
Prompt Learning with Optimal Transport for
Vision-Language Models
Supplementary Material

Anonymous Author(s)
Affiliation
Address
email

A. More Details of Optimal Transport1

The Optimal Transport [11] is initially introduced to find a transportation plan to move simultaneously2

several items at a minimal cost, such as moving a pile of sand to fill all the holes. Recently, it is widely3

used for the comparison of distributions. Mathematically, given two probability density function U4

and V over space X and Y , the OT (Wasserstein) distance [16] can be defined as5

DOT (U, V ) = inf
Γ

∫
X×Y

C(x,y)dγ(x,y), (1)

where C(x,y) is the cost between two points in the space X × Y , and Γ denotes the set of transport6

plans between support points x and y (e.g. γ(x,y)). We can regard two probability density functions7

U and V as piles and holes and C is the cost function of moving a unit of sand.8

In our problem of multiple prompts learning, we formulate the sets of visual features and prompt9

features as two discrete distributions as10

U =

M∑
m=1

umδfm
and V =

N∑
n=1

vnδgn
, (2)

where u and v are the discrete probability vectorss that sum to 1, and δf is a Dirac delta function11

placed at support point f in the embedding space. Given two support points fm and gn, the cost12

function is written as C(fm, gn) = 1− sim(fm, gn) = 1− fT
mgn

||fm||·||gn|| . For simply, in this discrete13

situation, C ∈ RM×N is a cost matrix in which each point denotes the cost between fm and gn.14

Then, the total distance of these two distributions is written as:15

< T ,C >=

M∑
m=1

N∑
n=1

Tm,nCm,n, (3)

where the T ∈ RM×N is a matrix of transport plan, which is learned to minimize the total distance.16

Each point Tm,n in T is a weight of local cost Cm,n.17

The optimization problem of optimal transport is formulated as:18

dOT (u,v|C) = minimize
T

< T ,C >

subject to T1 = u,T T1 = v,T ≥ 0.
(4)

These constraints of T is used to match its marginal distributions and original discrete distributions19

in Eq (2). In our framework, we treat visual features fm and prompt features gn equally and thus20

u = 1M×1/M and v = 1N×1/N .21
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Algorithm 1: Prompt Learning with Optimal Transport

Input: Training few-shot image data: X = {x}, pretrained CLIP model f and g. number of prompts
N , entropy parameter λ, maximum number of iterations in inner and outer loops Tin, Tout.

Output: The parameters of prompts {vecl,n|L,N
l=1,n=1}

1: Initialize {vecl,n}
2: for tout = 1, 2, . . . , Tout in the outer loop do
3: Obtain a visual feature set F ∈ RM×C with the visual encoder of CLIP;
4: Generate prompt feature set Gk ∈ RN×C of each class with the textual encoder;
5: Calculate the cost matrix Ck = 1− F TGk ∈ RM×N of each class
6: Calculate the OT distance with an inner loop: Initialize the v0 = 1, δ = 0.01 and ∆v = ∞
7: for tin = 1, 2, . . . , Tin do
8: Update utin = u/((exp(−C/λ)vtin−1)
9: Update vtin = v/((exp(−C/λ)Tutin)

10: Update ∆v =
∑

|vtin − vtin−1|/N
11: if ∆v < δ then
12: break
13: end if
14: end for
15: Obtain optimal transport plan as T ∗

k = diag(ut)exp(−Ck/λ)diag(vt),
16: Calculate the OT distance dOT (k) =< T ∗

k ,Ck >
17: Calculate the classification probability pot(y = k|x) with the OT distance
18: Update the parameters of prompts with cross-entropy loss LCE

19: end for
20: return {vecl,n|L,N

l=1,n=1}

As directly optimizing the above objective is always time-consuming, we apply the Sinkhorn dis-22

tance [3] to use an entropic constraint for fast optimization. The optimization problem with a23

Lagrange multiplier of the entropy constraint is:24

dOT,λ(u,v|C) = minimize
T

< T ,C > −λh(T )

subject to T1 = u,T T1 = v,
(5)

where h(·) is entropy and λ ≥ 0 is a hyper-parameter. Then we can have a fast optimization solution25

with a few iterations as:26

T ∗ = diag(ut)exp(−C/λ)diag(vt), (6)

where t denotes iteration and in each iteration ut = u/((exp(−C/λ)vt−1) and vt =27

v/((exp(−C/λ)Tut), with the initiation v0 = 1. The detailed algorithm is shown in Algorithm 128

B. Dataset Details29

The datasets we used in the experiments follow CoOp [19], which include 11 datasets for few-shot30

visual recognition and 4 ImageNet-based datasets for generalization (robustness) evaluation. The31

details of each dataset are shown in Table 1, including the number of classes, the sizes of training and32

testing sets, and original tasks.33

C. Few-shot Recognition Accuracy34

In Section 4.3.1, we provide a line chart to show and compare the performance of PLOT and CoOp.35

In this section, we provide detailed performance results on all 11 few-shot recognition datasets in36

Table 2, where we use gray for our method and white for CoOp. To highlight, we respectively use37

dark cyan and light cyan to represent the performance of PLOT and CoOp on the average of all 1138

datasets. We repeat all experiments 3 times and report the mean and standard deviation in the table.39
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Table 1: The detailed statistics of datasets used in experiments.

