 1.40⇥10+4

fMSE high 4.37⇥10+2 1.40⇥10+4

fMSE’ 1.28⇥10+1 2.19⇥10+2

fMSE’ low 3.21⇥10+1 2.19⇥10+2

fMSE’ mid 1.13⇥10+0 2.19⇥10+2

fMSE’ high 8.98⇥10+0 2.19⇥10+2

fL2 1.84⇥10+0 1.04⇥10+1

fL2 low 1.51⇥10+0 9.95⇥10+0

fL2 mid 0.00⇥10+0 0.00⇥10+0

fL2 high 0.00⇥10+0 0.00⇥10+0

ReacDiff Nu1 Rho2

fMSE 2.17⇥10+2 2.55⇥10+2

fMSE low 6.10⇥10+2 2.55⇥10+2

fMSE mid 1.48⇥10�2 2.55⇥10+2

fMSE high 1.28⇥10+2 2.55⇥10+2

fMSE’ 6.94⇥10+0 6.35⇥10�1

fMSE’ low 2.77⇥10+1 6.35⇥10�1

fMSE’ mid 1.14⇥10�5 6.35⇥10�1

fMSE’ high 1.29⇥10�4 6.35⇥10�1

fL2 1.30⇥10+0 1.41⇥10+0

fL2 low 1.54⇥10+0 1.60⇥10+0

fL2 mid 7.45⇥10+0 0.00⇥10+0

fL2 high 1.00⇥10+0 0.00⇥10+0

Table 2: Frequency error of the inverse problem. fMSE, fL2 and fL3 are the frequency version of the
MSE, normalized L2 and L3 norm metrics. Low, mid and high is the range of frequencies. Prime is
used for the error in the prediction, without the error of the initial condition estimation. Normalised
metric are not well defined, when the original signal is zero.
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Forward model
PDE Metric FNO U-Net

Advection beta4

fL2’ 1.36⇥10�2 1.13⇥10+1

fL2’ low 7.50⇥10�3 5.66⇥10+0

fL2’ mid 1.61⇥10+0 5.27⇥10+1

fL2’ high 1.36⇥10�2 8.01⇥10+0

fL3 3.14⇥10�2 1.00⇥10+0

fL3 low 3.12⇥10�2 1.00⇥10+0

fL3 mid 1.75⇥10+1 0.00⇥10+0

fL3 high 3.14⇥10�2 0.00⇥10+0

fL3’ 9.51⇥10�3 5.04⇥10+0

fL3’ low 5.62⇥10�3 3.18⇥10+0

fL3’ mid 1.47⇥10+0 2.77⇥10+1

fL3’ high 9.51⇥10�3 4.00⇥10+0

Burgers Nu1

fL2’ 7.00⇥10�1 1.82⇥10+2

fL2’ low 7.99⇥10�1 6.28⇥10+1

fL2’ mid 1.03⇥10+2 5.84⇥10+5

fL2’ high 5.39⇥10�1 1.31⇥10+2

fL3 9.97⇥10�1 1.04⇥10+0

fL3 low 9.97⇥10�1 1.04⇥10+0

fL3 mid 3.58⇥10+0 0.00⇥10+0

fL3 high 9.97⇥10�1 0.00⇥10+0

fL3’ 7.21⇥10�1 4.88⇥10+1

fL3’ low 7.99⇥10�1 2.40⇥10+1

fL3’ mid 9.35⇥10+1 2.98⇥10+5

fL3’ high 5.39⇥10�1 3.92⇥10+1

CFD Shock Trans

fL2’ 3.34⇥10�1 2.12⇥10+0

fL2’ low 2.68⇥10�1 2.14⇥10+0

fL2’ mid 0.00⇥10+0 0.00⇥10+0

fL2’ high 0.00⇥10+0 0.00⇥10+0

fL3 1.26⇥10+0 9.41⇥10+0

fL3 low 1.11⇥10+0 9.36⇥10+0

fL3 mid 0.00⇥10+0 0.00⇥10+0

fL3 high 0.00⇥10+0 0.00⇥10+0

fL3’ 2.16⇥10�1 2.19⇥10+0

fL3’ low 1.96⇥10�1 2.20⇥10+0

fL3’ mid 0.00⇥10+0 0.00⇥10+0

fL3’ high 0.00⇥10+0 0.00⇥10+0

ReacDiff Nu1 Rho2

fL2’ 1.23⇥10�1 1.18⇥10+1

fL2’ low 1.23⇥10�1 5.83⇥10+0

fL2’ mid 1.89⇥10+18 1.90⇥10+21

fL2’ high 9.03⇥10+18 3.93⇥10+21

fL3 1.27⇥10+0 1.29⇥10+0

fL3 low 1.45⇥10+0 1.47⇥10+0

fL3 mid 7.07⇥10+0 0.00⇥10+0

fL3 high 1.00⇥10+0 0.00⇥10+0

fL3’ 1.23⇥10�1 5.08⇥10+0

fL3’ low 1.23⇥10�1 3.18⇥10+0

fL3’ mid 1.07⇥10+18 7.25⇥10+20

fL3’ high 6.54⇥10+18 1.14⇥10+21

Table 3: Frequency error of the prediction of the inverse problem. fMSE, fL2 and fL3 are the
frequency version sof the MSE, normalized L2 and L3 norm metrics. Low, mid and high is the
range of the frequencies. Prime is used for the error in the prediction, without the error of the initial
condition estimation. Normalised metric are not well defined, when the original signal is zero.
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Table 4: Summary of the baseline models’ performance for different evaluation metrics: RMSE,
normalised RMSE (nRMSE), RMSE from conserved value (cRMSE), maximum error, RMSE at
the boundaries (bRMSE), RMSE in Fourier space at low (fRMSE low), medium (fRMSE mid), and
high frequency (fRMSE high) ranges applied to the diffusion-sorption, 2D diffusion-reaction, and
shallow-water equations.

