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Globally Injective ReLU Networks: Supplementary Material

APPENDIX A PROOFS FROM SECTION 2

A.1 PROOFS FROM SUBSECTION 2.2

Proof of Theorem 1. Suppose that W is such that the conditions of Theorem 1 hold, and that
ReLU(Wx1) = ReLU(Wx2) = y. If for j ∈ [[m]], y|j > 0 then both 〈wj , x1〉 > 0 and
〈wj , x2〉 > 0. Similarly, if y|j ≤ 0 then both 〈wj , x1〉 ≤ 0 and 〈wj , x2〉 ≤ 0. In particular, this
implies that

〈wj , x1〉 > 0 ⇐⇒ 〈wj , x2〉 > 0 and 〈wj , x1〉 ≤ 0 ⇐⇒ 〈wj , x2〉 ≤ 0. (11)

If we then consider xα := (1− α)x1 + αx2 where α ∈ (0, 1), then

ReLU(Wxα) = y = ReLU(Wx1) = ReLU(Wx2). (12)

If 〈wj , xα〉 > 0 then at least one of 〈wj , x1〉 > 0 or 〈wj , x2〉 > 0. (11) implies that both must hold,
therefore 〈wj , x1〉 = 〈wj , x2〉 > 0. If 〈wj , xα〉 = 0 then 〈wj , x1〉 = 〈wj , x2〉 = 0 (otherwise (11) is
violated), thus

ReLU(W |S(xα,W )x1) = ReLU(W |S(xα,W )x2) =⇒ W |S(xα,W )x1 = W |S(xα,W )x2 (13)

and so because W |S(xα,W ) is full rank, this implies that x1 = x2. This proves one direction.

The other direction follows from the following. Suppose that there exists a x such thatW |S(x,W ) don’t
span Rn. If S(x,W ) = ∅ non-injectivity trivially follows, so suppose w.l.o.g. that S(x,W ) 6= ∅. Let
x⊥ ∈ ker(W |S(x,W )) and α ∈ R+ such that α < minj∈Sc(x,W )

−〈x,wj〉
|〈x⊥,wj〉|

1. Then for j = 1, . . . ,m

one of the following two hold

if j ∈ S(x,W ) then
〈
wj , x+ αx⊥

〉
= 〈wj , x〉+ α

〈
wj , x

⊥〉 = 〈wj , x〉 (14)

if j ∈ Sc(x,W ) then
〈
wj , x+ αx⊥

〉
= 〈wj , x〉+ α

〈
wj , x

⊥〉 < 0. (15)

Thus, as ReLU acts pointwise (row-wise in W ), we have that

ReLU(W (x+ αx⊥)) = ReLU(Wx) (16)

and, hence, ReLU(W ·) is not injective.

Proof of Lemma 1. First, we show that if ReLU(W |b≥0·) is injective, then so is ReLU(W · +b).
Clearly if ReLU(Wx1+b) = ReLU(Wx2+b) then ReLU(W |b≥0x1+b|b≥0) = ReLU(W |b≥0x2+
b|b≥0) as well. If we apply Lemma 8 to each component of the above equation, then we obtain that
ReLU(W |b≥0x1) = ReLU(W |b≥0x2) which, given the injectivity of ReLU(W |b≥0·), implies that
x1 = x2.

Now suppose that ReLU(W |b≥0) is not injective. Let x ∈ Rn be such that W |b≥0 doesn’t have a
DSS of Rn w.r.t. x. Let β > 0 be small enough so that W |b<0(βx) + b|b<0 < 0 component-wise,
and let x⊥ ∈ Rn such that (as in (16)) ReLU(W |b≥0(βx+ x⊥)) = ReLU(W |b≥0βx). Further let
α < 1 be small enough such that W |b<0(βx+ αx⊥) + b|b<0 < 0. By a component-wise analysis,
we have that

ReLU(W (βx+ αx⊥) + b) = ReLU(Wβx+ b)|b≥0 = ReLU(Wβx+ b); (17)

thus, ReLU(W ·+b) is not injective.

Proof of Corollary 2. If W ∈ Rm×n is injective then consider a plane p in Rn that none of the rows
of W lie in. Apply Theorem 1 to both normals of the plane. The corresponding DSS’ for each normal
are disjoint, thus there must be at least 2n ≥ m, so m < 2 · n implies non-injectivity.

Now we show that if W satisfies Theorem 1, then W is of the form given by (5). Suppose that there
is a row vector wi such that there are no row vectors pointing in the −wi direction. Let p be a plane

1If
〈
x⊥, wj

〉
= 0 for all j ∈ Sc(x,W ), then any α > 0 will do.
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through the origin such that wi ∈ p, but wi′ 6∈ p for i 6= i′. By Theorem 1, there must be at least n
columns that lie on each (closed) half of p. Indeed one of the sides must have exactly n vectors on it
(including wi). By considering a small rotation of p, we can construct a plane with only n− 1 vectors
on one side, hence there is no DSS for that rotated plane’s normal. Thus for ReLUW to be injective,
for every i ∈ [[2n]] there must be a different i′ ∈ [[2n]] such that wi and wi′ are anti-parallel. This
can only happen if for every w ∈W there is a corresponding −dw ∈W , so W must have the form
of (5).

A.2 PROOF OF THEOREM 2

A.2.1 UPPER BOUND ON MINIMAL EXPANSIVITY

Let (Ω,F ,P) be a probability space and let wi : Ω→ Rn, 1 ≤ i ≤ m be m iid Gaussian vectors on
Ω stacked in a matrix W : Ω→ Rm×n.

We aim to find conditions for a ReLU layer with the matrix W to be injective. Injectivity fails at p
the half-space {x : 〈x, p〉 ≥ 0} contains fewer than n vectors wi. Equivalently, injectivity fails if
there is a half-space which contains more than m − n vectors wi (which implies that its opposite
half-space has fewer than n).

Let k = m − n + 1 and denote by A ∈ Rk×n some k × n submatrix of W (for example, the first
k rows). Our strategy is to first bound the probability that for a fixed subset of k rows of W , there
exists an x having positive inner products will all k rows (which signals non-injectivity per above
discussion). Second, since there are

(
m
k

)
subsets of k rows, we use the union bound to get an upper

bound on the probability of non-injectivity.

For the first part we follow the proof of Bürgisser & Cucker (2013, Theorem 13.6), parts of which we
reproduce for the reader’s convenience. For a sign pattern σ ∈ {−1, 0, 1}k, we denote by RA(σ) the
set of all x ∈ Rn which produce the sign pattern σ (they belong to the σ-“wedge”, possibly empty),

RA(σ) = {x ∈ Rn : sign(〈x, ai〉) = σi, i ∈ {1, . . . , k}} . (18)

For σ ∈ {−1,+1}k = Σ, we define the event Eσ as

Eσ =
{
ω : RA(ω)(σ) 6= ∅

}
. (19)

We are interested in σ0 = (1, . . . , 1), meaning that all the inner products are positive. Note that the
probability of Eσ is the same for all σ due to the symmetry of the Gaussian measure. Further, note
that

∑
σ∈Σ 1Eσ (ω) = |

{
σ : RA(ω)(σ) 6= ∅

}
| is the number of wedges defined by A. Then

P(Eσ0) =
1

2k

∑
σ∈Σ

P(Eσ) =
1

2k

∑
σ∈Σ

E(1Eσ ) =
1

2k
E

(∑
σ∈Σ

1Eσ

)
=

1

2k−1

n−1∑
i=0

(
k − 1

i

)
, (20)

by Winder’s bound (Winder, 1966). (The hyperplane arrangement is generic almost surely so we use
equality.)

We now have the probability that for a subset of k vectors wi, there exists an x ∈ Rn which has
positive inner products with all k vectors. We are interested in the following event which implies
non-injectivity,

ENI =
{
ω : W (ω) has a subset of k rows B(ω) such that RB(ω)(σ0) 6= ∅

}
. (21)

Conversely, ω ∈ EcNI implies almost sure injectivity.

Since there are
(
m
k

)
=
(

m
m−n+1

)
=
(
m
n−1

)
different subsets of k rows, we can bound the probability

of ENI as

P(ENI) ≤
(

m

n− 1

)
P(Eσ0) ≤

(
me

n− 1

)n
2−(m−n)2(m−n)H( n−1

m−n ) (22)

/ (ce)n2n(c−1)[H((c−1)−1)−1] (23)

= 2−n[− log2(ce)−(c−1)(H((c−1)−1)−1)], (24)
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Figure 6: We empirically show that for random Gaussian matrices W ∈ Rm×nm = cn, a
critical oversampling factor of at least c > 3.5 is required for injectivity of ReLU. We choose
x = − 1

m

∑
j wj/ ‖wj‖. Left: a plot of the number of elements of W that point in the direction of x

as a function of expansivity for several different choices of n. If this quantity is less than n, then W
cannot contain a DSS of Rn w.r.t. x. Right: a plot of the empirical probability that a Gaussian matrix
W contains a DSS of Rn w.r.t. x as a function of expansivity for several different values of n.

where H(ε) = −ε log2(ε)− (1− ε) log2(1− ε) is the binary entropy function and we used a related
bound on the sums of binomial coefficients.2 To get the bound note that the bracket in the exponent is
positive for c ≥ 10.43.

