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ABSTRACT

In real-world operation of machine learning systems, monitoring the performance
of prediction models is crucial. However, in these scenarios, actual values of
target variables are observed with a delay, making real-time evaluation of predic-
tion performance impossible. In this paper, we propose a novel one-step Mean
Squared Error (MSE) estimation method that directly and tightly minimizes the
upper bound of the MSE estimation error for regression tasks. Due to its direct
estimation, our method is more efficient at estimating MSE compared to the con-
ventional two-step approach, which approximates the mean and variance of the
target variable. We also provide generalization error bounds for our proposed
method based on a theoretical analysis. Our experiments demonstrate the effec-
tiveness of our method, outperforming existing methods on both synthetic and real
data sets.

1 INTRODUCTION

Machine learning (ML) has become widespread in real-world applications. To maximize the benefits
of predictions made by machine learning models and minimize the damage caused by prediction
errors, it is crucial to continuously monitor the predictive performance of these models (Kreuzberger
et al., 2023; Ruf et al., 2021; Testi et al., 2022; Symeonidis et al., 2022). However, in real-world
scenarios, the actual values of objective variables often experience a delay before observation (Plasse
& Adams, 2016; Grzenda et al., 2020). Consequently, estimating the predictive performance of the
model is essential for quality control in ML systems.

Estimation of prediction performance is commonly performed for classification tasks. Several works
based on distribution shifts (Elsahar & Gallé, 2019; Do et al., 2021; Deng & Zheng, 2021; Schelter
et al., 2020; Techapanurak & Okatani, 2021; Chen et al., 2021b) and ”check” models, which are used
to verify the correctness of predictions made by the prediction model, have been proposed (Chuang
et al., 2020; Chen et al., 2021a). However, these methods pose challenges when applied to regression
tasks because regression models deal with continuous target values, whereas classification models
handle discrete target values.

One approach to estimating the Mean Squared Error (MSE), a prevalent evaluation metric for re-
gression tasks, involves approximating the mean and standard deviation (or the confidence interval,
the uncertainty) of the target variable (y) for each of input variables (x). Subsequently, MSE can
be estimated by averaging the squared differences between the approximated mean and the predic-
tions made by the prediction model, plus the squared value of the approximated standard deviations
(i.e., variances) for the evaluation inputs. Mean and variance estimation models (Nix & Weigend,
1994; Skafte et al., 2019) and uncertainty estimation methods (Lakshminarayanan et al., 2017; Wang
et al., 2019; Liu et al., 2019; Rasmussen & Williams, 2005) are suitable for this MSE estimation ap-
proach. However, this approach requires learning two separate models for estimating the MSE: one
for means and the other for standard deviations. Generally, we can compute the MSE of a predic-
tion model with the mean and standard deviation for each input, but we cannot compute the mean
and standard deviation using only the MSE or even the squared errors for each input. This im-
plies that estimating means and standard deviations is more challenging than directly estimating the
MSE. Following Vapnik’s principle (Vapnik, 1998), which states that when solving a problem with
limited information, one should not solve a more general problem than the original problem as an
intermediate step, this two-step approach should be avoided due to its added complexity.
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In this paper, we propose a novel one-step approach that directly estimates MSE based on the aver-
age of squared differences between the predictions made by the prediction model and those made
by our ”check” model. We derive an objective function that tightly bounds the MSE estimation
error from above and train our check model by minimizing the objective. Our method effectively
estimates MSE more efficiently than conventional two-step approaches due to its one-step direct es-
timation. Furthermore, we provide a theoretical analysis regarding the upper bound of our method’s
generalization error. We also propose a regularization term which aids in the learning of our check
model. Experiments conducted using both synthetic and real-world benchmark data sets confirm
that our method achieves the lowest MSE estimation error for all data sets.

Our key contributions are summarized as follows:

• We formulate the MSE estimation problem and propose a one-step estimation method that
directly and tightly minimizes the MSE estimation error.

• We theoretically analyze our method and provide an upper bound of the generalization error
for our MSE estimation approach.

• We conduct MSE estimation experiments using both synthetic and real-world data sets, em-
pirically demonstrating the superior performance of our method compared to the conven-
tional two-step approaches.

2 PRELIMINARY

In this section, we introduce the problem definition and relevant previous methods briefly.

2.1 PROBLEM FORMULATION

We consider a supervised regression problem; the input space is X ⊆ Rd with a positive integer d
and the output space is Y ⊆ R. Let Dtr = {(xtr

i , y
tr
i )}ni=1 be training samples drawn from a training

distribution whose density is ptr(x, y) in an i.i.d. fashion. A prediction model f : X → Y is trained
using Dtr in a training phase.

In an operational phase after the training phase, the prediction model f is used to predict output
values of corresponding inputs Uop = {xop}mi=1 drawn from an operational distribution pop(x).
The mean squared error (MSE) of f over the joint operational distribution pop(x, y) is defined as
the expectation as follows:

MSE(f) := Epop(x,y)

[
(y − f(x))2

]
, (1)

where Ep(x,y)[g(x, y)] computes the expectation of g(x, y) over the density p(x, y) as∫
X×Y g(x, y)dp(x, y). We intend to estimate MSE(f) after the prediction and before observing

the actual values of target variables, i.e., estimate MSE(f) using f,Dtr, and Uop. However, MSE
estimation without any assumption is infeasible. Hence, we employ the covariate shift assump-
tion, which is a prevalent setting for machine learning in the wild. The problem definition is then
formalized as follows.
Definition 1 (MSE estimation problem). Given a regression model f : X → Y trained with training
data Dtr = {(xtr

i , y
tr
i )}ni=1, i.i.d. samples from a training distribution ptr(x, y) = ptr(x)p(y|x),

and operational data Uop = {xop
i }mi=1, i.i.d. samples from an operational distribution pop(x), the

task is to estimate MSE(f) with pop(x, y) = pop(x)p(y|x).

2.2 RELATED WORKS

We categorize the related works into three groups: mean and variance estimation methods, uncer-
tainty estimation methods, and accuracy estimation methods for classification.