Baseline model
PDE Parameter Metric U-Net FNO PINN

Diffusion-sorption N/A

RMSE 5.8⇥ 10�2 5.9⇥ 10�4 9.9⇥ 10�2

nRMSE 1.5⇥ 10�1 1.7⇥ 10�3 2.2⇥ 10�1

max error 2.9⇥ 10�1 7.8⇥ 10�3 2.2⇥ 10�1

cRMSE 4.8⇥ 10�2 1.9⇥ 10�4 7.5⇥ 10�2

bRMSE 6.1⇥ 10�3 2.0⇥ 10�3 1.4⇥ 10�1

fRMSE low 1.9⇥ 10�2 1.5⇥ 10�4 3.5⇥ 10�2

fRMSE mid 4.7⇥ 10�3 5.0⇥ 10�5 5.2⇥ 10�3

fRMSE high 1.9⇥ 10�4 7.1⇥ 10�6 2.7⇥ 10�4

2D diffusion-reaction N/A

RMSE 6.1⇥ 10�2 8.1⇥ 10�3 1.9⇥ 10�1

nRMSE 8.4⇥ 10�1 1.2⇥ 10�1 1.6⇥ 10+0

max error 1.9⇥ 10�1 9.1⇥ 10�2 5.0⇥ 10�1

cRMSE 3.9⇥ 10�2 1.7⇥ 10�3 1.3⇥ 10�1

bRMSE 7.8⇥ 10�2 2.7⇥ 10�2 2.2⇥ 10�1

fRMSE low 1.7⇥ 10�2 8.2⇥ 10�4 5.7⇥ 10�2

fRMSE mid 5.4⇥ 10�3 7.7⇥ 10�4 1.3⇥ 10�2

fRMSE high 6.8⇥ 10�4 4.1⇥ 10�4 1.5⇥ 10�3

Shallow-water equation N/A

RMSE 8.6⇥ 10�2 4.5⇥ 10�3 1.7⇥ 10�2

nRMSE 8.3⇥ 10�2 4.4⇥ 10�3 1.7⇥ 10�2

max error 4.4⇥ 10�1 4.5⇥ 10�2 1.3⇥ 10�3

cRMSE 1.3⇥ 10�2 2.0⇥ 10�4 1.7⇥ 10�2

bRMSE 4.2⇥ 10�3 1.4⇥ 10�3 1.5⇥ 10�1

fRMSE low 2.0⇥ 10�2 2.6⇥ 10�4 5.9⇥ 10�3

fRMSE mid 7.0⇥ 10�3 3.1⇥ 10�4 1.9⇥ 10�3

fRMSE high 8.6⇥ 10�4 2.5⇥ 10�4 6.0⇥ 10�4

2D diffusion-reaction scenario is evaluated at 1282⇥20 discrete points. Additionally, autoregression
is not required and therefore, it leads to significantly faster computation time relative to FNO and
U-Net.

As the case for 3D data, we also performed a similar experiment whose results are summarized in
Table 16. The used system information is listed in Table 15. Because of the severe memory usage,
the resolution was reduced to 643, though we provided a data with resolution 1283 in our official
dataset. Note that the training and inference time are shorter than the 2D cases in Table 14. This is
because the number of time-step and sample numbers are less than the 2D cases to reduce dataset
size.

G RESOLUTION SENSITIVITY OF INFERENCE TIME

Figure 10 plots the resolution dependence of the inference time of classical simulation and ML
methods for 2D/3D compressible Navier-Stokes equations cases. To calculate the inference times,
we used the same hardware resources to be a ”fair” comparison as listed in Table 15.

The figure clearly shows that the ML inference time is nearly 3-order of magnitude smaller than
that of the classical simulations. Concerning the resolution dependence, both of the ML models
show a similar dependence to the inviscid classical simulation method. Importantly, the inference
time of ML models is in general independent of the diffusion coefficient, such as viscosity. On
the other hand, the classical simulation methods increase their computation time with diffusion
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Table 5: Summary of the baseline models’ performance for different evaluation metrics: RMSE,
normalised RMSE (nRMSE), RMSE from conserved value (cRMSE), maximum error, RMSE at
the boundaries (bRMSE), RMSE in Fourier space at low (fRMSE low), medium (fRMSE mid), and
high frequency (fRMSE high) ranges applied to the advection equation with different parameter
values.