A.2.2 LOWER BOUND ON MINIMAL EXPANSIVITY OF LAYERS WITH GAUSSIAN WEIGHTS

In this appendix we prove that large random Gaussian weight matrices W ∈ Rm×n yield non-
injective ReLU layers with high probability if m < c∗n, where c∗ ≈ 3.4. Note that injectivity fails if
there exists a half-space in Rn which contains less than n rows of W . Equivalently, injectivity fails if
there is a half-space with more than m−n rows of W , since then the opposite halfspace has less than
n. The core idea of the proof is to make an educated guess for a half-space which has many vectors,
and compute the probability that it has more than m− n. A good such guess is to take the halfspace
defined by the average direction of a row of W . Equivalently, we study of the size of S(w,W ) where
w = 1

m

∑m
k=1 wk, the row average of a matrix W . If |S(w,W )| > m− n, then |S(−w,W )| < n,

and W cannot have a DSS w.r.t. −w. As the Figure 6 shows, when m < c∗n, W does not contain a
DSS w.r.t. −w with high probability.

LetW ∈ Rm×n be a matrix such that the rows ofW are i.i.d. random vectors distributed asN (0, In).
Define the event Ei as

Ei :=

{
ω :

〈
wi(ω),

m∑
k=1

wk(ω)

〉
≥ 0

}
. (25)

Lemma A. Let m,n→∞ so that mn → c. Then P(Ei)→ 1
2erfc

(
− 1√

2c

)
.

Proof. We have

P (Ei) = P

‖wi‖2 +

〈
wi,
∑
i6=j

wj

〉
≥ 0

 = P
(
‖wi‖2 + ‖wi‖Y ≥ 0

)
where Y ∼ N (0,m− 1). We now use the fact that ‖wi‖2 concentrates around n. Define the event

Di =
{
ω : ‖wi(ω)‖2 ∈ [(1− ε)n, n/(1− ε)]

}
. (26)

2https://en.wikipedia.org/wiki/Binomial_coefficient#Sums_of_binomial_
coefficients
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One can show using standard concentration arguments that P(Di) ≥ 1− 2 exp(−ε2n/4), and so by
the law of total probability,

P
{
‖wi‖2 + ‖wi‖Y ≥ 0

}
= P {‖wi‖+ Y ≥ 0 |Di}P{Di}+ P {‖wi‖+ Y ≥ 0 |Dc

i }P {Dc
i } .
(27)

Choosing ε = ε(n) = n−1/4 yields

P
{√

n− n3/4 + Y ≥ 0
}
≤ P {‖wi‖+ Y ≥ 0 |Di} ≤ P

{√
n/(1− n−1/4) + Y ≥ 0

}
.

Finally, substituting Z = Y√
m−1

∼ N (0, 1) yields

P

Z ≥ −
√
n− n3/4

m− 1

 ≤ P {‖wi‖+ Y ≥ 0 |Di} ≤ P

Z ≥ −
√
n/(1− n−1/4)

m− 1


Both sandwiching probabilities converge to P

{
Z ≥ − 1√

c

}
= 1

2erfc
(
− 1√

2c

)
. Noting that

P {Di} → 1 and P {Dc
i } → 0 we finally have from (27) that

P {Ei} →
1

2
erfc

(
− 1√

2c

)
.

Lemma B. Under the same conditions as Lemma A when i 6= j,

P {Ei ∩ Ej} →
1

4
erfc

(
− 1√

2c

)2

.

Proof. The proof is similar to that of Lemma A. In addition to concentration of norm of iid Gaussian
vectors, we use the fact that 〈wi, wj〉 /m is of order n−1/2 and that if P {D} → 1 as n→∞, then for
a fixed c and some event A, P {A|D} − P {A} → 0. Here D is the event that the various quantities
are close to the value they concentrate about, and A asymptotically has the same probability as
Ei ∩ Ej .

Theorem 6. Given a Gaussian weight matrix W ∈ Rm×n, the layer ReLU(Wx) with m/n → c
is not injective with probability→ 1 as n → ∞ when c < c∗, where c∗ is the unique positive real
solution to

1

2
erfc

(
1√
2c

)
=

1

c
.

The numerical value of c∗ is ≈ 3.4.

Proof. Let Xi = 1〈wi, 1
m

∑m
j=1 wj〉≥0, the indicator function of the event Ei. The expected number

of wi with a positive inner product with
∑m
k=1 wi is by the linearity of expectation equal to

E

(
m∑
i=1

Xi

)
= m · P {Ei} =: mp.

By Chebyshev’s inequality

P

(∣∣∣∣∣ 1

m

m∑
i=1

Xi − p

∣∣∣∣∣ ≥ t
)
≤ σ2

t2

where σ2 = V
(

1
m

∑m
i=1Xi

)
is the variance of the sum. We compute

m2σ2 = V

(
m∑
i=1

Xi

)
= E

(
m∑
i=1

Xi

)2

−

(
E

m∑
i=1

Xi

)2

= mp+
∑
i6=j

P(Ei ∩ Ej)− (mp)2.
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Since P(Ei ∩ Ej)→ p2 by Lemmas A and B, we have for any i and j 6= i

σ2 =
mp+m(m− 1)P(Ei ∩ Ej)− (mp)2

m2
→ 0.

Thus indeed for any t > 0

P

(∣∣∣∣∣ 1

m

m∑
i=1

Xi − p

∣∣∣∣∣ ≥ t
)
→ 0.

Finally,

P(noninjectivity) ≥ P

(
m∑
i=1

Xi > m− n

)
P

(
1

m

m∑
i=1

Xi > 1− 1

c

)
. (28)

Combining with Lemma A we get that

1

m

m∑
i=1

Xi
P→ 1

2
erfc

(
− 1√

2c

)
Thus

P(noninjectivity) ≥ P

(
1

m

m∑
i=1

Xi > 1− 1

c

)
→
{

0 c > c∗

1 c < c∗.
(29)

A.3 EXPERIMENTS TESTING THE MINIMAL EXPANSIVITY THRESHOLD

Figure 6 suggests that an expansivity factor of 2.1 as suggested by Lei et al. (2019) is not enough to
ensure global injectivity with Gaussian weights. This in turn leads to failure cases when inverting the
network in applications to inverse problems, as we show in this section. We use a single ReLU layer,
f(x) = ReLU(Wx), and choose x to be an MNIST digit for ease of visualization of the “latent”
space. We choose W ∈ Rcn×n with iid Gaussian entries and set c = m/n = 2.1. Given y = f(x),
our goal is to reconstruct x using, for example, gradient descent. This requires at least n of the cn
entries of f(x) to be non-zero since x ∈ Rn. As shown in Figure 6, x0 = − 1

m

∑
j wj/ ‖wj‖ violates

this condition with high probability when c = 2.1.

We choose 2 data samples, x1 and x2 to be 2 “latent” codes. Note that W has a DSS with respect
to x1. This ensures that given f(x1) one can reconstruct x1. Now, in order to show that injectivity
around a few points is insufficient for global injectivity, we linearly interpolate between x0 and x1

and x0 and x2 in a 2D grid. We show the intermediate xs as images in Figure 7. The xs shown in red
cannot be uniquely recovered given f(x), i.e., there exist infinitely many samples close to the red
samples that all map to the same output.

To further illustrate this, we also run a simple experiment where we have y = f(x) + η, with a 10dB
signal-to-noise ratio. We invert f to estimate x for 3 different samples in the domain of f . We can
easily see that non-injective points of the domain give poorer reconstructions due to the lower number
of positive inner products with W . In order to avoid problems of non-convexity in optimization we
report the best reconstruction out of 10 in 4 different trials with different random seeds, similar to
experiments of Bora et al. (2017). While these results show reconstructions with single layer, the
issues are only exacerbated with multiple layers.

A.4 PROOF OF THEOREM 3

We divide the proof into parts for ease of understanding.