Mean and variance estimation methods. Eq. (1) can be expanded as

MSE(f) = Epop(x)

[
Ep(y|x)

[
(y − f(x))2

]]
= Epop(x)

[
(u(x)− f(x))2 + σ(x)2

]
, (2)

where we define u(x) := Ep(y|x)[y] and σ(x)2 := Ep(y|x)[(y − u(x))2]. Based on the expansion,
one can estimate MSE by approximating both u(x) and σ(x). In other words, MSE can be esti-
mated by a two-step approach; one step for computing u(x) and the other step for computing σ(x).
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Nix & Weigend (1994) propose to train a mean and variance networks, where two networks each
learns mean and variance, which jointly trained by maximizing the log likelihood for the training
data. Skafte et al. (2019) further adopt (a) locally-aware mini-batching scheme with adjusted sam-
ple weights, (b) mean and variance split training, (c) estimating Inv-Gamma distribution for σ(x)
instead of the point estimation of σ(x), and (d) extrapolation architecture. These methods success-
fully captures means and variances when abundant numbers of samples are available. However, as
described in the introduction, the problem is that estimating means and variances is rather difficult
problem than solely solving the MSE estimation problem. According to Vapnik’s principle, this
approach should be avoided.

Uncertainty estimation methods. Recently, uncertainty estimation methods have been actively
studied in the field of machine learning (Abdar et al., 2021). Monte Carlo dropout (Gal & Ghahra-
mani, 2016) employs dropout (Srivastava et al., 2014) as an approximation of Bayesian neural
networks and is utilized for uncertainty estimation (Wang et al., 2019; Liu et al., 2019). Laksh-
minarayanan et al. (2017) proposed a technique called DeepEnsemble, in which neural networks
are trained with varying random initializations and then ensembled to achieve a high capability for
estimating uncertainty. Malinin et al. (2021) also investigated uncertainty estimation for gradient
boosting models, proposing an ensemble method for gradient boosting decision trees. Gaussian pro-
cesses (Rasmussen & Williams, 2005) are considered to be part of uncertainty estimation methods
with built-in uncertainty estimation. These methods output the mean and uncertainty, which may be
related to the variance. Consequently, we can use Eq. (2) to estimate the MSE. However, uncertainty
in areas where p(x) is small is often very high, capturing epistemic uncertainty (a.k.a knowledge un-
certainty), and this high uncertainty may be unnecessary and potentially worsen the MSE estimation
error.

Accuracy estimation methods for classification. Similarly to the MSE estimation problem, the
accuracy estimation problem has been studied for classification tasks. Several works have proposed
estimating accuracy based on the distribution shift of the input variables between the training and
operational data (Elsahar & Gallé, 2019; Do et al., 2021; Deng & Zheng, 2021; Schelter et al., 2020;
Techapanurak & Okatani, 2021). Chen et al. (2021b) employed domain adaptation methods for
better estimation. Recently, the use of “check” models, which verify the predictions of the model,
has been proposed and achieved superior performance in accuracy estimation for image and text
classification tasks compared to the methods based on distribution shifts (Chuang et al., 2020; Chen
et al., 2021a). These accuracy estimation methods cannot be directly applied to the MSE estimation
problem due to the differences in the nature of classification and regression tasks, i.e., discrete versus
continuous target variables.

3 PROPOSED METHOD

In this section, we introduce a new method to estimate MSE by directly minimizing the MSE esti-
mation error. Furthermore, through our theoretical analysis, we present a generalization error bound
for this approach.

3.1 UPPER BOUNDING THE MSE ESTIMATION ERROR

We estimate MSE by the expectation over p(x) of the squared error between h(x) and f(x) as

M̂SE(f ;h) = Epop(x)

[
2(h(x)− f(x))2

]
, (3)

which replace the variable y in Eq. (1) with the output of another model h. We call h as “check
model” in this paper. The MSE estimation error E(h) is then defined as the absolute error between
the true MSE MSE(f) and the estimated MSE M̂SE(f ;h).

E(h) :=
∣∣∣MSE(f)− M̂SE(f)

∣∣∣ (4)

We aim at minimizing E(h) with regard to h. In the followings, we derive a training objective for
h which directly minimizes E(h). Our analysis is based on an inequality regarding the squared
expectation and the expectation of the squared values as stated in Lemma 1.
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Lemma 1. The following inequality holds:

(E[x])2 ≤ E
[
s(x)x2

]
≤ E

[
x2

]
≤ 2E

[
s(x)x2

]
, (5)

where s(x) := 1(x≥0∧E[(x)+2]≥E[(−x)+2])∨(x<0∧E[(x)+2]<E[(−x)+2]) and (x)+2 := max(0, x)2 .

Note 1c denotes the indicator function and 1c = 1 if the condition c is true, otherwise 0. The proof
is based on a direct calculation using Jensen’s inequality and its details are presented in Appendix.

The MSE estimation error E(h) can be rewritten as

E(h)2 =
∣∣Epop(x,y)

[
(y − f)2

]
− Epop(x)

[
2(h− f)2

]∣∣2 =
(
Epop(x,y) [ef (h,x, y)]

)2
(6)

where ef (h,x, y) := (y − f(x))2 − 2(h(x) − f(x))2 is the difference between the squared error
of f for sample (x, y) and its estimation 2(h(x) − f(x))2 computed by h. We apply Lemma 1 to
Eq. (6) and obtain the following theorem.
Theorem 2. Let us define K(h),K+(h),K−(h) and K∗(h) as K(h) = Epop(x,y)

[
ef (h,x, y)

2
]
,

K+(h) = Epop(x,y)

[
(ef (h,x, y))

+2
]
, K−(h) = Epop(x,y)

[
(−ef (h,x, y))

+2
]
, and K∗(h) =

Epop(x,y)

[
s(ef (h,x, y))ef (h,x, y)

2
]
, where s(t) = 1(t≥0∧K+(h)≥K−(h))∨(t<0∧K+(h)<K−(h)).

Then, the MSE estimation error E(h) is bounded as

E(h)2 ≤ K∗(h) ≤ K(h) ≤ 2K∗(h). (7)

We omit the proof since the theorem is obvious. Theorem 2 indicates that the MSE estimation error
is upper bounded by K∗(h) and this bound is tighter than the bound K(h), which is obtained by the
naive derivation by Jensen’s inequality.