Baseline model
PDE Parameter Metric U-Net FNO PINN

Advection

� = 0.1

RMSE 3.8⇥ 10�2 4.9⇥ 10�3 7.8⇥ 10�1

nRMSE 6.0⇥ 10�2 9.3⇥ 10�3 9.1⇥ 10�1

max error 4.9⇥ 10�1 1.4⇥ 10�1 1.5⇥ 10+0

cRMSE 1.5⇥ 10�2 5.0⇥ 10�4 5.5⇥ 10�3

bRMSE 6.4⇥ 10�2 4.3⇥ 10�3 6.8⇥ 10�1

fRMSE low 1.2⇥ 10�2 4.1⇥ 10�4 1.8⇥ 10�1

fRMSE mid 5.6⇥ 10�3 4.4⇥ 10�4 4.9⇥ 10�4

fRMSE high 8.6⇥ 10�4 2.9⇥ 10�4 6.1⇥ 10�6

� = 0.4

RMSE 3.6⇥ 10�1 5.9⇥ 10�3 9.2⇥ 10�1

nRMSE 6.7⇥ 10�1 1.1⇥ 10�2 1.1⇥ 10+0

max error 1.7⇥ 10+0 2.0⇥ 10�1 1.7⇥ 10+0

cRMSE 2.6⇥ 10�1 4.6⇥ 10�4 1.9⇥ 10�3

bRMSE 3.7⇥ 10�1 5.5⇥ 10�3 7.7⇥ 10�1

fRMSE low 1.3⇥ 10�1 4.4⇥ 10�4 2.1⇥ 10�1

fRMSE mid 2.3⇥ 10�2 4.7⇥ 10�4 3.4⇥ 10�3

fRMSE high 2.3⇥ 10�3 3.4⇥ 10�4 9.8⇥ 10�6

� = 1.0

RMSE 1.2⇥ 10�2 3.5⇥ 10�3 4.0⇥ 10�1

nRMSE 2.0⇥ 10�2 5.9⇥ 10�3 4.7⇥ 10�1

max error 1.7⇥ 10�1 8.5⇥ 10�2 7.6⇥ 10�1

cRMSE 6.6⇥ 10�3 1.8⇥ 10�4 6.0⇥ 10�3

bRMSE 3.0⇥ 10�2 2.6⇥ 10�3 3.0⇥ 10�1

fRMSE low 3.8⇥ 10�3 1.7⇥ 10�4 9.7⇥ 10�2

fRMSE mid 1.5⇥ 10�3 2.1⇥ 10�4 1.2⇥ 10�3

fRMSE high 4.3⇥ 10�4 2.2⇥ 10�4 2.2⇥ 10�5

� = 4.0

RMSE 1.6⇥ 10�2 5.8⇥ 10�3 6.6⇥ 10�1

nRMSE 2.6⇥ 10�2 1.0⇥ 10�2 7.7⇥ 10�1

max error 1.4⇥ 10�1 1.1⇥ 10�1 1.0⇥ 10+0

cRMSE 8.1⇥ 10�3 3.9⇥ 10�4 2.0⇥ 10�2

bRMSE 3.0⇥ 10�2 5.1⇥ 10�3 5.5⇥ 10�1

fRMSE low 4.6⇥ 10�3 4.9⇥ 10�4 1.5⇥ 10�1

fRMSE mid 1.8⇥ 10�3 5.7⇥ 10�4 3.4⇥ 10�4

fRMSE high 4.7⇥ 10�4 2.9⇥ 10�4 1.5⇥ 10�5

coefficient because of the stability condition, known as Courant-Friedrich-Lewy (CFL) condition,
�t / �x2/⌘ in the case of the explicit method. Here �x,�t are time-step size and mesh size,
respectively, and ⌘ is the diffusion coefficient. This is much severer restriction than the inviscid case
whose CFL condition is �t / �x. Hence, we can conclude that ML methods could even be suitable
for solving for the problem with including strong-diffusive regime.

H ERROR COMPARISON WITH PDE SOLVER

To further assess the benefit of the trained baseline models, we generated the 2D diffusion-reaction
data using a PDE solver with higher resolution (512⇥ 512), and downsampled them to lower reso-
lution (128 ⇥ 128). These downsampled data were assumed as the ground truth (low discretization
error) and then were used to train the baseline models. The trained baseline model predictions were
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Table 6: Summary of the baseline models’ performance for different evaluation metrics: RMSE,
normalised RMSE (nRMSE), RMSE from conserved value (cRMSE), maximum error, RMSE at
the boundaries (bRMSE), RMSE in Fourier space at low (fRMSE low), medium (fRMSE mid),
and high frequency (fRMSE high) ranges applied to the Burgers’ equation with different parameter
values.

Baseline model
PDE Parameter Metric U-Net FNO PINN

Burgers’