Lemma 2 (Inverse Lipschitz Constant: Face Adjacent Wedges). Let W ∈ Rm×n have a DSS w.r.t.
every x ∈ Rn and x0, x1 ∈ Rn.Define

∀t ∈ [0, 1], `x0,x1(t) = (1− t)x0 + tx1 (30)
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Reconstructions with different 

random initializations

Figure 7: The mapping φ(x) := ReLU(Wx), x ∈ Rn when W ∈ R2.1n×n as suggested in Lei et al.
(2019) is not injective as the samples shown in red do not have n positive inner products with the rows
of W . This implies that around the red samples φ cannot be inverted. For the 3 samples delineated
by white boxes on the left, we do a simple denoising test where y = φ(x) + η and η corresponds to
10dB noise. Each reconstruction reported is best out of 10 trials based on MSE error.

(a) (b)

Figure 8: A Proof aid of the DSS condition when W ∈ R8×2. The blue dots are x0 and x1, the pink
are the weight matrix rows, black lines denote the boundaries between adjacent wedges, and the
multi-colored line is `x0,x1(t). This line changes color each time it crosses into a new wedge.
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and suppose that x0 and x1 are such that there is a t′ ∈ (0, 1) such that for all t ∈ [0, 1]

W |S(`x0,x1 (t),W ) =

{
W |S(x0,W ) if t < t′

W |S(x1,W ) if t′ < t
. (31)

Suppose further that x0, x1 are such that there is some δ > 0 such that for all δx ∈ Rn, if ‖δx‖2 < δ
then there is a t′ + δt such that

W |S(`x0,x1+δx(t),W )≥0 =

{
W |S(x0,W ) if t < t′ + δt

W |S(x1,W ) if t′ + δt < t
. (32)

Then

‖ReLU(Wx0)− ReLU(Wx1)‖2 ≥
1√
2

min(σ(W |S(x0,W )), σ(W |S(x1,W ))) ‖x0 − x1‖2 , (33)

where σ(M) is the smallest singular value of the matrix M .
Remark 3. The conditions of Lemma 2 on x0 and x1 may look very odd, but they have a very natural
geometric meaning. The DSS can be thought of as slicing Rn into wedges by a series of hyperplanes
that have the rows of W as normals.

The condition in (31) is interpreted as that the line segment that connects x0 to x1 passes from x0’s
wedge into x1’s wedge without passing through any wedges in between (see Figure 8a, as opposed to
Figure 8b). The implies that x0 and x1 must be in wedges that share a boundary. The condition in
(32) requires that the wedges of x0 and x1 share a face, and not just a corner.

Proof. We denote

W |S(x0,W ) = W0,W |S(x1,W ) = W1,W0∩1 = W0 ∩W1,W0 =

[
W0∩1

W0\1

]
,W1 =

[
W0∩1

W1\0

]
. (34)

First we will show that if wi, wi′ ∈W0\1, then wi and wi′ must be parallel. From equation (31) and
the continuity of ReLU(W`x0,x1(t)) w.r.t. t, we have that there is a t′ ∈ (0, 1) such that

〈wi, (1− t′)x0 + t′x1〉 = 0 = 〈wi′ , (1− t′)x0 + t′x1〉 . (35)

If wi and wi′ are not parallel, then let δx be some vector 0 < ‖δx‖ < δ that is perpendicular to wi
but not wi′ then

〈wi, (1− t′)x0 − t′δx+ t′x1〉 = −t 〈wi, δx〉 = 0, (36)

〈wi′ , (1− t′)x0 − t′δx+ t′x1〉 = −t 〈wi′ , δx〉 6= 0, (37)

which contradicts (32). W.l.o.g. the same argument applies to W1\0 and also it is straight forward to
see that all elements of W0\1 must be anti-parallel to all elements of W1\0. From W1\0 and W0\1
parallelism, there is a c ≥ 0 such that for all x ∈ Rn,∥∥W1\0x

∥∥ = c2
∥∥W0\1x

∥∥ . (38)

Assume that c ≥ 1, then

‖W0x0 −W1x1‖22 = ‖W0∩1x0 −W0∩1x1‖22 +
∥∥W0\1x0

∥∥2

2
+
∥∥W1\0x1

∥∥2

2
(39)

= ‖W0∩1x0 −W0∩1x1‖22 +
∥∥W0\1x0

∥∥2

2
+ c2

∥∥W0\1x1

∥∥2

2
(40)

≥ ‖W0∩1x0 −W0∩1x1‖22 +
∥∥W0\1x0

∥∥2

2
+
∥∥W0\1x1

∥∥2

2
(41)

≥ ‖W0∩1x0 −W0∩1x1‖22 +
1

2

∥∥W0\1(x0 − x1)
∥∥2

2
(42)

≥ 1

2
‖W0x0 −W0x1‖22 (43)

≥ σ(W0)2

2
‖x0 − x1‖22 . (44)

The antepenultimate inequality comes as from the definition of W0\1, we have that W0\1x0 and
−W0\1x1 are the same sign, thus (98) applies. In the case that c < 1, then the rolls of W0\1 and
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W1\0 can be switched, and the same result (with σ(W1) in place of σ(W0)) is obtained. In either
case,

‖W0x0 −W1x1‖22 ≥
1

2
min

(
σ(W |2S(x0,W )), σ(W |S(x1,W ))

2
)
‖x0 − x1‖22 . (45)

Lemma 3 (Inverse Lipschitz Constant: Connected through Faces). Let W ∈ Rm×n have a DSS w.r.t.
every x ∈ Rn. Let x0, x1 be such that the line connecting passes through nt wedges, and through
their faces (in the sense of Lemma 3). Then

‖ReLU(Wx0)− ReLU(Wx1)‖2 ≥
1√
2nt

min
t∈[0,1]

σ(W |S(`x0,x1 (t),W )) ‖x0 − x1‖2 . (46)

Proof. Let t1 = 0, tnt = 1, and let T = {tk}ntk=1 such that tk < tk+1 for k < nt and xk :=
`x0,x1(tk) are each in different wedges. Let c = 1√

2
mint∈[0,1] σ(W |S(`x0,x1 (t),W )), then

c ‖x0 − x1‖2 ≤
nt−1∑
k=1

c
∥∥xtk − xtk+1

∥∥
2

(47)

then by Lemma 2,
nt−1∑
k=1

c
∥∥xtk − xtk+1

∥∥
2
≤
nt−1∑
k=1

∥∥ReLU(Wxtk)− ReLU(Wxtk+1
)
∥∥

2
(48)

and by Lemma 10 we have
nt−1∑
k=1

∥∥ReLU(Wxtk)− ReLU(Wxtk+1
)
∥∥

2
≤
√
nt ‖ReLU(Wx0)− ReLU(Wx1)‖2 . (49)

Combining (47) - (49) yields

‖ReLU(Wx0)− ReLU(Wx1)‖2 ≥
1√
2nt

min
t∈[0,1]

σ(W |S(`x0,x1 (t),W )) ‖x0 − x1‖2 . (50)

Proof of Theorem 3. Let x0 and x1 be given. If the line connecting x0 and x1 does not pass through
any wedge corners, then we can apply Lemma 3 directly, and get that

‖ReLU(Wx0)− ReLU(Wx1)‖2 ≥
1√
2nt

min
t∈[0,1]

σ(W |S(`x0,x1 (t),W )) ‖x0 − x1‖2 . (51)

We now argue that the number of wedges that `x0,x1(t) passes through (and so nt) is at most m. For
each j ∈ [[m]],

ReLU(W`x0,x1(t))|j = 〈wj , `x0,x1(t)〉 (52)

is monotone increasing or decreasing. This implies that each wj ∈W can enter or exit the DSS of W
w.r.t. `x0,x1(t) at most once, therefore the total number of unique DSS w.r.t. `x0,x1(t) (i.e. wedges
`x0,x1(t) pass through) is at most m. Hence, nt ≤ m. Clearly

min
t∈[0,1]

σ(W |S(`x0,x1 (t),W )) ≥ min
x∈Rn

σ(W |S(x,W )), (53)

hence we have

‖ReLU(Wx0)− ReLU(Wx1)‖2 ≥
C√
m
‖x0 − x1‖2 . (54)

Now we show that if Lemma 3 does not apply to two points (namely, the line `x0,x1(t) passes through
a corner in the sense of Remark 3), then the two points can be perturbed an arbitrarily small amount,
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so that the perturbed points do satisfy Lemma 3. The corners (again, as in Remark 3) describe the
points which are orthogonal to at least two wj1 , wj2 ∈ W . wj1 and wj2 must not be parallel to
each other (otherwise Lemma 2 would apply), thus the set of points orthogonal to both wj1 and wj2
constitute a n− 2 dimensional linear space in Rn.