K∗(h) is a promising objective function to train h for the MSE estimation problem. In practice,
we minimize the empirical version of K∗(h). However, it requires samples (xop, yop) over the
operational density pop(x, y) and the target variables yop are unavailable by the definition of the
problem. Hence, we exploit Dtr to train h.1 Note that using Dtr instead for Dop is practically valid
under the absolutely continuous assumption where ptr(x) = 0 ⇒ pop(x) = 0 (Fang et al., 2020)
and a model can globally fit to the data (Quionero-Candela et al., 2009). The training objective is
thus defined as

K̂∗(h;Dtr) :=
1

|Dtr|
∑

(x,y∈Dtr)

ŝ(ef (h,x, y)))ef (h,x, y)
2, (8)

where ŝ(t) := 1(t≥0∧K̂+(h;Dtr)≥K̂−(h;Dtr))∨(x<0∧K̂+(h;Dtr)<K̂−(h;Dtr)) with

K̂+(h;Dtr) :=
1

|Dtr|
∑

(x,y∈Dtr)

(ef (h,x, y))
+2

, (9)

K̂−(h;Dtr) :=
1

|Dtr|
∑

(x,y∈Dtr)

(−ef (h,x, y))
+2

. (10)

We train h by minimizing K̂∗(h;Dtr) and predict MSE using Uop as

M̂SE(f ;h,Uop) :=
1

|Uop|
∑

xop∈Uop

2 (h(xop)− f(xop))
2
. (11)

Remark 3. Our method of training h with minimizing K̂∗(h;Dtr) is consistent against any overfit-
ting of f . Suppose that f is fully overfitting to Dtr, i.e., for any (x, y) ∈ Dtr, f(x) = y holds, and let
u(x) be Ep(y|x)[y] and σ(x) be

√
Ep(y|x)[(y − u(x))2]. On one hand, the MSE of f is approximated

as MSE(f) = Epop(x,y)[(y − f(x))2] ≈ Epop(x)p(y|x)p(y′|x)[(y − y′)2] = 2Epop(x)[σ(x)
2] since

f(x) can be considered to output a value y′ of (x′, y′) in Dtr which approximately follows p(y′|x).
1Covariate shift adaptation methods (Yamada et al., 2011; Kanamori et al., 2009; Zhang et al., 2020) can be

used for better training of h using Uop. However, it requires training h for every time Uop changes, which is
costly for continuous monitoring in a typical MLOps situation.
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On the other hand, ef (h,x, y) = 2(h(x)−y)2 and K̂∗(h) = 4
|Dtr|

∑
(x,y∈Dtr)(h(x)−y)4. The min-

imization of K̂∗(h) leads h(x) to be close to u(x) for each x. Then the estimated MSE becomes
M̂SE(f ;h) = 2Epop(x)[(f(x) − u(x))2] ≈ 2Epop(x)p(y′|x)[(y

′ − u(x))2] = 2Epop(x)[σ(x)
2],

which corresponds to the approximated MSE above. Hence, even when f is overfitting, our method
precisely estimates the MSE.

It should be noted that one of the most naive methods for one-step MSE estimation is to fit a check
model h′ to the square errors of the model by minimizing 1

n

∑
(x,y)∈Dtr((y − f(x)2 − h′(x))2 and

estimate MSE by Epop(x)[h
′(x)]. However, it is evident that h′ is biased. In an extreme case where

f is perfectly fitted to Dtr, h′ is trained to output 0 for any input, as (y − f(x))2 = 0 for any
(x, y) ∈ Dtr, and the estimated MSE is consistently 0. This estimation is incorrect unless there
exists no new sample in Dop, i.e.,, (x, y) ∈ Dop ⇒ (x, y) ∈ Dtr. Thus, it is a clear advantage that
our method does not assume anything regarding f as Remark 3 states.

3.2 THEORETICAL ANALYSIS

In this subsection, we establish an upper bound of the generalization error of the proposed method
using the Rademacher complexity (Koltchinskii, 2001). We assume ptr(x) = pop(x) = p(x) for
simplicity.

Firstly, we justify our method of minimizing K̂∗(h;Dtr) for the MSE estimation problem by Lemma
4.
Lemma 4. Let f : X → Y be a given regression model and H be a family of functions mapping
from X to Y. Assume that (a) there exists a constant M > 0 such that |ef (h,x, y)| ≤ M holds for
every h ∈ H and (x, y) ∈ X×Y, (b) there exists some constant H > 0 such that |h(x)−f(x)| ≤ H
holds for every h ∈ H and x ∈ X, Then for any δ ∈ (0, 1), with probability 1 − δ over the draw
of an i.i.d. sample S of size n from p(x, y) = p(x)p(y|x), the following inequality holds for all
h ∈ H:

E(h)2 ≤ K̂∗(h;S) + 16HM Rn(H) +M2

√
log 1

δ

2n
, (12)

where Rn(H) is the Rademacher complexity of H for the sampling of size n from p(x, y).

The proof is based on Theorem 3.3 in (Mohri et al., 2018), the definition of the Rademacher com-
plexity, and Ledoux-Talagrand contraction lemma (Ledoux & Talagrand, 2013), and presented in
Appendix. Lemma 4 shows that minimizing K̂∗(h;Dtr) makes the upper bound of the MSE esti-
mation error lower. Hence, our method solves the MSE estimation problem.

Next, we provide an upper bound of the generalization error of a check model ĥ which is obtained
by our method. Before stating the theorem, we prepare two lemmas regarding J(h).
Lemma 5. The following inequality holds for every h:

E(h)2 ≤ J(h) := Ep(x)

[(
Ep(y|x)[(y − f(x))2]− 2(h(x)− f(x))2

)2]
(13)

Lemma 6. The following equality holds for every h:

K(h) = J(h) + Cp, (14)

where Cp = Ep(x,y)

[
(y − f(x))4

]
− Ep(x)

[(
Ep(y|x)[(y − f(x))2]

)2] ≥ 0 does not depend on h.