⌫ = 0.001

RMSE 1.1⇥ 10�1 1.3⇥ 10�2 5.3⇥ 10�1

nRMSE 3.4⇥ 10�1 4.2⇥ 10�2 9.6⇥ 10�1

max error 5.7⇥ 10�1 2.8⇥ 10�1 8.2⇥ 10�1

cRMSE 5.9⇥ 10�2 8.5⇥ 10�4 5.1⇥ 10�1

bRMSE 1.0⇥ 10�1 9.3⇥ 10�3 5.2⇥ 10�1

fRMSE low 4.1⇥ 10�2 8.7⇥ 10�4 1.6⇥ 10�1

fRMSE mid 1.1⇥ 10�2 1.2⇥ 10�3 1.3⇥ 10�2

fRMSE high 1.5⇥ 10�3 7.7⇥ 10�4 4.7⇥ 10�4

⌫ = 0.01

RMSE 9.7⇥ 10�2 6.4⇥ 10�3 5.3⇥ 10�1

nRMSE 3.0⇥ 10�1 2.0⇥ 10�2 9.5⇥ 10�1

max error 5.4⇥ 10�1 1.5⇥ 10�1 7.5⇥ 10�1

cRMSE 4.0⇥ 10�2 7.2⇥ 10�4 4.7⇥ 10�1

bRMSE 9.7⇥ 10�2 7.6⇥ 10�3 4.8⇥ 10�1

fRMSE low 3.5⇥ 10�2 7.8⇥ 10�4 1.8⇥ 10�1

fRMSE mid 1.0⇥ 10�2 9.6⇥ 10�4 2.3⇥ 10�2

fRMSE high 9.6⇥ 10�4 5.2⇥ 10�4 1.2⇥ 10�3

⌫ = 0.1

RMSE 7.5⇥ 10�2 1.4⇥ 10�3 4.9⇥ 10�1

nRMSE 2.8⇥ 10�1 4.5⇥ 10�3 8.8⇥ 10�1

max error 4.6⇥ 10�1 3.0⇥ 10�2 6.6⇥ 10�1

cRMSE 3.0⇥ 10�2 4.5⇥ 10�4 4.7⇥ 10�1

bRMSE 1.0⇥ 10�1 2.5⇥ 10�3 3.4⇥ 10�1

fRMSE low 2.9⇥ 10�2 4.2⇥ 10�4 1.5⇥ 10�1

fRMSE mid 5.6⇥ 10�3 3.1⇥ 10�4 1.0⇥ 10�2

fRMSE high 8.4⇥ 10�4 5.4⇥ 10�5 5.1⇥ 10�4

⌫ = 1.0

RMSE 6.0⇥ 10�2 8.1⇥ 10�4 5.4⇥ 10�1

nRMSE 3.6⇥ 10�1 3.1⇥ 10�3 9.9⇥ 10�1

max error 3.9⇥ 10�1 5.9⇥ 10�3 7.1⇥ 10�1

cRMSE 6.4⇥ 10�2 2.4⇥ 10�4 5.3⇥ 10�1

bRMSE 6.6⇥ 10�2 8.6⇥ 10�4 6.1⇥ 10�1

fRMSE low 2.5⇥ 10�2 3.2⇥ 10�4 1.5⇥ 10�1

fRMSE mid 3.0⇥ 10�3 2.4⇥ 10�5 4.9⇥ 10�3

fRMSE high 5.9⇥ 10�4 4.9⇥ 10�6 2.6⇥ 10�4

compared against data that were generated using the same PDE solver but with coarser resolution
(higher discretization error). The error comparison is summarized in Table 17. We observed that
generating the data with lower resolution already accumulates high discretization error, relative to
the baseline model prediction error. However, further sensitivity analysis with regards to different
resolutions is required in future works to determine if the resolution is fine enough to be assumed as
the ground truth.

I VISUALIZATION OF MODEL PREDICTIONS

In this section, we present visualizations of the baseline model predictions, compared against the
generated datasets for the diffusion-sorption equation (Figure 11), 2D diffusion-reaction equation
(Figure 12, Figure 13, and Figure 14), the shallow-water equation (Figure 15, Figure 16, and Fig-
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Table 7: Summary of the baseline models’ performance for different evaluation metrics: RMSE,
normalised RMSE (nRMSE), RMSE from conserved value (cRMSE), maximum error, RMSE at
the boundaries (bRMSE), RMSE in Fourier space at low (fRMSE low), medium (fRMSE mid), and
high frequency (fRMSE high) ranges applied to the Darcy flow equation with different parameter
values.

Baseline model
PDE Parameter Metric U-Net FNO

DarcyFlow

� = 0.01

RMSE 4.0⇥ 10�3 8.0⇥ 10�3

nRMSE 1.1⇥ 10+0 2.5⇥ 10+0

max error 6.8⇥ 10�2 1.5⇥ 10�1

cRMSE 5.8⇥ 10�3 1.3⇥ 10�2

bRMSE 6.3⇥ 10�4 4.7⇥ 10�3

fRMSE low 2.5⇥ 10�3 5.2⇥ 10�3

fRMSE mid 1.3⇥ 10�4 1.5⇥ 10�4

fRMSE high 2.1⇥ 10�5 1.6⇥ 10�5

� = 0.1

RMSE 4.8⇥ 10�3 6.2⇥ 10�3

nRMSE 1.8⇥ 10�1 2.2⇥ 10�1

max error 7.0⇥ 10�2 8.9⇥ 10�2

cRMSE 6.0⇥ 10�3 7.7⇥ 10�3

bRMSE 8.6⇥ 10�4 5.0⇥ 10�3

fRMSE low 2.6⇥ 10�3 3.6⇥ 10�3

fRMSE mid 1.9⇥ 10�4 2.6⇥ 10�4

fRMSE high 4.4⇥ 10�5 4.5⇥ 10�5

� = 1.0

RMSE 6.4⇥ 10�3 1.2⇥ 10�2

nRMSE 3.3⇥ 10�2 6.4⇥ 10�2

max error 9.0⇥ 10�2 1.1⇥ 10�1

cRMSE 6.0⇥ 10�3 1.1⇥ 10�2

bRMSE 3.5⇥ 10�3 5.5⇥ 10�3

fRMSE low 3.0⇥ 10�3 5.2⇥ 10�3

fRMSE mid 3.4⇥ 10�4 5.1⇥ 10�4

fRMSE high 1.3⇥ 10�4 1.5⇥ 10�4

� = 10.0

RMSE 1.4⇥ 10�2 2.1⇥ 10�2

nRMSE 8.2⇥ 10�3 1.2⇥ 10�2

max error 2.4⇥ 10�1 3.2⇥ 10�1

cRMSE 9.9⇥ 10�3 1.5⇥ 10�2

bRMSE 9.4⇥ 10�3 1.6⇥ 10�2

fRMSE low 5.8⇥ 10�3 8.3⇥ 10�3

fRMSE mid 9.8⇥ 10�4 1.3⇥ 10�3

fRMSE high 3.6⇥ 10�4 5.7⇥ 10�4

� = 100.0

RMSE 7.3⇥ 10�2 1.1⇥ 10�1

nRMSE 4.4⇥ 10�3 6.4⇥ 10�3

max error 1.7⇥ 10+0 2.1⇥ 10+0

cRMSE 5.1⇥ 10�2 8.9⇥ 10�2

bRMSE 4.6⇥ 10�2 7.9⇥ 10�2

fRMSE low 2.9⇥ 10�2 4.6⇥ 10�2

fRMSE mid 5.3⇥ 10�3 7.6⇥ 10�3

fRMSE high 2.5⇥ 10�3 3.6⇥ 10�3

ure 17), 1D Advection equation Figure 18, 1D Burgers equation Figure 19, 1D Reaction-Diffusion
equation Figure 20, 1D compressible NS equations Figure 21, 2D Darcy flow Figure 22, and 2D
compressible NS equations Figure 23.
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Table 8: Summary of the baseline models’ performance for different evaluation metrics: RMSE,
normalised RMSE (nRMSE), RMSE from conserved value (cRMSE), maximum error, RMSE at
the boundaries (bRMSE), RMSE in Fourier space at low (fRMSE low), medium (fRMSE mid), and
high frequency (fRMSE high) ranges applied to the 1d diffusion-reaction equation with different
parameter values.