Let x0 and x1 be such that `x0,x1(t) intersects one of these corners. By considering x̃0 = δx +
x0, x̃1 = δx + x1 where δx is perpendicular to x1 − x0, we can obtained a line `x̃0,x̃1(t) so that
`x̃0,x̃1(t) and `x0,x1(t) do not intersect. The choice of δx is n− 1 dimensional, thus for every δ > 0
and wj1 and wj2 (that are non-perpendicular) there is a δx so that ‖δx‖2 < δ and `x̃0,x̃1(t) does not
intersect the corner of wj1 and wj2 .

Consider a sequence of x̃(i)
0 , x̃

(i)
1 , i = 1, . . . such that limi→∞(x̃

(i)
0 , x

(i)
1 ) = (x0, x1) and `x̃

(i)
0 ,x

(i)
1 (t)

does not pass through a corner for any i. Given that ‖·‖2 and ReLU(W (·)) are continuous and so by
Lemma 3 ∥∥∥ReLU(Wx̃

(i)
0 )− ReLU(Wx̃

(i)
1 )
∥∥∥

2
− C√

2m

∥∥∥x̃(i)
0 − x̃

(i)
1

∥∥∥
2
≥ 0, (55)

thus

‖ReLU(Wx0)− ReLU(Wx1)‖2 −
C√
2m
‖x0 − x1‖2 , (56)

= lim
i→∞

∥∥∥ReLU(Wx̃
(i)
0 )− ReLU(Wx̃

(i)
1 )
∥∥∥

2
− C√

2m

∥∥∥x̃(i)
0 − x

(i)
1

∥∥∥
2
≥ 0. (57)

and so

‖ReLU(Wx0)− ReLU(Wx1)‖2 ≥
C√
2m
‖x0 − x1‖2 . (58)

Remark 4 (Factor of 1√
m

in Theorem 3.). Throughout this paper we define the discrete norm of
y ∈ Rd as

‖y‖2 =

 d∑
j=1

[y]2j

 1
2

. (59)

This is to be contrasted with the norm that arise from the discretization of the L2 function norm on a
finite domain. For example, if we instead thought of y as a discrete sampling of a continuous function
ỹ ∈ L2([0, 1]), such that ∀j = 1, . . . , d

ỹ

(
j − 1

m

)
= [y]j , (60)

then we could approximate the L2([0, 1]) norm of ỹ by

‖ỹ‖L2([0,1]) ≈ ‖y‖l2([0,1]) :=
1√
m

 d∑
j=1

[y]2j

 1
2

. (61)

If we express Theorem 3 in terms of ‖·‖l2([0,1]), then it would become

‖ReLU(Wx0)− ReLU(Wx1)‖l2(0,1) ≥
C(W )

m
‖x0 − x1‖2 . (62)

A.5 THEOREM 4

Example 1 (Applying Theorem 4, One Channel). Consider a layer of the form Reshape(ReLU(Wx))
where W = [CT1 , · · · , CTq ]T and each Ck is a convolution operator with kernel ck. Suppose further
that W ∈ R4×4×1024×100 = R16384×100 (as in Radford et al. (2015)). The reshaping operator takes
the 16384 single-channel output of W and transforms it into a multi-channel signal. This is necessary
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for subsequent convolutions, but plays no role in injectivity. Let q = 8, and the 2× 2 convolution
kernels be given as

c1 =

[
3 −1
−1 −1

]
, c2 =

[
−1 3
−1 −1

]
, c3 =

[
−1 −1
3 −1

]
, c4 =

[
−1 −1
−1 3

]
(63)

c5 = −c1, c6 = −c2, c7 = −c3, c8 = −c4. (64)

Directly proving that a 16384× 100 dimension operator has a DSS w.r.t. every x ∈ R100 is daunting.
However, since each layer of the operator is given by one of only 8 simple convolutions, we can
leverage Theorem 4 to significantly simplify the problem. Choosing P = (2, 2), implies that
Z(2,2)(ck) = ck, and so W |Z(2,2)

=
⋃8
k=1 ck. Further, it is easy to see, that {c1, c2, c3, c4} is a

basis for R2×2, so Corollary 2 applies, W |ZP has a DSS for R4, and by Theorem 4, ReLU(Wx) is
injective.

An example when a layer is injective but P in Theorem 4 must be greater than O is when W is a
convolution of 4 kernels of width 3

c1 = [1 0 −1] , c2 = [1 0 1] , c3 = [−1 0 1] , c4 = [−1 0 −1] . (65)

If we choose P = (3), then W |Z(3)
=
⋃4
k=1{ck}. only has four elements, and so cannot have a DSS

w.r.t. every xR3 by Corollary 2. If we however choose P = (4), then Z(4)(ck) = {[ck 0] , [0 ck]}
and W |Z(4)

has a DSS of R4 w.r.t. all x ∈ R4 (from Corollary 2), so W has a DSS w.r.t. all x ∈ RN .

This example suggests that to apply Theorem 4 to a convolution layer with q kernels of width O, we
must choose P so thatW |ZP has at least the minimal number 2

∏p
j=1 Pj of vectors to have a DSS of a

vector space of dimension |P | =
∏p
j=1 Pj . Some algebra gives that q ≥ 2

∏p
j=1

1
1−Oj/Pj and Pj ≥

Oj
1−(2/q)1/p , where the last inequality holds only when Pj

Oj
is independent of j.

Before we can commence with the proof of Theorem 4, we prove the following results.
Lemma 4 (Domain Decomposition). Suppose that Rn = span{Ω1, . . . ,ΩK}3 where each Ωk is a
subspace and for each k = 1, . . . ,K we have a

Wk =
[
wTk,1, . . . , w

T
k,Nk

]T
and W =

[
WT

1 , . . . ,W
T
K

]
(66)

such that wk,` ∈ Ωk and Wk has a DSS of Ωk w.r.t. every x ∈ Ωk. Then W has a DSS of Rn w.r.t.
every x ∈ Rn.

Proof. For every k = 1, . . . ,K Wk|S(x,Wk) has a DSS of Ωk with respect to PΩk(x) where PΩk is
the orthogonal projection of Rn onto Ωk. For every wk,`,

〈wk,`, PΩk(x)〉 = 〈wk,`, x〉 (67)

thus S(x,Wk) ⊂ S(x,W ). From Ωk ⊂ span(Wk|S(x,Wk)) for each k we have a set spanning Ωk
that lie in W |S(x,W ), hence

Rn = span (Ω1, . . . ,ΩK) ⊂ span

(
K⋃
k=1

Nk⋃
`=1

{wk,`}

)
= span(W ) (68)

contains a DSS of Rn w.r.t. x. The set
⋃K
k=1{wk,`}

Nk
`=1 has no dependence on x, thus it is true for all

x ∈ Rn.

Lemma 5. Given a convolution operator C ∈ RN×N . Let 0 ≤ V be such that V + O ≤ N . For
each x ∈ C,

augV :V+O(x) ∈ C, where (augV :V+O(x))J =

{
(x)J−V if 1 + V ≤ J ≤ V +O

0 otherwise
. (69)

Note that (augV :V+O(x))J restricted to the indices 1 + V through V + P is exactly x.
3This is a slight abuse of traditional spanning notation. Here we mean that there is a set of vectors of Ω1, Ω2,

. . . such that their union spans Rn.
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Definition 4 (Zero-Padded Kernel). Let c be a convolution kernel of width O, and let P be another
multi-index. We define the set of zero-padded kernels4 of c as the set

ZP (c) =

{
ĉ ∈ RP : ∃Q, 0 ≤ Q ≤ P −O ĉT =

{
cQ−T+O+1 if 1 ≤ T −Q− ≤ O
0 otherwise

}
(70)

Note that the above notation implies that ZP (c) = {} if O 6≤ P .

The above is always well defined, as cQ−T+O+1 is well defined iff 1 ≤ Q− T +O + 1 ≤ O (recall
that the kernel c is of width O), and so

1 ≤ Q− T +O + 1 ≤ O ⇐⇒ −O ≤ Q− T ≤ −1 ⇐⇒ 1 ≤ T −Q ≤ O (71)

Now we proceed with the proof of Theorem 4.

Proof of Theorem 4. The strategy for this proof will be to use Lemma 4 by decomposing Rn into
some number of different domains {Ωv}nvv=1, each of which are a restriction of Rn to P non-zero
components. For each Ωv, the elements of W that lie in Ωv can be identified as the elements in
W |ZP . If for one v the components of W |ZP form a DSS of Ωv w.r.t. every x ∈ Ωv, then it has a
DSS for every such Ωk, so we can apply Lemma 4 and get that W has a DSS of Rn w.r.t. all x ∈ Rn.