Theorem 7. Suppose that the assumptions made in Lemma 4 holds. Let h∗ be a minimizer of K(h)

and ĥ be a minimizer of K̂∗(h;S). Assume that (a) the minimizer of K̂∗ makes K̂ lower than the
minimizer of K, i.e., K̂(ĥ;S) ≤ K̂(h∗;S), and (b) the minimizer of K makes K∗ lower than the
minimizer of K̂∗, i.e., K∗(h∗) ≤ K∗(ĥ). Then for any δ ∈ (0, 1), with probability 1 − δ over the
draw of an i.i.d. sample S of size n from p(x, y), the following inequality holds:

E(ĥ)2 ≤ J(h∗) + 32HM Rn(H) + 4M2

√
log 4

δ

2n
. (15)
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Suppose that we employ a model family H such that Rn(H) = O(1/
√
n). Then we have

E(ĥ) ≤
√

J(h∗) +Op(1/
4
√
n), (16)

where Op denotes the order in probability. This shows that the MSE estimation error of the proposed
method decreases at a rate of n−1/4. If the lowest value of J among H is small, i.e., J(h∗) is
small (remind that the minimizer of J and K are identical by Lemma 6), this guarantees a good
performance of the proposed method in theory.

3.3 PRACTICAL MODIFICATION: A REGULARIZATION FOR CONSISTENT FITTING

3 2 1 0 1 2 3
x

15
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5
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f
h with K *

h with L

Figure 1: Effect of R̂(h;Dtr). We train h

with K̂∗(h;Dtr) and L̂(h;Dtr).2 The reg-
ularized h (L̂(h;Dtr)) keeps lower than f ,
while the non-regularized one (K̂∗(h;Dtr))
shows both higher (at x = 0) and lower (at
x = 1) outputs than f .

In practical cases, training h with K̂∗(h) may be suf-
fered from unstable optimization due to the multi-
modality of ef (h,x, y); When y ̸= f(x), there ex-
ists two values of h(x) that achieves ef (h,x, y) = 0
i.e., ef (h,x, y) = 0 ⇔ h(x) = f(x) ± 1√

2
|y −

f(x)|. Hence, the naive optimization of K̂∗(h) pos-
sibly makes h non-smooth, e.g., h fits to the higher
one of the two as h(x) = f(x) + 1√

2
|y − f(x)|

at x, while at x′, h may fit to the lower one as
h(x′) = f(x′)− 1√

2
|y′−f(x′)|. This inconsistency

may worsen the MSE estimation error especially for
the inputs between x and x′.

For better optimization of h, we encourage h to al-
ways fit to the lower ones for every x by adding the
following regularization term:

R̂(h;Dtr) :=
1

|Dtr|
∑

(x,y)∈Dtr

(f(x)− y)2

× (h(x)− (f(x)− ε))+2, (17)

where ε ∈ R is a small constant, e.g., 1.0 ×
10−3. R̂(h;Dtr) gives a penalty when h(x) exceeds
(f(x)− ε). Note (f(x)− y)2 disables the penalties when y = f(x). The visualization of the effect
of this regularization is demonstrated in Figure 1. Our regularization makes h consistently lower
than h while h trained solely with K̂∗(h;Dtr) fits to both higher and lower values than f(x) among
the inputs.

Our final objective function is,

L̂(h;Dtr) := K̂(h;Dtr) + λR̂(h;Dtr), (18)

where λ ∈ R≥0 is a hyperparameter whose default value can be 100. We use L̂(h;Dtr) to train h

and estimate the MSE using Eq. (11). The quantitative differences between the use of K̂∗(h;Dtr)

and L̂(h;Dtr) are reported in the next section for both synthetic and real-world benchmark data sets,
and this regularization is confirmed to improve the MSE estimation particularly for real-world data
sets.

4 EXPERIMENTS

We conduct experiments on synthetic and benchmark data sets to verify the effectivity of the pro-
posed method. The implementation is based on PyTorch (Paszke et al., 2019) and scikit-learn (Pe-
dregosa et al., 2011). All experiments are carried out on a computational server equipping four Intel
Xeon Platinum 8260 CPUs with 192 logical cores in total and 1TB RAM.

2The basic experimental setting follows subSection 4.1 while we use 500 training samples and 5-layer NN
for f and h in order to clarify the effect of R̂.
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4.1 EXPERIMENTS ON TOY DATA SETS

We first conduct experiments on synthetic toy data sets.

Data. We generate three synthetic data sets, A, B, and C, visualized in Figure 2. For all data sets, we
generate the input variables x ∈ R from a normal distribution N (0, 12), where N (µ, σ2) denotes
the Gaussian density with mean µ and variance σ2. Then, we use the following equation to generate
the corresponding target variable y given x:

y = (3x+ 5) sin(3x+ 5) + 0.3(1 + max(0, 3x+ 5))ε, (19)
where ε is a noise. For the synthetic A data, we generate the noise as a normal Gaussian random
variable, i.e., ε ∼ N (0, 12). For the synthetic B data, we employ the half-normal distribution, i.e.,
ε = |ε′| where ε′ ∼ N (0, 12). Finally, for the synthetic C data, we use the Inv-Gamma distribution,
i.e., ε ∼ Inv-Gamma(α, β) where α is the shape parameter set to 2, and β is the scale parameter
set to 0.5. The synthetic B data is designed to assess the robustness of the MSE estimation methods
against non-Gaussian noises, while the synthetic C data is used to evaluate the effect of outliers.
Each data set consists of 100 training and 10,000 operational samples.
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(a) Synthetic A
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3 2 1 0 1 2 3
x

20

10

0

10

20

y
(c) Synthetic C

Figure 2: Visualization of the synthetic data sets A, B, and C. The line of u(x) denotes y = (3x +
5) sin(3x+ 5) while σ(x) = 0.3(1 + max(0, 3x+ 5)) is the scale of noises.