Baseline model
PDE Parameter Metric U-Net FNO PINN

ReacDiff

⌫ = 0.5, ⇢ = 1.0

RMSE 3.1⇥ 10�3 6.3⇥ 10�4 4.5⇥ 10�2

nRMSE 6.0⇥ 10�3 1.4⇥ 10�3 8.0⇥ 10�2

max error 1.8⇥ 10�2 8.7⇥ 10�3 7.6⇥ 10�2

cRMSE 2.5⇥ 10�3 1.3⇥ 10�3 4.3⇥ 10�2

bRMSE 3.7⇥ 10�3 6.7⇥ 10�4 7.5⇥ 10�2

fRMSE low 1.1⇥ 10�3 4.1⇥ 10�4 1.4⇥ 10�2

fRMSE mid 1.8⇥ 10�4 9.1⇥ 10�6 2.4⇥ 10�4

fRMSE high 1.8⇥ 10�5 1.7⇥ 10�6 3.7⇥ 10�6

⌫ = 0.5, ⇢ = 10.0

RMSE 6.2⇥ 10�8 0.0⇥ 10+0 1.4⇥ 10�2

nRMSE 6.5⇥ 10�8 0.0⇥ 10+0 1.4⇥ 10�2

max error 6.2⇥ 10�8 0.0⇥ 10+0 2.6⇥ 10�2

cRMSE 6.2⇥ 10�8 0.0⇥ 10+0 6.2⇥ 10�3

bRMSE 6.2⇥ 10�8 0.0⇥ 10+0 2.3⇥ 10�2

fRMSE low 1.6⇥ 10�8 0.0⇥ 10+0 4.3⇥ 10�3

fRMSE mid 0.0⇥ 10+0 0.0⇥ 10+0 2.5⇥ 10�4

fRMSE high 0.0⇥ 10+0 0.0⇥ 10+0 2.9⇥ 10�6

⌫ = 2.0, ⇢ = 1.0

RMSE 2.3⇥ 10�3 2.9⇥ 10�4 3.9⇥ 10�1

nRMSE 4.5⇥ 10�3 7.0⇥ 10�4 7.3⇥ 10�1

max error 2.0⇥ 10�2 4.2⇥ 10�3 3.9⇥ 10�1

cRMSE 1.9⇥ 10�3 6.4⇥ 10�4 3.9⇥ 10�1

bRMSE 1.8⇥ 10�3 4.1⇥ 10�4 3.9⇥ 10�1

fRMSE low 7.7⇥ 10�4 1.9⇥ 10�4 9.7⇥ 10�2

fRMSE mid 1.7⇥ 10�4 9.2⇥ 10�6 6.2⇥ 10�5

fRMSE high 2.6⇥ 10�5 1.8⇥ 10�6 3.4⇥ 10�6

⌫ = 2.0, ⇢ = 10.0

RMSE 3.1⇥ 10�8 6.2⇥ 10�8 3.2⇥ 10�2

nRMSE 3.2⇥ 10�8 6.5⇥ 10�8 3.3⇥ 10�2

max error 3.1⇥ 10�8 6.2⇥ 10�8 3.2⇥ 10�2

cRMSE 3.1⇥ 10�8 6.2⇥ 10�8 3.2⇥ 10�2

bRMSE 3.1⇥ 10�8 6.2⇥ 10�8 3.1⇥ 10�2

fRMSE low 7.8⇥ 10�9 1.6⇥ 10�8 8.0⇥ 10�3

fRMSE mid 0.0⇥ 10+0 0.0⇥ 10+0 6.4⇥ 10�6

fRMSE high 0.0⇥ 10+0 0.0⇥ 10+0 2.7⇥ 10�7

J VISUALIZATION OF INITIAL CONDITIONS

In this section, we provide a collection of initial condition visualizations for each problem. Figure 24
shows different radius of the initial perturbation used as the initial condition for five different samples
of the 2D shallow-water equation data. Figure 25 shows different random uniform initial condition
used for five different samples of the 1D diffusion-sorption equation data. Figure 26 shows different
random noise used as the initial condition for five different samples of the 2D diffusion-reaction
equation data.

In Figure 27, we plotted the several samples of the initial condition for 1D Advection and Burg-
ers equations. Figure 28 is also the similar plot of the initial condition for 1D Diffusion-Reaction
equation. Note that in this case the value of the scalar function is limited between 0 to 1 because of
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Table 9: Summary of the baseline models’ performance for different evaluation metrics: RMSE,
normalised RMSE (nRMSE), RMSE from conserved value (cRMSE), maximum error, RMSE at
the boundaries (bRMSE), RMSE in Fourier space at low (fRMSE low), medium (fRMSE mid), and
high frequency (fRMSE high) ranges applied to the 1d compressible Navier-Stokes equation with
different parameter values.