Given an offset V ′ ≥ 0 such that V ′ + P ≤ N , define ΩV ′ as the subspace of all vectors x ∈ RN
such that

ΩV ′ =
{
x ∈ RN : xJ = 0 if 1 + V ′ 6≤ J or J 6≤ V ′ + P

}
. (72)

From Lemma 5, for any k = 1, . . . , nv , if xk,P ∈ ZP (ck), Ck is a submatrix of W and

augV ′:V ′+P (xk,P ) ∈ Ck. (73)

Further, for any such xk,P ,

augV ′:V ′+P (xk,P ) ∈ ΩV ′ . (74)

If W |ZP contains a DSS for RP w.r.t. all x ∈ RP , then

augV ′:V ′+P (W |ZP ) contains a DSS for ΩV ′ w.r.t. all x ∈ ΩV ′ . (75)

This follows from Lemma 4. From Lemma 5 for any V ′ such that

augV ′:V ′+P (W |ZP ) ∈W, (76)

if W |ZP has a DSS of RP w.r.t. all x ∈ RP , then W contains a DSS of ΩV ′ for all 0 ≤ V ′ ≤ N −P .
Finally, note that span({ΩV ′}N−PV ′=0), and so using (75), (76) we can apply Lemma 4 and find that W
contains a DSS of RN w.r.t. all x ∈ RN .

For a multi-channel input (with nc channels) x ∈ RN × RN × · · · × RN︸ ︷︷ ︸
nc times

, a multi-channel con-

volution C on x is given by Cx =
∑nc
q=1 Cqxq where Co is a convolution on RN (defined by

Definition 2) and xo ∈ RN is the restriction of x to the o’th channel. Because of the additive
structure of multi-channel convolutions a nc over RN = RN1 × · · · × RNp dimensional domain
of width O = (O1, . . . , Op) with kernels c1, . . . , cnc is equivalent to a single convolution of width
(O,nc) = (O1, . . . , Op, nc) over R(N,p) = RN1 × · · · × RNp × Rnc . This follows from

(Cx)J =

nc∑
q=1

(Cqxq)J =

nc∑
q=1

O∑
I=1

(cq)O−I−1(xq)J+I =

(O,q)∑
(I,nc)=1

c(O,nc)−(I,q)−1x(J,q)+(I,q).

4With many convolutional neural networks, padding refers to the act of padding the image (with e.g. zeroes),
but the convolutional kernels are not padded. For our results, the variable P refers to the padding of the kernels,
not the image.
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APPENDIX B ROBUSTNESS TO BATCH, WEIGHT, AND SPECTRAL
NORMALIZATION

Normalization strategies such as batch (Ioffe & Szegedy, 2015), layer (Ba et al., 2016), instance
(Ulyanov et al., 2016), group (Wu & He, 2018), weight (Salimans & Kingma, 2016) and spectral
(Miyato et al., 2018) normalization promote convergence during training and encourage low general-
ization error. Normalization is a many-to-one operation. In this section we show that batch, weight,
and spectral normalization do not interfere with injectivity provided, of course, that the network is
injective without normalization. We ask if injectivity is compatible with normalization in a trained
network.

Let {xi}i=1,...,m represent the inputs to a given layer over a mini-batch. The batch normalization
adds two learnable parameters (γ, β) and transforms xi to yi as

µB =
1

m

m∑
i=1

xi, σ2
B =

1

m

m∑
i=1

(xi − µB)2, x̂i =
xi − µB√
σ2
B + ε

, yi = γx̂i + β. (77)

Although for a given γ, β the relationship between xi and yi is not injective , batch normalization is
usually present during training but not at test time. Provided that the learned weights satisfy Theorem
1 and Lemma 1, batch normalization does not spoil injectivity.

In batch renormalization (Ioffe, 2017) it is still desirable to whiten the input into each layer. During
run time there may be no mini-batch, so running averages of the σi and µi (denoted σ̂, µ̂) computed
during training are used. Batch renormalization at test time is then x̂ = x−µ̂√

σ̂2+ε
, y = γx̂+ β. Since,

importantly, σ̂ and µ̂ are not functions of x, the mapping between x and y is one-to-one (when γ 6= 0),
thus such normalization in an injective network does not spoil the injectivity.

In weight normalization (Salimans & Kingma, 2016) the coefficients of the weight matrices are
normalized to have a given magnitude. This normalization is not a function of the input or output
signals, but rather of the weight matrices themselves. This plays no role in injectivity.

B.1 LAYER, INSTANCE AND GROUP NORMALIZATION

layer, instance and group normalization, unlike batch normalization, take place during both training
and execution and, unlike weight and spectral normalization, the normalization is done on the
input/outputs of layers instead of on the weight matrices. For these normalizations (2) is modified so
that it becomes

N(z) = φL(WLML(· · ·φ2(W2M2(φ1(W1z + b1)) + b2) · · ·+ bL)) (78)

where M` : Rni+1 → Rni+1 are normalization functions that are many-to-one. In general
φ`(W`M`(·) + b`) will not be injective for any φ`,W`, b` on account of M`, but for all of the
mentioned normalization techniques we can get near injectivity. Before we descend into the particular
we make the following observation about normalization methods that obey a certain structure.
Definition 5 (Scalar-Augmented Injective Normalization). LetM`(x) : Rn → Rn be a normalization
function that is understood to be many-to-one. We say that M`(x) is scalar-augmented injective if
there exists a function m`(x) : Rn → Rk where k � n and M̃` : Rn × Rk → Rn such that

M`(x) := M̃`(x;m`(x)) (79)

and M̃`(x;m`(x)) is injective on x given m`(x).

An example of a normalization function that is scalar-augmented injective is

M`(x) =
x

‖x‖2
. (80)

For this choice of M`, k = 1, and

M̃`(x; c) =
x

c
m`(x) = ‖x‖2 . (81)

With this definition, we can prove the following trivial but useful result
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Lemma 6 (Restricted Injectivity of Scalar-Augmented Normalized Networks). Let N be a deep net-
work of the form in (78) and let each φ`(W`·) be layer-wise injective. Let the normalization functions
{M`}`=1,...,L each be scalar-augmented injective. Then given {m`(x)}`=1,...,L, the network

Ñ(z;m1, . . . ,m`) = φL(WLM̃L(· · ·φ2(W2M̃2(φ1(W1z + b1);m2) + b2) · · ·+ bL;mL)) (82)

is injective.

Proof. The proof of Lemma 6 follows from a straightforward application of induction, combined
with Definition 5.

Remark 5. Note that Lemma 6 implies that for a fixed {m`(x)}`=1,...,L, there is at most one value of
z such that

Ñ(z;m1, . . . ,m`) = N(z), (83)

where N(z) is given by (78), and that the z’s on both sides of (83) are the same. It is still entirely
possible that there are is another choice of z′, {m`(x)}`=1,...,L such that

Ñ(z;m1, . . . ,m`) = Ñ(z′;m′1, . . . ,m
′
`). (84)

An example of this would be if M` is of the form in (80), then

M̃`(x;m`(x)) = M̃`(2x; 2m`(x)). (85)

In other words, Lemma 6 implies that the deep network is injective (in z) for a fixed {m`(x)}`=1,...,L,
but it may still not be injective for all z and {m`(x)}`=1,...,L.

With Lemma 6 in tow, we can show that layer, instance, and group normalization are all scalar-
augmented injective normalizations, so Lemma 6 applies and yields a kind of injectivity. Layer,
instance and group normalization are all related insofar as they can all be expressed in the same
abstract form. For a given input x, all three break x up into K parts denoted {x|Sk}k=1,...,K such
that for each k = 1, . . . ,K

µk =
1

m

m∑
i=1

(x|Sk)i σ2
k =

1

m

m∑
i=1

((x|Sk)i − µk)2 (86)

(x̂|Sk)i =
(x|Sk)i − µk√

σ2
k + ε

M(x)|Si = γk(x̂|Sk)i + βk. (87)

The differences between the three normalization are how {Sk}k=1,...,K is chosen. For layer normal-
ization K = 1 and the normalization is applied to the entire input signal. For instance normalization,
there is one Sk for each channel, and the x|Sk restricts x to just one channel of inputs, that is the
normalization is done channel-wise. Group normalization is part way between these two, where k is
less than the number of channels, and channels are batched together.

In any case, for any of these normalization methods, they are all scalar-augmented injective normal-
ization where

M`(x) = M̃`(x; {σk,`, µk,`}k=1,...,K). (88)

Thus, by Lemma 6 their corresponding deep networks are all injective, provided that for each `,
{σk,`, µk,`}k=1,...,K is saved.