Setting. We use a three-layer feedforward neural network (3-layer NN) for prediction models. The
number of units in the hidden layer is set to 64, the activation function placed after the input and
hidden layers is ReLU (Nair & Hinton, 2010). We train the network for 200 epochs with the Adam
optimizer (Kingma & Ba, 2015) with its learning rate 0.01 and weight decay 1 × 10−3 (Hanson &
Pratt, 1988). The batch size is set to 100, i.e., we employ full batch training.

For estimating MSE, we train a 3-layer NN as h to minimizes L̂(h;Dtr) with 100.0. We also train h

with minimizing K̂(h;Dtr) and K̂∗(h;Dtr) to clarify the benefits of the use of K̂∗ and R̂(h;Dtr).
As a baseline, we use the following methods:

• [M2V] A naive baseline where a 3-layer NN is trained for mean by minimizing the training
MSE first, and then another 3-layer NN is trained to estimate variance by maximizing the log
likelihood, fixing the NN of mean estimation.

• [MVN] Mean and variance network (Nix & Weigend, 1994). We use two 3-layer NNs to
estimate means and variances, which are jointly trained by maximizing the log likelihood.

• [ENS] DeepEnsemble (Lakshminarayanan et al., 2017). We train 10 MVN networks and
compute the ensembled means and variances.

• [RVN] Reliable estimation of variance networks (Skafte et al., 2019). We train the mean esti-
mation network for 100 epochs, and then train the mean and three variance-related networks
for 10 epochs using their mini-batch strategy, which corresponds to 100 epochs of a standard
training. The hyperparameters follow the proposed values in the paper. The implementation
is based on codes provided by the author (Skafte, 2019).

• [RVNnE] A variant of RVN without its extrapolation architecture since epistemic uncertainty
may worsen the results.

• [M2RVN] A variant of RVN where its mean network is fixed after the first 100 epochs.

The architecture and hyperparameters of NNs used in our method and baselines are the same with
ones for prediction models described above.
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Table 1: Average absolute MSE estimation errors (↓) for synthetic data sets over 100 trials. Numbers
in brackets are the standard deviations. Boldface highlights the lowest error and comparable results
based on the Wilcoxon signed-rank test (Wilcoxon, 1945) with a significance level of 5%. Asterisk
and underline further spotlight the lowest and the second lowest errors, respectively.

Baselines Ours
Data set M2V MVN ENS RVN RVNnE M2RVN K̂ K̂∗ L̂

Synthetic A 0.294 1.411 12.704 1.010 1.009 0.553 0.292 0.235∗ 0.259
(0.259) (7.853) (116.765) (1.120) (1.121) (0.450) (0.231) (0.208) (0.250)

Synthetic B 0.307 70.432 325.730 0.940 0.931 0.560 0.264 0.252∗ 0.259
(0.283) (676.069) (3143.811) (0.808) (0.798) (0.450) (0.201) (0.201) (0.226)

Synthetic C 0.751 25.897 118.872 0.799 0.819 0.541 0.407∗ 0.412 0.425
(2.351) (190.993) (493.593) (0.724) (0.750) (0.411) (0.365) (0.415) (0.426)

As a data preprocess, the target variables y in training and operational data are scaled based on
the training data before being fed to the models. Then, MSE is computed and estimated for
this scaled y. The evaluation is based on the absolute error of the empirical MSE and estimated
MSE, where the empirical MSE is computed using the operational data Dop as MSE(f,Dop) :=

1
|Dop|

∑
(x,y)∈Dop (y − f(x))

2
. We conduct experiments 100 times for each data set generated with

different random seeds, and report the average errors. We also perform statistical tests to clarify the
significance of the results.

Result. The results are presented in Table 1, displaying the average absolute MSE estimation er-
rors over 100 trials. These findings demonstrate that none of the baselines achieve the best or even
comparable results, highlighting the superiority of our one-step approach for MSE estimation. Our
method minimizing K̂∗ achieves the lowest errors for synthetic A and B data, while the one min-
imizing K̂ is the most successful for synthetic C data. The results obtained with K̂∗ are either
the second best or competitive. Although adding the regularization term R̂ does not improve MSE
estimation compared to K̂∗, using L̂ still outperforms the naive upper bound K̂.

Regarding the baselines’ results, MVN and ENS exhibit very high estimation errors for synthetic
B and C data. Apart from our methods, M2V or M2RVN provide the lowest errors, indicating the
effectiveness of separately training the mean and variance networks in a two-step process for these
synthetic data sets.

In terms of robustness against different types of noise, MVN and ENS are weak against non-
Gaussian noise (Synthetic B and C), M2V and our methods appear vulnerable to outliers (Synthetic
C), while RVN and its variants are stable for all types of noise.

Further analyses, including qualitative evaluation and robustness of our method for overffiting and
underfitting models are available in Appendix.

4.2 EXPERIMENTS ON BENCHMARK DATA SETS

Table 2: Data set statistics.

Name #Samples #Features

mg 1385 6
space-ga 3107 6
abalone 4177 8
cpusmall 8192 12
cadata 20640 8

We next perform experiments on benchmark data sets to
demonstrate the usefulness of our method in real world.

Data. We use mg, space-ga, cpusmall, cadata, and abalone
data sets obtained from LIBSVM data sets (Chang & Lin,
2023). The data set statistics are summarized in Table 2.

Setting. We select 1,000 continuous samples from a data
set, starting with an index chosen uniformly at random.
The first 500 samples are used as training data, while the
remaining 500 samples serve as operational data. We train
the prediction model, which is a 3-layer neural network
(NN) using the Adam optimizer for 200 epochs. The number of hidden units, learning rate, weight

8
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Table 3: Average absolute MSE estimation errors (↓) for benchmark data sets over 100 trials. Num-
bers in brackets are the standard deviations. Boldface highlights the lowest error and comparable
results based on the Wilcoxon signed-rank test with a significance level of 5%. Asterisk and under-
line further spotlight the lowest and the second lowest errors, respectively. NA indicates that error
exceeds 1000.