Baseline model
PDE Parameter Metric U-Net FNO

1DCFD

⌘ = ⇣ = 0.01 Rand
periodic

RMSE 9.9⇥ 10�1 2.7⇥ 10�1

nRMSE 3.6⇥ 10�1 9.5⇥ 10�2

max error 7.8⇥ 10+0 4.1⇥ 10+0

cRMSE 3.6⇥ 10�1 5.0⇥ 10�2

bRMSE 1.0⇥ 10+0 2.2⇥ 10�1

fRMSE low 3.6⇥ 10�1 7.3⇥ 10�2

fRMSE mid 1.2⇥ 10�1 5.5⇥ 10�2

fRMSE high 9.2⇥ 10�3 3.7⇥ 10�3

⌘ = ⇣ = 0.1 Rand
periodic

RMSE 6.6⇥ 10�1 9.3⇥ 10�2

nRMSE 7.2⇥ 10�1 6.8⇥ 10�2

max error 5.3⇥ 10+0 1.5⇥ 10+0

cRMSE 3.5⇥ 10�1 2.7⇥ 10�2

bRMSE 6.8⇥ 10�1 7.6⇥ 10�2

fRMSE low 2.5⇥ 10�1 2.8⇥ 10�2

fRMSE mid 5.7⇥ 10�2 1.3⇥ 10�2

fRMSE high 7.7⇥ 10�3 2.0⇥ 10�3

inviscid Rand periodic

RMSE 1.7⇥ 10+1 4.7⇥ 10�1

nRMSE 1.1⇥ 10+0 1.2⇥ 10�1

max error 2.0⇥ 10+1 7.1⇥ 10+0

cRMSE 1.7⇥ 10+1 6.7⇥ 10�2

bRMSE 1.6⇥ 10+1 3.5⇥ 10�1

fRMSE low 5.3⇥ 10�1 4.5⇥ 10+0

fRMSE mid 1.9⇥ 10�1 1.6⇥ 10�1

fRMSE high 2.1⇥ 10�2 2.6⇥ 10�3

inviscid Rand
Outgoing

RMSE 1.6⇥ 10+0 2.6⇥ 10�1

nRMSE 1.1⇥ 10+1 6.7⇥ 10+0

max error 1.2⇥ 10+1 4.3⇥ 10+0

cRMSE 1.5⇥ 10+0 1.5⇥ 10�1

bRMSE 1.8⇥ 10+0 3.6⇥ 10�1

fRMSE low 6.8⇥ 10�1 9.0⇥ 10�2

fRMSE mid 1.2⇥ 10�1 4.5⇥ 10�2

fRMSE high 1.6⇥ 10�2 6.7⇥ 10�3

inviscid Shock
Outgoing

RMSE 4.1⇥ 10�1 1.6⇥ 10�1

nRMSE 1.7⇥ 10�1 4.7⇥ 10�2

max error 6.6⇥ 10+0 3.8⇥ 10+0

cRMSE 2.1⇥ 10�1 5.3⇥ 10�2

bRMSE 5.6⇥ 10�1 2.4⇥ 10�1

fRMSE low 1.4⇥ 10�1 3.7⇥ 10�2

fRMSE mid 5.3⇥ 10�2 2.6⇥ 10�2

fRMSE high 1.1⇥ 10�2 6.7⇥ 10�3

the form of the source term. Finally, we provided several samples of the 1D and 2D CFD cases in
Figure 29 and Figure 30.
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Table 10: Summary of the baseline models’ performance for different evaluation metrics: RMSE,
normalised RMSE (nRMSE), RMSE from conserved value (cRMSE), maximum error, RMSE at
the boundaries (bRMSE), RMSE in Fourier space at low (fRMSE low), medium (fRMSE mid), and
high frequency (fRMSE high) ranges applied to the 2d compressible Navier-Stokes equation with
different parameter values (first part).