B.2 POOLING OPERATIONS

Although pooling may have a different aim than typical normalization, we consider it in this section,
as it is mathematically similar to (78). Pooling is similar to layer, instance and group normalization
in the sense that they partition the input space into K disjoint pieces, and then output a weighted
average upon each piece. Specifically, if Mp(x) : Rn → RK where for k = 1, . . . ,K,

Mp(x)|Sk = ‖x|Sk‖p (89)

where ‖·‖p is the discrete p norm of x restricted to the set Sk. For p = 1 this is the mean of the
absolute value, for p = 2 this is the Euclidean mean and for p =∞ it is the maximum of the absolute
value. The injectivity of this operation in the cases where p = 1, 2,∞ is considered in the work
Bruna et al. (2013).
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APPENDIX C PROOFS FROM SECTION 3

C.1 PROOF OF THEOREM 5

To prove Theorem 5 we combine the approximation results for neural networks and the low regularity
version of the generic orthogonal projector technique used to prove the easy version of the Whitney’s
embedding theorem (Hirsch, 2012, Chapter 2, Theorem 3.5) that shows that a C2-smooth manifold of
dimension n can be embedded in R2n+1 with an injective, C2-smooth map. To prove the result, we
first approximate f(x) by a ReLU-type neural network that is only Lipschitz-smooth, so the graph
of the map Fθ is only a Lipschitz-manifold. We note that limited regularity often causes significant
difficulties for embedding results, as for example for the Lipschitz-smooth manifolds it is presently
known only that a n-dimensional manifold can be embedded (without preserving distances) in the
Euclidean space RN of dimension N = (n + 1)2, and the classical Whitney problem, whether a
n-dimensional manifold can be embedded in R2n+1, is still open Luukkainen & Väisälä (1977);
Cobzaş et al. (2019). Due to this lack of smoothness, we recall the details how this generic projector
technique works.

Proof of Theorem 5. Let ε > 0 and Z ⊂ Rn be a compact set. As a continuous function f : Rn →
Rn can be uniformly approximated in a compact set by a C∞-smooth function (see e.g. (Adams,
1975, Thm. 2.29)), we can without loss of generality assume that f smooth and therefore a locally
Lipschitz function.

By classical results of approximation theory for shallow neural networks, see Hornik (1991); Leshno
et al. (1993); Pinkus (1999), for any L ≥ 1 there are m and a neural network Fθ ∈ NN (n,m,L,m)
such that

|f(x)− Fθ(x)| ≤ 1

2
ε, for all x ∈ Z. (90)

We note that by using recent results for deep neural networks, e.g. by Yarotsky (2017), one can obtain
efficient estimates on how a given accuracy ε can be obtained using sufficiently large L and m. Our
aim is the perturb Fθ : Rn → Rm so that it becomes injective.

We assume that Z ⊂ Bn(0, r1), where Bn(0, r1) ⊂ Rn is an open ball having centre 0 and radius
r1 > 0. We denote the closure of this ball by B

n
(0, r1).

Let D = m+ n, α > 0, and define a map Hθ : Rn → Rm+n,

Hθ(x) = (αx, Fθ(x)) ∈ Rn × Rm = RD. (91)

Observe that the map Hθ : Rn → RD is injective.

Let V(k,D) denote the set of k-tuples (v1, v2, . . . , vk) where vj are orthonormal vectors in RD. Such
vectors span a k-dimensional linear space. Furthermore, let G(k,D) denote the set of k-dimensional
linear subspaces of RD, and for V ∈ G(k,D), V = span(v1, v2, . . . , vk), let PV = P(v1,v2,...,vk) :

RD → RD be an orthogonal projection which image is the space V . As the dimension of the
orthogonal group O(k) is k(k − 1)/2 and by Milnor & Stasheff (1974), the set G(k,D), called the
Grassmannian, is a smooth algebraic variety, of dimension k(D − k) and the dimension of V(k,D)
is k(D − k) + k(k − 1)/2 = k(2D − k − 1)/2.

To prove Theorem 5, we need the following lemma.

Lemma 7. Let Hθ ∈ NN (n,D), D > d ≥ 2n+ 1 be a neural network such that Hθ : Rn → RD
is injective. Let Xθ = {V ∈ G(d,D) : PV ◦ Hθ : Rn → RD is injective}. Then the set Xθ is
an intersection of countably many open and dense subsets of G(d,D), that is, elements of Xθ are
generic. Moreover, the d(D−d) dimensional Hausdorff measure of the complement ofXθ inG(d,D)
is zero.

Note that for V ∈ Xθ, we have PV ◦Hθ ∈ NN (n,D).

Proof. We use that fact that Hθ : Rn → RD is injective and locally Lipschitz-smooth. Recall
that f : Rn → Rm is locally Lipschitz if for any compact set Z ⊂ Rn there is LZ > 0 such that
|f(x)− f(y)| ≤ LZ |x− y| for all x, y ∈ Z .
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Let v ∈ Rm be a unit vector and let Qv : RD → RD be the projection Qv(z) = z − (z · v)v. Let
A = {(x, y) ∈ Rn × Rn : x 6= y}.

As Hθ : Rn → RD is an injection, we can define the map

sθ : A→ SD−1 = {w ∈ RD : |v| = 1}, sθ(x, y) =
Hθ(x)−Hθ(y)

|Hθ(x)−Hθ(y)|
. (92)

As observed in the proof of the Whitney’s embedding theorem (Hirsch, 2012, Chapter 2, Theorem
3.5), the map Qw ◦ Hθ : Rn → RD is an injection when w ∈ SD−1. To see this, assume that
w ∈ SD−1 satisfies w 6∈ sθ(A), that is, w is not in the image of sθ. Then, if there are x, y ∈ Rn,
x 6= y such that QwHθ(x) = QwHθ(y), we see that there is t ∈ R such thatHθ(x)−Hθ(y) = tw.
As w is a unit vector, this yields that t = |Hθ(x)−Hθ(y)| 6= 0 and

w = (Hθ(x)−Hθ(y))/t = sθ(x, y),

which is in contradiction with the assumption that w 6∈ sθ(A). Hence, w 6∈ sθ(A) yields that
Qw ◦Hθ : Rn → RD is an injection.

We consider the image sθ(A) ⊂ SD−1. For h > 0, let

Ah = {(x, y) ∈ Bn(0, h−1)×Bn(0, h−1) : |Hθ(x)−Hθ(y)| ≥ h}.
As Hθ : B

n
(0, h−1)→ Rm is Lipschitz-smooth with some Lipschitz constant Lh, we see that the

map sθ : Ah → SD−1 is Lipschitz-smooth. Since the set A has the Hausdorff dimension 2n and the
map sθ : Ah → SD−1 is Lipschitz-smooth, the Hausdorff dimension of the set sθ(Ah) is at most 2n,
see e.g. Morgan (2016, p. 26). The set A is the union of all sets Ahj , where hj = 1/j and j ∈ Z. By
Mattila (1995, p. 59) the Hausdorff dimension of a countable union of sets Sj is the supremum of
the Hausdorff dimension of the sets Sj . Hence sθ(A) =

⋃∞
j=1 sθ(Ahj ) has the Hausdorff dimension

less or equal 2n.

Since the dimension D − 1 of SD−1 is strictly larger than 2n, we see that the set sθ(Ahj ) is closed,
its complement is an open and dense set, and thus the set Y1(θ) := SD−1 \ sθ(A) is an intersection
of countably many open and dense sets.

Observe that as Qw1 is a linear map, the map Qw1 ◦ Hθ is also a neural network that belongs
in NN (n,D), and we can denote Qw1 ◦ Hθ = Hθ1 with some parameters θ1. Thus we can
repeat the above arguments using the map Qw1 ◦ Hθ : Rn → span(w1)⊥ ≡ RD−1 instead of
Hθ : Rn → RD. Repeating the above arguments D − d times, can choose orthonormal vectors
wj ∈ SD−1, j = 1, 2, . . . , D − d, and sets Yj(θ, w1, . . . , wj−1) ⊂ SD−1 ∩ (w1, . . . , wj−1)⊥,
which D − j dimensional Hausdorff measures vanish and which complements are intersections of
countably many open and dense sets. Let Bθ to be the set of all n-tuples (w1, . . . , wD−d) where
w1 ∈ Y1(θ) and wj ∈ Y2(θ, w1, . . . , wj−1) for all j = 2, . . . , D − d. Note that all such vectors wj ,
j = 1, 2, . . . , D − d are orthogonal vectors spanning a D − d dimensional vector space V , and the
map

PV ◦Hθ : Rn → RD, where PV = QwD−d ◦ · · · ◦Qw2 ◦Qw1 (93)
is injective. By the above, construction the (D − (d + 1)/2)d dimensional Hausdorff measure of
the complement of Bθ in V(D, d) is zero and Bθ is generic set. As the dimension of the set of the
orthogonal basis in a d-dimensional vector space is (d− 1)d/2, we obtain the claim.