Baselines Ours
Data set M2V MVN ENS RVN RVNnE M2RVN K̂ K̂∗ L̂

mg 0.064 0.050 0.052 0.130 0.134 0.044 0.122 0.072 0.041∗

(0.030) (0.028) (0.027) (0.062) (0.053) (0.034) (0.022) (0.025) (0.026)

space-ga 0.389 0.355 0.345 0.982 0.968 0.532 0.314 0.281 0.278∗

(0.393) (0.380) (0.381) (0.333) (0.272) (0.213) (0.216) (0.202) (0.393)

abalone 0.995 0.964 0.962 0.935 0.971 0.921 0.992 0.929 0.919∗

(1.372) (1.379) (1.376) (1.166) (1.201) (1.269) (1.361) (1.314) (1.312)

cpusmall 21.329 NA NA 1.284 1.291 0.461 0.045 0.044 0.028∗

(212.062) (0.258) (0.297) (0.094) (0.038) (0.038) (0.028)

cadata 56.048 NA NA 33.894 24.318 34.637 9.086∗ 11.560 14.082
(405.424) (184.504) (105.585) (119.868) (34.772) (37.870) (52.454)

decay, and batch size are tuned for each data set via a hyperparameter search by Optuna (Akiba
et al., 2019). The hyperparameters can be found in Appendix.

The MSE estimation methods employed are the same as those used in the previous experiments, and
the hyperparameters of the 3-layer NNs remain consistent with the ones tuned for each data set for
the prediction models. We evaluate the absolute MSE estimation error between the empirical and
estimated MSEs. The experiments are repeated 100 times with different starting indices and random
seeds, and we report the average errors.

Result. The results are presented in Table 3. The table indicates that one of our proposed MSE
estimation methods achieves the lowest error for each data set. This demonstrates the superiority of
our one-step MSE estimation over conventional two-step estimation approaches for real-world data
sets, validating the intuition of Vapnik’s principle. M2V, MVN, and ENS are unstable for cpusmall
and cadata, yielding very high MSE for some samples in the operational data, leading to high average
and high standard deviations of errors. RVN and its variant RVNnE often perform worse than M2V,
which is the most naive method. Comparing M2V (trains means then sigmas) vs MVN (jointly trains
means and sigmas), and M2RVN (trains means then sigmas) vs RVN (iteratively trains means and
sigmas), it appears that the joint and iterative training of mean and variance networks do not always
outperform the two-step training.

Among the three variants of our proposed methods, firstly, the results achieved by K̂∗ are lower or
comparable to those of K̂ since K̂∗ bounds E2 more tightly and directly than K̂, as discussed in
the previous section. Furthermore, the results obtained with L are even better (or comparable) than
those of K̂∗. This confirms that our regularization improves the learning of the check model h for
real-world data set.

5 CONCLUSION

In this work, we investigated the problem of MSE estimation. Instead of using existing two-step
approaches, we proposed a novel one-step estimation method that directly and tightly upper bounds
the MSE estimation error. Furthermore, we provided a theoretical upper bound for the generalization
error of our method. Empirical results showed that our method yielded lower MSE estimation
errors compared to the baseline methods for three synthetic and five benchmark data sets, thereby
suggesting the superiority of our proposed method.
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Stephen José Hanson and Lorien Y. Pratt. Comparing biases for minimal network construction with
back-propagation. In Advances in Neural Information Processing Systems, pp. 177–185, 1988.

Takafumi Kanamori, Shohei Hido, and Masashi Sugiyama. A least-squares approach to direct im-
portance estimation. Journal of Machine Learning Research, 10(48):1391–1445, 2009.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

V. Koltchinskii. Rademacher penalties and structural risk minimization. IEEE Transactions on
Information Theory, 47(5):1902–1914, 2001.
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APPENDIX (SUPPLEMENTARY MATERIAL)

A MISSING PROOFS

A.1 PROOF OF LEMMA 1

Proof. Notice that x = (x)+ − (−x)+ and x2 = (x)+2 + (−x)+2, where (x)+ = max(0, x).

|E[x]|2 =
∣∣E [

(x)+ − (−x)+
]∣∣2 =

∣∣E [
(x)+

]
− E

[
(−x)+

]∣∣2 (20)

≤ max
(
E
[
(x)+

]
,E

[
(−x)+

])2
(21)

≤ max
(
E
[
(x)+2

]
,E

[
(−x)+2

])
(Jensen’s inequality) (22)

≤ E[(x)+2] + E[(−x)+2] = E
[
(x)+2 + (−x)+2

]
= E

[
x2

]
(23)

≤ 2max
(
E
[
(x)+2

]
,E

[
(−x)+2

])
(24)

If E[(x)+2] ≥ E[(−x)+2], we have

E[s(x)x2] = E[1x≥0x
2] = E[(x)+2] = max

(
E[(x)+2],E[(−x)+2]

)
, (25)

otherwise we have

E[s(x)x2] = E[1x<0x
2] = E[(−x)+2] = max

(
E[(x)+2],E[(−x)+2]

)
. (26)

Hence, E[s(x)x2] = max
(
E[(x)+2],E[(−x)+2]

)
holds, which concludes the proof combined with

Eq. (24). ■

A.2 PROOF OF LEMMA 4

Proof. Based on Theorem 3.3 in (Mohri et al., 2018), for any δ ∈ (0, 1), with probability 1− δ over
the draw of an i.i.d. sample S, the following holds:

K∗(h) ≤ 1

n

∑
(x,y)∈S

s(ef (h,x, y))ef (h,x, y)
2 + 2Rn(S) +M2

√
log 1

δ

2n
, (27)

≤ K̂∗(h;S) + 2Rn(S) +M2

√
log 1

δ

2n
, (28)

where S = {(x, y) 7→ s(ef (h,x, y))ef (h,x, y)
2 | h ∈ H} is the family of loss func-

tions combined with h ∈ H and we use the fact that 1
n

∑
(x,y)∈Dtr s(ef (h,x, y))ef (h,x, y)

2 ≤
1
n

∑
(x,y)∈S ŝ(ef (h,x, y))ef (h,x, y)

2 = K̂∗(h;S). Let ϕ : t → s(t)t2, then S = ϕ ◦ E where
E = {(x, y) 7→ ef (h,x, y) | h ∈ H}. Notice that ϕ is 2M -Lipschitz for the input ef (h,x, y) for
any h,x, and y. By Ledoux-Talagrand contraction lemma (Ledoux & Talagrand, 2013), we have.