Baseline model
PDE Parameter Metric U-Net FNO

2DCFD

M = 0.1, inviscid
Rand periodic

RMSE 4.0⇥ 10�1 2.6⇥ 10�1

nRMSE 6.6⇥ 10�1 2.8⇥ 10�1

max error 5.1⇥ 10+0 4.2⇥ 10+0

cRMSE 1.5⇥ 10�1 1.6⇥ 10�2

bRMSE 4.3⇥ 10�1 2.6⇥ 10�1

fRMSE low 1.1⇥ 10�1 4.5⇥ 10�2

fRMSE mid 4.8⇥ 10�2 4.4⇥ 10�2

fRMSE high 1.7⇥ 10�2 1.6⇥ 10�2

M = 0.1, ⌘ = ⇣ =
0.01 Rand periodic

RMSE 9.1⇥ 10�2 2.3⇥ 10�2

nRMSE 7.1⇥ 10�1 1.7⇥ 10�1

max error 1.1⇥ 10+0 4.0⇥ 10�1

cRMSE 3.6⇥ 10�2 5.3⇥ 10�3

bRMSE 1.1⇥ 10�1 2.2⇥ 10�2

fRMSE low 2.7⇥ 10�2 5.7⇥ 10�3

fRMSE mid 8.2⇥ 10�3 2.7⇥ 10�3

fRMSE high 2.6⇥ 10�3 6.3⇥ 10�4

M = 0.1, ⌘ = ⇣ = 0.1
Rand periodic

RMSE 4.7⇥ 10�2 4.9⇥ 10�3

nRMSE 5.1⇥ 10+0 3.6⇥ 10�1

max error 6.7⇥ 10�1 8.7⇥ 10�2

cRMSE 3.2⇥ 10�2 3.2⇥ 10�3

bRMSE 6.6⇥ 10�2 4.3⇥ 10�3

fRMSE low 1.3⇥ 10�2 1.4⇥ 10�3

fRMSE mid 4.2⇥ 10�3 4.3⇥ 10�4

fRMSE high 2.2⇥ 10�3 1.4⇥ 10�4

M = 1.0, inviscid
Rand periodic

RMSE 1.5⇥ 10+0 1.4⇥ 10+0

nRMSE 4.7⇥ 10�1 3.5⇥ 10�1

max error 1.6⇥ 10+1 1.6⇥ 10+1

cRMSE 4.8⇥ 10�1 1.6⇥ 10�1

bRMSE 1.5⇥ 10+0 1.3⇥ 10+0

fRMSE low 4.8⇥ 10�1 4.0⇥ 10�1

fRMSE mid 1.2⇥ 10�1 1.2⇥ 10�1

fRMSE high 3.9⇥ 10�2 3.9⇥ 10�2
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Table 11: Summary of the baseline models’ performance for different evaluation metrics: RMSE,
normalised RMSE (nRMSE), RMSE from conserved value (cRMSE), maximum error, RMSE at
the boundaries (bRMSE), RMSE in Fourier space at low (fRMSE low), medium (fRMSE mid), and
high frequency (fRMSE high) ranges applied to the 2d compressible Navier-Stokes equation with
different parameter values (second part).

Baseline model
PDE Parameter Metric U-Net FNO

2DCFD

M = 1.0, ⌘ = ⇣ =
0.01 Rand periodic

RMSE 3.4⇥ 10�1 1.2⇥ 10�1

nRMSE 3.6⇥ 10�1 9.6⇥ 10�2

max error 3.7⇥ 10+0 1.7⇥ 10+0

cRMSE 1.1⇥ 10�1 1.8⇥ 10�2

bRMSE 3.6⇥ 10�1 1.3⇥ 10�1

fRMSE low 1.1⇥ 10�1 3.3⇥ 10�2

fRMSE mid 2.7⇥ 10�2 1.5⇥ 10�2

fRMSE high 6.2⇥ 10�3 3.6⇥ 10�3

M = 1.0, ⌘ = ⇣ = 0.1
Rand periodic

RMSE 1.1⇥ 10�1 1.5⇥ 10�2

nRMSE 9.2⇥ 10�1 9.8⇥ 10�2

max error 1.3⇥ 10+0 2.4⇥ 10�1

cRMSE 4.8⇥ 10�2 4.8⇥ 10�3

bRMSE 1.5⇥ 10�1 1.7⇥ 10�2

fRMSE low 3.0⇥ 10�2 3.2⇥ 10�3

fRMSE mid 1.3⇥ 10�2 1.5⇥ 10�3

fRMSE high 4.3⇥ 10�3 8.9⇥ 10�4

M = 0.1, inviscid
Turb periodic

RMSE 3.3⇥ 10�1 2.8⇥ 10�1

nRMSE 1.9⇥ 10�1 1.6⇥ 10�1

max error 2.2⇥ 10+0 1.8⇥ 10+0

cRMSE 1.5⇥ 10�2 1.2⇥ 10�2

bRMSE 3.6⇥ 10�1 2.8⇥ 10�1

fRMSE low 6.5⇥ 10�2 5.0⇥ 10�2

fRMSE mid 3.2⇥ 10�2 3.1⇥ 10�2

fRMSE high 8.5⇥ 10�3 6.5⇥ 10�3

M = 1.0, inviscid
Turb periodic

RMSE 9.5⇥ 10�2 9.2⇥ 10�2

nRMSE 1.4⇥ 10�1 1.3⇥ 10�1

max error 8.2⇥ 10�1 7.9⇥ 10�1

cRMSE 6.5⇥ 10�3 4.3⇥ 10�3

bRMSE 1.1⇥ 10�1 9.7⇥ 10�1

fRMSE low 1.3⇥ 10�2 1.1⇥ 10�2

fRMSE mid 1.2⇥ 10�2 1.2⇥ 10�2

fRMSE high 5.2⇥ 10�3 5.2⇥ 10�3
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Table 12: Summary of the baseline models’ performance for different evaluation metrics: RMSE,
normalised RMSE (nRMSE), RMSE from conserved value (cRMSE), maximum error, RMSE at
the boundaries (bRMSE), RMSE in Fourier space at low (fRMSE low), medium (fRMSE mid), and
high frequency (fRMSE high) ranges applied to the 3d compressible Navier-Stokes equation with
different parameter values.

Baseline model
PDE Parameter Metric U-Net FNO

3DCFD

M = 1.0 inviscid
Rand periodic

RMSE 2.2⇥ 10+0 6.0⇥ 10�1

nRMSE 1.0⇥ 10+0 3.7⇥ 10�1

max error 9.0⇥ 10+0 3.6⇥ 10+0

cRMSE 2.3⇥ 10+0 8.1⇥ 10�2

bRMSE 2.1⇥ 10+0 6.0⇥ 10�1

fRMSE low 7.3⇥ 10�1 1.1⇥ 10�1

fRMSE mid 7.6⇥ 10�2 4.4⇥ 10�2

fRMSE high 2.3⇥ 10�2 9.3⇥ 10�3

M = 1.0 inviscid
Turb periodic

RMSE 8.1⇥ 10�2 8.2⇥ 10�2

nRMSE 2.3⇥ 10�1 2.4⇥ 10�1

max error 5.0⇥ 10�1 4.5⇥ 10�1

cRMSE 7.3⇥ 10�3 2.8⇥ 10�3

bRMSE 9.9⇥ 10�2 8.6⇥ 10�2

fRMSE low 1.1⇥ 10�2 7.2⇥ 10�3

fRMSE mid 8.0⇥ 10�3 9.4⇥ 10�3

fRMSE high 1.7⇥ 10�3 4.5⇥ 10�3

Table 13: System configuration 1

CPU 2 ⇥ AMD EPYC 7742
GPU 1 ⇥ NVIDIA Volta V100

Software PyTorch@1.11, CUDA@11.3

Table 14: Comparison of computation time between the PDE solver used to generate a single data
sample and single forward runs of FNO, U-Net, and PINN. Training time of the baseline models for
one epoch are also presented in this table. The unit used for the time is seconds.