Now we continue with the proof of Theorem 5. Let V0 = {(0, 0, . . . , 0)} × Rm ⊂ RD. By applying
Lemma 7 with d = m we see that any neighborhood of V0 in G(d,D) contain a m-dimensional
vector space V ∈ Xθ. Then PV ◦Hθ is injective. We can choose V ∈ Xθ to be so close to V0 that
there is a rotation RV ∈ O(D) of the space RD, that maps the subspace V to the subspace V0, such
that

‖RV − Id‖Rd→Rd <
1

2(1 + α+ ‖Fθ‖C(Z))
ε. (94)

where Id is the identity function. Let π0 : RD → Rm be the map π0(y′, y′′) = y′′ be the projection
to the last m coordinates. Then

‖RV ◦QPV ◦Hθ −Hθ‖C(Z) <
1

2
ε, π0 ◦Hθ = Fθ (95)

This and (90) imply that the claim of Theorem 5 holds for the injective neural network Nθ =
π0 ◦RV ◦ PV ◦Hθ : Rn → Rm.
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Lemma 7 used in the above proof yields also Corollary 3.

Proof of Corollary 3. Observe that a measure µ that is absolutely continuous with respect to the
Lebesgue

∏k
j=1 Rd2j×d2j−1 is absolutely continuous also with respect to the normalized Gaussian

distribution, and that if the set S = {Fk is not injective} has measure zero with respect to the
normalized Gaussian distribution, then its µ-measure is also zero. Thus we can assume without
loss of generality that the elements of matrices Bj are independent and have normalized Gaussian
distributions.

Assume next that we have shown that Fj−1 : Rn → Rd2j−2 is injective almost surely. Then,
f

(j)
θ ◦ Fj−1 : Rn → Rd2j−1 is injective almost surely. If d2j > d2j−1, the matrix Bj is almost surely

injective and so is Fj = Bj ◦ f (j)
θ ◦Fj−1 : Rn → Rd2j . Thus, it is enough to consider the case when

d2j−1 ≥ d2j ≥ 2n+ 1. Then the matrix Bj : Rd2j−1 → Rd2j has almost surely rank d2j . By using
the singular value decomposition, we can writeBj = R1

jDjR
2
j whereR1

j ∈ O(d2j), R
2
j ∈ O(d2j−1),

Dj ∈ Rd2j×d2j−1 is matrix which principal diagonal elements are almost surely strictly positive and
the other elements are zeros. Let Vj = (R2

j )
−1(Rd2j × {(0, 0, . . . , 0)}) ⊂ Rd2j−1 . Let PVj be an

orthogonal projector in Rd2j−1 onto the space Vj of dimension d2j . As the distribution of the matrix
Bj is invariant in rotations of the space, so is the distribution of linear space Vj in G(d2j−1, d2j).
By Lemma 7, we see that the map PVj ◦ f

(j)
θ ◦ Fj−1 : Rn → Rd2j−1 is injective almost surely.

This implies that the map Bj ◦ f (j)
θ ◦ Fj−1 : Rn → Rd2j is injective almost surely, that is, the map

Fj : Rn → Rd2j is injective almost surely. The claim follows by induction.

In Baraniuk & Wakin (2009), see also Hegde et al. (2008); Iwen & Maggioni (2013), Broomhead &
Kirby (2001; 2000), the authors study manifold learning using random projectors. These results are
related to the proof of Theorem 5 above. Let Hθ be given by (91), a ReLU-based neural network
whose graph M ⊂ Rd, d = 2n+m. When PV is a random projector in Rd onto a m-dimensional
linear subspace V , the injectivity of the neural network PV ◦Hθ is closely related to the property
that PV (M) is an n-dimensional submanifold with a large probability. In Broomhead & Kirby
(2001; 2000) the authors use Whitney embedding results for C2-smooth manifold for dimension
reduction of data. Our proof applies similar techniques for Lipschitz-smooth maps. In Baraniuk &
Wakin (2009); Hegde et al. (2008); Iwen & Maggioni (2013), the authors apply the result that when
M ⊂ RD is a submanifold and D is large enough, a random m-dimensional projector PV satisfies
on M the restricted isometry property with a large probability. In this case, PV ◦Hθ is not only an
injection but its inverse map is also a local Lipschitz map. In this sense, the techniques in Baraniuk
& Wakin (2009); Hegde et al. (2008); Iwen & Maggioni (2013) would give improved results to the
generic projection technique used in this paper. The results in Baraniuk & Wakin (2009); Hegde et al.
(2008); Iwen & Maggioni (2013), however, require that the dimension m of image space of the map
f : Rn → Rm satisfies m ≥ C log(ε−1), where ε is the precision parameter in the inequality (10).
Our result, Theorem 5 requires only that m ≥ 2n+ 1.

APPENDIX D MISCELLANEOUS LEMMAS

Lemma 8. Let x, y, z ∈ R and z ≥ 0. Then
ReLU(x+ z) = ReLU(y + z) =⇒ ReLU(x) = ReLU(y). (96)

Lemma 9 (Useful Inequalities). The following geometric inequalities are useful and have straight
forward proofs. Suppose that a, b, c ∈ Rn, then

1. For i = 1, . . . , k, let ai ∈ Rm. If
k∑
i=1

‖ai‖22 ≤

∥∥∥∥∥
k∑
i=1

ai

∥∥∥∥∥
2

2

, (97)

then if for each j = 1, . . . ,m, ai|j · ai′ |j ≥ 0 for each pair i, i′ ∈ [[m]], then
k∑
i=1

‖ai‖2 ≤
√
k

∥∥∥∥∥
k∑
i=1

ai

∥∥∥∥∥
2

. (98)
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2. If a, b ∈ Rn and 〈a, b〉 ≥ 0, then

‖a‖22 + ‖b‖22 ≤ ‖a+ b‖22 . (99)

Lemma 10 (Co-linear Additivity of ReLU(W ·)). Let W ∈ Rm×n, x1, x2 ∈ Rn, `x1,x2(t) =
(1− t)x1 + tx2. Let there be

0 = t1 ≤ t2 ≤ · · · ≤ tnt−1 ≤ tnt = 1 (100)

then
nt−1∑
k=1

∥∥ReLU(Wxtk)− ReLU(Wxtk+1
)
∥∥2

2
≤ ‖ReLU(Wx1)− ReLU(Wx2)‖22 . (101)

and
nt−1∑
k=1

∥∥ReLU(Wxtk)− ReLU(Wxtk+1
)
∥∥

2
≤
√
nt ‖ReLU(Wx1)− ReLU(Wx2)‖2 . (102)

Proof. Let xt = `x1,x2(t), then as a function of t, the j’th component of ReLU(Wxt) is either
increasing (if 〈wj , x2 − x1〉 ≥ 0) or decreasing (if 〈wj , x2 − x1〉 ≤ 0). In either case, it is clear that
for each j = 1, . . . ,m

(ReLU(Wx1)− ReLU(Wx2))|j · (ReLU(Wx2)− ReLU(Wx3))|j ≥ 0 (103)

hence clearly

〈(ReLU(Wx1)− ReLU(Wx2)), (ReLU(Wx2)− ReLU(Wx3))〉 ≥ 0 (104)

thus we can apply (99) and we obtain (101). Applying (98) then yields (102).

APPENDIX E DETAILED COMPARISON TO PRIOR WORK

E.1 COMPARISON TO BRUNA et al.

In Bruna et al. (2013, Proposition 2.2.) the authors give a result invoking a condition similar to our
DSS condition (Definition 1). It also concerns injectivity of a ReLU layer in terms of the injectivity
of the weight matrix restricted to certain rows. The authors also compute a bi-Lipschitz bound for a
layer (similar to our Theorem 3), though as we show in the following examples their analysis is in
some cases not precisely aligned with injectivity.