Rn(S) = Rn(ϕ ◦ E) ≤ 2M Rn(E) (29)

Rn(E) = ES

[
Eσi∈{−1,1}

[
sup
h∈H

1

n

n∑
i=1

σief (h,xi, yi)

]]
(30)

= 2ES

[
Eσi∈{−1,1}

[
sup
h∈H

1

n

n∑
i=1

σi(h(x)− f(x))2

]]
(31)

≤ 4HRn(H), (32)

where {σi}ni=1 is the Rademacher variables. Combined all of these, we conclude the proof. ■
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A.3 PROOF OF LEMMA 5

Proof. The proof is based on a direct calculation using Jensen’s inequality.

E(h)2 =
∣∣Ep(x,y)

[
(y − f)2

]
− Ep(x)

[
2(h(x)− f(x))2

]∣∣2 (33)

=
∣∣Ep(x)

[
Ep(y|x)

[
(y − f(x))2

]
− 2(h(x)− f(x))2

]∣∣2 (34)

≤ Ep(x)

[(
Ep(y|x)

[
(y − f(x))2

]
− 2(h(x)− f(x))2

)2]
= J(h) (35)

■

A.4 PROOF OF LEMMA 6

Proof. Let k(h) and j(h) be;

k(h) := Ep(y|x)

[(
(y − f(x))2 − 2(h(x)− f(x))2

)2]
(36)

j(h) :=
(
Ep(y|x)[(y − f(x))2]− 2(h(x)− f(x))2

)2
(37)

Then, we have

k(h) = Ep(y|x)

[(
(y − f(x))2 − 2(h(x)− f(x))2

)2]
(38)

= Ep(y|x)
[
(y − f(x))4

]
− 4(h(x)− f(x))2 Ep(y|x)

[
(y − f(x))2

]
+ 4(h(x)− f(x))4

(39)

j(h) =
(
Ep(y|x)[(y − f(x))2]− 2(h(x)− f(x))2

)2
(40)

=
(
Ep(y|x)[(y − f(x))2]

)2 − 4(h(x)− f(x))2 Ep(y|x)[(y − f(x))2] + 4(h(x)− f(x))4

(41)

∴ k(h) = j(h) + Ep(y|x)
[
(y − f(x))4

]
−

(
Ep(y|x)[(y − f(x))2]

)2
(42)

Note by Jensen’s inequality, Ep(y|x)
[
(y − f(x))4

]
−

(
Ep(y|x)[(y − f(x))2]

)2 ≥ 0. By taking the
expectation of k(h) and j(h) over p(x), we have the following as desired.

K(h) = Ep(x)[k(h)] = Ep(x)

[
j(h) + Ep(y|x)

[
(y − f(x))4

]
−

(
Ep(y|x)[(y − f(x))2]

)2]
(43)

= Ep(x)[j(h)] + Ep(x,y)

[
(y − f(x))4

]
− Ep(x)

[(
Ep(y|x)[(y − f(x))2]

)2]
(44)

= J(h) + Cp (45)
■

A.5 PROOF OF THEOREM 7

Before the proof of Theorem 7, we establish a lemma below.
Lemma A. Suppose that the assumptions made in Lemma 4 holds. Then for any δ ∈ (0, 1), with
probability 1 − δ over the draw of an i.i.d. sample S of size n from p(x, y) = p(x)p(y|x), the
following inequality holds for all h ∈ H:

K(h) ≤ K̂(h;S) + 16HM Rn(H) +M2

√
log 1

δ

2n
, (46)

where Rn(H) is the Rademacher complexity of H for the sampling of size n from p(x, y).

Proof. Based on Theorem 3.3 in (Mohri et al., 2018), for any δ ∈ (0, 1), with probability 1− δ over
the draw of an i.i.d. sample S, the following holds:

Epop(x,y)

[
ef (h,x, y)

2
]
≤ 1

n

∑
(x,y)∈Dtr

ef (h,x, y)
2 + 2Rn(L) +M2

√
log 1

δ

2n
, (47)

i.e., K(h) ≤ K̂(h;Dtr) + 2Rn(L) +M2

√
log 1

δ

2n
, (48)
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where L = {(x, y) 7→ ef (h,x, y)
2 | h ∈ H} is the family of loss functions combined with h ∈ H

and K̂(h;S) := 1
n

∑
(x,y)∈S ef (h,x, y)

2 is the empirical version of K(h). By Ledoux-Talagrand
contraction lemma (Ledoux & Talagrand, 2013), we have

Rn(L) = ES

[
Eσi∈{−1,1}

[
sup
h∈H

1

n

n∑
i=1

σief (h,xi, yi)
2

]]
(49)

≤ 2M ES

[
Eσi∈{−1,1}

[
sup
h∈H

1

n

n∑
i=1

σief (h,xi, yi)

]]
(50)

= 4M ES

[
Eσi∈{−1,1}

[
sup
h∈H

1

n

n∑
i=1

σi(h(x)− f(x))2

]]
(51)

≤ 8HM Rn(H), (52)

where {σi}ni=1 is the Rademacher variables. We conclude the proof by combining Eq. (48) with
Eq. (52). ■

We provide the proof of Theorem 7 using the lemma above.