PDE Resolution Model Training time ( s
epoch ) Epochs Inference time (s)

Diffusion-
sorption 1 0241

PDE solver – – 59.83
FNO 97.52 500 0.32
U-Net 96.75 500 0.32
PINN 0.011 15 000 0.0027

2D diffusion-
reaction

1282
PDE solver – – 2.21
FNO 108.28 500 0.40
U-Net 83.19 500 0.61
PINN 0.022 100 0.0077

Shallow-water
equation 1282

PDE solver – – 0.62
FNO 105.16 500 0.37
U-Net 83.32 500 0.56
PINN 0.041 15 000 0.00673

Table 15: System configuration 2

GPU 1 ⇥ NVIDIA GeForce RTX 3090
Software (ML methods) PyTorch@1.11, CUDA@11.3
Software (simulations) JAX@0.2.26, CUDA@11.3
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Table 16: Comparison of computation time between the PDE solver used to generate a single data
sample and single forward runs of FNO, U-Net. Training time of the baseline models for one epoch
are also presented in this table. The unit used for the time is seconds.

PDE Resolution Model Training time ( s
epoch ) Epochs Inference time (s)

3D CFD 643
PDE solver – – 60.07
FNO 24.77 500 0.14
U-Net 62.22 500 0.27

Figure 10: Plots inference time for 2D/3D CFD cases.

Table 17: Error comparison between of U-Net, FNO, and PINN prediction, as well as low-resolution
PDE solver data, against the high-resolution PDE solver data (assumed as the ground truth) for the
2D diffusion-reaction scenario.

Error metric U-Net FNO PINN low-res PDE solver

RMSE 6.1⇥ 10�2 8.1⇥ 10�3 1.9⇥ 10�1 1.8⇥ 10�1

nRMSE 8.4⇥ 10�1 1.2⇥ 10�1 1.6⇥ 10+0 2.8⇥ 10+0

max error 1.9⇥ 10�1 9.1⇥ 10�2 5.0⇥ 10�1 8.9⇥ 10�1

cRMSE 3.9⇥ 10�2 1.7⇥ 10�3 1.3⇥ 10�1 4.9⇥ 10�2

bRMSE 7.8⇥ 10�2 2.7⇥ 10�2 2.2⇥ 10�1 2.1⇥ 10�1

fRMSE low 1.7⇥ 10�2 8.2⇥ 10�4 5.7⇥ 10�2 4.9⇥ 10�2

fRMSE mid 5.4⇥ 10�3 7.7⇥ 10�4 1.3⇥ 10�2 2.2⇥ 10�2

fRMSE high 6.8⇥ 10�4 4.1⇥ 10�4 1.5⇥ 10�3 3.4⇥ 10�3

Figure 11: Visualization of the diffusion-sorption equation (a) data, (b) FNO prediction, and (c)
U-Net prediction.
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Figure 12: Visualization of the time evolution of the 2D diffusion-reaction equation data.

Figure 13: Visualization of the time evolution of the 2D diffusion-reaction equation predicted using
FNO.

Figure 14: Visualization of the time evolution of the 2D diffusion-reaction equation predicted using
U-Net.

Figure 15: Visualization of the time evolution of the shallow water equation data.

Figure 16: Visualization of the time evolution of the shallow water equation predicted using FNO.
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Figure 17: Visualization of the time evolution of the shallow water equation predicted using U-Net.

Figure 18: Plots of the predictions for 1D Advection equation.

Figure 19: Plots of the predictions for 1D Burgers equation.

Figure 20: Plots of the predictions for 1D Reaction-Diffusion equation.
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Figure 21: Plots of the predictions of density for 1D compressible NS equations.

Figure 22: Plots of the predictions for 2D Darcy Flow.

Figure 23: Plots of the predictions of the density for 2D compressible NS equations at the final
time-step.

Figure 24: Visualization of the different radius of the initial perturbation used for the 2D shallow-
water equations data.

Figure 25: Visualization of the random uniform initial conditions used for the 1D diffusion-sorption
equations data.
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Figure 26: Visualization of the random initial conditions used for the 2D diffusion-reaction equa-
tions data.

Figure 27: Visualization of the random initial conditions used for the 1D Advection/Burgers equa-
tions data.

Figure 28: Visualization of the random initial conditions used for the 1D Reaction-Diffusion equa-
tions data.

Figure 29: Visualization of the random initial conditions used for the 1D CFD data. The different
colors mean the different samples.

Figure 30: Visualization of the initial conditions of density used for the 2D CFD data.

34


	Motivation
	PDEBench: A Benchmark for Scientific Machine Learning
	Overview of Datasets and PDEs
	Overview of Metrics
	Data Format, Benchmark Access, Maintenance, and Extensibility

	A Selection of Experiments
	Conclusions
	Related Work
	Detailed metrics description
	Inverse Problem Metrics

	Training Protocol and Hyperparameters
	Inverse problem

	Detailed Problem Description
	1D Advection Equation
	1D Diffusion-Reaction Equation
	Burgers equation
	Darcy Flow
	Compressible Navier-Stokes equation
	Inhomogenous, incompressible Navier-Stokes
	2D Shallow-Water Equations
	Diffusion-Sorption Equation
	2D Diffusion-Reaction Equation
	Gradient-Based Inverse Method

	Detailed Baseline Score
	Detailed Runtime Comparison
	Resolution Sensitivity of Inference Time
	Error Comparison with PDE Solver
	Visualization of Model Predictions
	Visualization of Initial Conditions