Their criterion is given in two parts. For a weight matrix, they first define a notion of admissible set
which indicates the points where the weight matrix’s injectivity must be tested. Injectivity follows
provided that the weight matrix is non-singular when restricted to each admissible set. Given a weight
matrix W ∈ RM×N and bias b, the authors say that Ω ⊂ {1, . . . ,M} is admissible if⋂

i∈Ω

{x : 〈x,wi〉 > bi} ∩
⋂
i 6∈Ω

{x : 〈x,wi〉 < bi} (105)

is not empty. For our analysis we focus on the case when b ≡ 0. In this case Ω is admissible if and
only if

∃x ∈ Rn such that 〈x,wi〉
{

> 0 if i ∈ Ω

< 0 if i 6∈ Ω
. (106)

Note that the inequality in (106) is strict, unlike (2). If, for example, W has a column that is the zero
vector, then there are no admissible Ω. The authors use the notation Ω to denote all admissible sets
for a given weight matrix. In their notation F is the transpose of our weight matrix W , FΩ are the Ω
rows of the weight matrix, FΩ|VΩ

is the subspace generated by the Ω rows of W . The authors also
call the ReLU function the half-rectification function. λ−(F ) and λ+(F ) denote the lower and upper
frame bounds of F respectively. The injectivity criterion from Bruna et al. (2013) is
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Proposition 1. Let A0 = minΩ∈Ω λ−(FΩ|VΩ
). Then the half-rectification operator Mb(x) =

ReLU(FTx+ b) is injective if and only if A0 > 0. Moreover, it satisfies

∀x, x′, A0 ‖x− x′‖ ≤ ‖Mb(x)−Mb(x
′)‖ ≤ B0 ‖x− x′‖ (107)

with B0 = maxΩ∈Ω λ+(FΩ) ≤ λ+(F ).

We now show that Proposition 1 does not precisely align with injectivity of ReLU(W (·)). We
construct a weight matrix for which A0 > 0, but does not yield an injective ReLU(W (·)). If

W =

[
1 0
0 1
−1 0

]
(108)

then clearly ReLU(Wx) is not injective (for all α < 0,ReLU(W

[
0
α

]
) = 0). The only admissible

sets are Ω̄ = {{1}, {3}, {1, 2}, {2, 3}} (notably {2} is not admissible). W is full rank on all Ω ∈ Ω̄,
so A0 > 0 so Proposition 1 implies that ReLU(W (·)) is injective. Now consider the case when

W =

[
B
−DB

0

]
(109)

where B is a basis of Rn, D is a strictly positive diagonal matrix, and 0 is the zero row vector. From
Corollary 2, W satisfies Theorem 1, and so ReLU(W (·)) is injective. On account of the zero row
vector in (109), ∀x ∈ Rn, 〈x, 0〉 = 0 so there are no Ω that are admissible Ω according to (105).
Thus A0 is undefined.

Now we construct an example of a W and x, x′ ∈ Rn for which A0 ‖x− x′‖ >
‖ReLU(Wx)− ReLU(Wx′)‖. Let

W =

 1 0
0 1
−1 0
0 −1

 , x =
1√
2

[
1
1

]
, x′ =

1√
2

[
−1
1

]
. (110)

Clearly on every admissible set λ−(WΩ|VΩ
) = 1, so

ReLU(Wx) =
1√
2

ReLU


 1

1
−1
−1


 =

1√
2

1
1
0
0

 ,

ReLU(Wx′) =
1√
2

ReLU


−1

1
1
−1


 =

1√
2

0
1
1
0

 , (111)

hence,

‖ReLU(Wx)− ReLU(Wx′)‖ =
1√
2

∥∥∥∥∥∥∥
 1

0
−1
0


∥∥∥∥∥∥∥ = 1 (112)

and

‖x− x′‖ =
1√
2

∥∥∥∥[20
]∥∥∥∥ =

√
2. (113)

From this we have
√

2 = A0 ‖x− x′‖ > ‖ReLU(Wx)− ReLU(Wx′)‖ = 1. (114)

On the other hand, substituting this into (6) yields
C√
m
‖x− x′‖ =

1√
8

√
2 =

1

2
≤ 1, (115)

which does hold, suggesting that the lower bound in Proposition 1 is not pessimistic enough.
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E.2 RELATIONSHIP TO MALLAT ET AL. (2018)

In Mallat et al. (2018) the authors consider a construction analogous to our convolutional construction
(in Definition 3) defined on a continuum (i.e. infinite-dimensional function defined on an interval)
rather than on a vector (i.e. discrete finite dimensional function) defined on a subset of Rn. The
authors posit that CNNs first learn a layer of filters localized in frequency varied in phase. The
authors also show that a a ReLU activation function acts as a filter on the phase of the convolution of
the filters against the input signal and that, provided that the filters are sufficiently different in phase
and satisfy a frame condition then the layer is bi-Lipschitz, and hence is injective. Their analysis a
particularized version of ours, and can be straight forwardly subsumed by our work.

The frame condition is given by Proposition 2.6 in Mallat et al. (2018) that the weight matrix must
satisfy in order ensure that W is invertible and stable. In the notation of Mallat et al. (2018) the
filters ψ̂λ are analogous to the Fourier transform of the kernels in Definition 2, and the condition in
(2.25) in Mallat et al. (2018) is one natural way to generalize the notion of a basis to a continuous
signal. Hence, Proposition 2.6 in Mallat et al. (2018) can be loosely interpreted as a statement that
the kernels in a given layer of width P form a basis of RP .

The second condition is that kernels are given in terms of belonging to a family, and members of this
family are related to each other in the sense that members of the same family are centered in the same
Fourier domain, and act as phase offsets of differing phase. Equation 2.14 of Mallat et al. (2018)
describes that a phase filter H : C× [0, 2, π]→ C is defined by

∀z ∈ C, α ∈ [0, 2π], Hz(α) = |z|h(α− ϕ(z)) (116)

where |z| standard modulus of a complex number, ϕ(z) is the complex phase, and h(α) =
ReLU(cos(α)). If we consider just the value of Hz(0) and Hz(π), then we find

Hz(0) =|z|ReLU(cos(ϕ(z))) = ReLU(|z| cos(ϕ(z))) = ReLU(Rz), (117)
Hz(π) =|z|ReLU(− cos(ϕ(z))) = ReLU(−|z| cos(ϕ(z))) = ReLU(−Rz), (118)

where Rz is the real part of z. If (as in Mallat et al. (2018)) z is given by z = x ? ck, where x is a
real signal and ?ck denotes the convolution against a kernel ck, then (117) and (118) imply that

Hz(0) = ReLU(x ? Rck), (119)
Hz(π) = ReLU(x ? (−Rck)), (120)

that is, that for every kernel ck in a layer, the kernel −ck is also in that layer.-

Combining the two logical conditions above implies that the kernels of width ck form a basis of RP
and that for every kernel ck there is also a kernel −ck. Together these two (by Corollary 2) that the
ck form a DSS of RP , and thus by Theorem 4 the entire layer is injective.

APPENDIX F ARCHITECTURE DETAILS FOR EXPERIMENTS

Generator network: We train a generator with 5 convolutional layers. The input latent code is
256-dimensional which is treated by the network as a 1 × 1 × 256 size tensor. The first layer is a
transposed convolution with a kernel size of 4× 4 with stride 1 and 1024 output channels. This is
followed by a leaky ReLU. We follow this up by 3 conv layers each of which halve the number of
channels and double the image size (i.e. we go from N/2 × N/2 × C to N × N × C/2 tensor)
giving an expansivity of two, the minimum required for injectivity of ReLU networks. Each of these
3 convolution layers has kernel size 3, stride 2 and is followed by the ReLU activation. These layers
are made injective by having half the filters as w and the other half as −s2w. Here, w and s are
trainable parameters. The biases in these layers are kept at zero. We do not employ any normalization
schemes. Lastly, we have a convolution layer at the end to get to 3 channels and required image size.
This layer is followed by the sigmoidal activation. We compare this to a regular GAN which has all
the same architectural components including nonlinearities except the filters are not chosen as w and
−s2w and we also allow biases (see Figure 9 for a qualitative comparison).
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Injective DCGAN Regular DCGAN

Figure 9: Samples generated with a DCGAN on FFHQ dataset: injective layers (left) vs generic
layers (right)

Critic network: The discriminator has 5 convolution layers with 128, 256, 512, 1024 and 1 channels
per layer. Each convolution layer has 4 × 4 kernels with stride 2. Each layer is followed by the
leaky-ReLU activation function. The last layer of the network is followed by identity.

Inference network: The inference network has the same architecture as the first 4 convolution layers
of the discriminator. This is followed by 3 fully-connected layers of size 512, 256 and 256. The first
2 fully-connected layers have a Leaky ReLU activation while the last layer has identity activation
function. The inference net is trained in tandem with the GAN.

We use the Wasserstein loss with gradient penalty (Gulrajani et al., 2017) to train our networks.
We train for 40 epochs on a data set of size 80000 samples. We use a batch size of 64 and Adam
optimizer for training with learning rate of 10−4.

We report FID (Heusel et al., 2017) and Inception score (Salimans et al., 2016) using 10000 generated
samples. The standard deviation was calculated using 5 sets of 10000 generated samples. In order to
calculate the mean and covariance of generated distributions, we sample 50000 codes.
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