Proof of Theorem 7. Based on Lemma 5 and Lemma 6, we have

E(ĥ)2 − J(h∗) ≤ J(ĥ)− J(h∗) = K(ĥ)−K(h∗)

= K(ĥ) +

(
K̂(h∗;S)− K̂(h∗;S)

)
+

(
K̂∗(h∗;S)− K̂∗(h∗;S)

)
+

(
K∗(ĥ)−K∗(ĥ)

)
+

(
K̂∗(ĥ;S)− K̂∗(ĥ;S)

)
−K(h∗) (53)

=

(
K(ĥ)− K̂(h∗;S)

)
+

(
K̂∗(h∗;S)−K∗(ĥ)

)
+

(
K∗(ĥ)− K̂∗(ĥ;S)

)
+

(
K̂∗(ĥ;S)− K̂∗(h∗;S)

)
+

(
K̂(h∗;S)−K(h∗)

)
(54)

= (I) + (II) + (III) + (IV) + (V), (55)

where;

(I) = K(ĥ)− K̂(h∗;S) (56)

(II) = K̂∗(h∗;S)−K∗(ĥ) (57)

(III) = K∗(ĥ)− K̂∗(ĥ;S) (58)

(IV) = K̂∗(ĥ;S)− K̂∗(h∗;S) (59)

(V) = K̂(h∗;S)−K(h∗) (60)

We bound the above five terms as follows: Based on the assumption and Lemma A, the following
bounds hold with probability 1− δ/4,

(I) = K(ĥ)− K̂(h∗;S) ≤ K(ĥ)− K̂(ĥ;S) ≤ 16HM Rn(H) +M2

√
log 4

δ

2n
(61)

By the assumption and Hoeffding’s inequality, we have the following inequality with probability
1− δ/4:

(II) = K̂∗(h∗;S)−K∗(ĥ) ≤ K̂∗(h∗;S)−K∗(h∗) ≤ M2

√
log 4

δ

2n
(62)

Based on Lemma 4, with probability 1− δ/4, we have

(III) = K∗(ĥ)− K̂∗(ĥ;S) ≤ 16HM Rn(H) +M2

√
log 4

δ

2n
(63)
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By the definition of ĥ,

(IV) = K̂∗(ĥ;S)− K̂∗(h∗;S) ≤ 0 (64)
Hoeffindg’s inequality indicates that the following holds with probability 1− δ/4;

(V) = K̂(h∗;S)−K(h∗) ≤ M2

√
log 4

δ

2n
(65)

Finally, we use the union bound to combine five inequalities from Eq. (61) to (65) to yields with
probability 1− δ

E(ĥ)2 − J(h∗) ≤ 32HM Rn(H) + 4M2

√
log 4

δ

2n
. (66)

■

B EXPERIMENTAL DETAILS

B.1 HYPERPARAMETERS USED IN SECTION 4.2

The hyperparameters of 3-layer NN used in Section 4.2 are summarized in Table B.1. These hyper-
parameters are tuned so that the prediction model with these hyperparameters achieves the lowest
MSE on average.

Table B.1: Hyperparameters for 3-layer NNs.

Data set Hidden units Learning rate Weight decay Batch size

mg 128 1e-03 1e-08 50
space-ga 32 5e-03 1e-02 100
cpusmall 32 1e-02 1e-02 100
cadata 128 5e-04 1e-07 250
abalone 64 5e-04 1e-05 50

B.2 MSE ESTIMATION FOR OVERFITTING MODELS.

In Remark 3, we claim that our method can estimate MSE even the model f is overfitted to the
training data. We empirically examine how our method estimate MSE for over- and under-fitting
models.

Setting. We utilize the synthetic A data from Section 4.1 and increase the number of training sam-
ples to 500 to clearly discern the differences between overfitting and underfitting. For our prediction
model, we employ a decision tree (DT) and vary the min-samples-split parameter from 1 to 100. It is
important to note that, as illustrated in Figure B.1, setting the min-samples-split value to 1 causes the
prediction model to remember all of the training data, leading to overfitting, while setting it to 100
results in underfitting. We train our method with K̂, K̂∗, and L̂ to estimate MSE. The experiment is
repeated 30 times and we report the average errors.

Result. Figure B.2 illustrates the relationship between MSE and the MSE estimation errors for
various min-samples-split settings. As shown in Figure B.2(a), our method can estimate the accuracy
for any given setting, and the differences between the true MSE and the estimated MSE remain
relatively stable on average, particularly in the case of K̂∗ and L̂. Figure B.2(b) suggests that the
MSE estimation error may increase during overfitting and underfitting. However, prediction models
are typically trained to avoid overfitting or underfitting the training data. Therefore, in practice, our
methods are expected to achieve good MSE estimation errors.

We should once again note that a naive approach to fit h′ to (y − f(x))2 for (x, y) ∈ Dtr would
result in an estimated MSE of 0, which is most likely incorrect. Therefore, our method’s ability to
estimate MSE even for an overfitted model, as empirically demonstrated in Figure B.2, is remarkably
impressive.
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(a) DT with min-samples-split=1
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(b) DT with min-samples-split=10
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(c) DT with min-samples-split=100

Figure B.1: Decision trees (DTs) with different settings of min-samples-split. (a) shows an overfit-
ting model while (c) shows an underfitting model. (b) is the a good fitting with low MSE over the
operational data.
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(a) Average true and estimated MSE against min-
samples-split.
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(b) Average MSE estimated errors against of min-
samples-split.

Figure B.2: MSE estimation results with different settings of min-samples-split.
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B.3 QUALITATIVE EVALUATION.

Figure B.3 visualizes the models fitted by the MSE estimation methods, including the baselines and
our methods, for experiments on a synthetic data set A, as described in Section 4.1. The fitted model
by M2V, MVN, and ENS are all similar, with M2V and ENS displaying higher standard deviations
than MVN at x ≤ −1. Moreover, they exhibit very high standard variance for x > 1, compared to
the true standard deviations. This leads to unnecessarily high MSE errors, resulting in significantly
worse MSE estimation errors.

RVN and its variants fail to fit the data adequately. Since these methods train three to four 3-layer
NNs which affect each other, 100 training data samples might not be sufficient for effective training.

For this data set, the difference between our methods employing K̂ and K̂∗ is limited. However,
the effect of our regularization R̂ is evident in the result of L̂. The trained h outputs lower values
than those produced using K̂ and K̂∗, which makes its MSE estimation error the lowest among all
of these methods.
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(c) ENS 0.103
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(e) RVNnE 0.688
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(f) M2RVN 0.517
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(g) Ours with K̂ 0.212

4 3 2 1 0 1 2 3 4

20

10

0

10

20

(h) Ours with K̂∗ 0.199
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(i) Ours with L̂ 0.076

Figure B.3: Visualization of fitted models by MSE estimation methods for the synthetic A data set.
The numbers in the captions are the MSE estimation errors. For baselines, we visualize the estimated
standard deviations.
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