Dataset Classes Training size Testing size Task

Caltech101 [5] 100 4,128 2,465 Object recognition
DTD [2] 47 2,820 1,692 Texture recognition
EuroSAT [6] 10 13,500 8,100 Satellite image recognition
FGVCAircraft [10] 100 3,334 3,333 Fine-grained aircraft recognition
Flowers102 [12] 102 4,093 2,463 Fine-grained flowers recognition
Food101 [1] 101 50,500 30,300 Fine-grained food recognition
ImageNet [4] 1,000 1.28M 50,000 Object recognition
OxfordPets [13] 37 2,944 3,669 Fine-grained pets recognition
StanfordCars [9] 196 6,509 8,041 Fine-grained car recognition
SUN397 [18] 397 15,880 19,850 Scene recognition
UCF101 [15] 101 7,639 3,783 Action recognition

ImageNetV2 [14] 1,000 - 10,000 Robustness of collocation
ImageNet-Sketch [17] 1000 - 50,889 Robustness of sketch domain
ImageNet-A [8] 200 - 7,500 Robustness of adversarial attack
ImageNet-R [7] 200 - 30,000 Robustness of multi-domains

Table 2: The few-shot visual recognition accuracy on 11 datasets.

Dataset Methods 1 shot 2 shots 4 shots 8 shots 16 shots

Caltech101 PLOT 89.83± 0.33 90.67± 0.21 90.80± 0.20 91.54± 0.33 92.24± 0.38
CoOp 87.51± 1.02 87.84± 1.10 89.52± 0.80 90.28± 0.42 91.99± 0.31

DTD PLOT 46.55± 2.62 51.24± 1.95 56.03± 0.43 61.70± 0.35 65.60± 0.82
CoOp 43.62± 1.96 45.35± 0.31 53.94± 1.37 59.69± 0.13 62.51± 0.25

EuroSAT PLOT 54.05± 5.95 64.21± 1.90 72.36± 2.29 78.15± 2.65 82.23± 0.91
CoOp 52.12± 5.46 59.00± 3.48 68.61± 3.54 77.08± 2.42 83.69± 0.47

FGVCAircraft PLOT 17.90± 0.09 18.94± 0.44 22.36± 0.42 26.17± 0.29 31.49± 0.89
CoOp 8.59± 5.79 16.52± 2.38 20.63± 2.46 26.63± 0.86 31.43± 0.96

Flowers102 PLOT 71.72± 0.97 81.19± 0.79 87.82± 0.20 92.43± 0.25 94.76± 0.34
CoOp 67.98± 1.98 77.58± 1.46 86.10± 1.05 91.27± 0.83 94.49± 0.40

FOOD101 PLOT 77.74± 0.47 77.70± 0.02 77.21± 0.43 75.31± 0.30 77.09± 0.18
CoOp 74.25± 1.52 72.61± 1.33 73.49± 2.03 71.58± 0.79 74.48± 0.15

ImageNet PLOT 59.54± 0.16 60.64± 0.06 61.49± 0.23 61.92± 0.09 63.01± 0.13
CoOp 56.99± 1.03 56.40± 0.87 58.48± 0.47 60.39± 0.57 61.91± 0.17

OxfordPets PLOT 87.49± 0.57 86.64± 0.63 88.63± 0.26 87.39± 0.74 87.21± 0.40
CoOp 85.99± 0.28 82.22± 2.15 86.65± 0.97 85.36± 1.00 87.02± 0.89

StanfordCars PLOT 56.60± 0.36 57.52± 0.71 63.41± 0.29 67.03± 0.50 72.80± 0.75
CoOp 55.81± 1.67 58.41± 0.43 62.74± 0.16 67.64± 0.06 73.60± 0.19

SUN397 PLOT 62.47± 0.43 61.71± 0.65 65.09± 0.43 67.48± 0.04 69.96± 0.24
CoOp 60.12± 0.82 59.60± 0.76 63.24± 0.63 65.77± 0.02 68.36± 0.66

UCF101 PLOT 64.53± 0.70 66.83± 0.43 69.60± 0.67 74.45± 0.50 77.26± 0.64
CoOp 62.13± 1.14 64.05± 0.99 67.79± 0.71 72.71± 0.50 76.90± 0.50

Average PLOT 62.59± 1.13 65.23± 0.72 68.60± 0.52 71.23± 0.51 73.94± 0.54
CoOp 59.56± 2.06 61.78± 1.39 66.47± 1.29 69.85± 0.69 73.33± 0.42

D. Computation Cost Evaluation40

As shown in Table 3, we provide the comparison of the training time and inference seed of the41

baseline method CoOp [19] and our PLOT with the different number of prompts. We report the42

one-epoch time training on the 1-shot setting of the Food101 [1] dataset and the number of images43

processed by the model in 1 second. Taking N = 4 as an example, PLOT only reduces the 9.2%44
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Table 3: The training and inference time comparison.

Settings CoOp PLOT(N=1) PLOT(N=2) PLOT(N=4) PLOT(N=8)

Training Time (s) 1.127 1.135 1.148 1.182 1.267
Inference Time (images/s) 719.1 714.4 690.7 653.0 519.8

Table 4: The nearest words for 16 context vectors of all N = 4 prompts learned by PLOT. N/A means
non-Latin characters.

Number Prompt 1 Prompt 2 Prompt 3 Prompt 4

1 ag pa trying gaz
2 flint as field white
3 leaving wit N/A t
4 sot l icons ario
5 tint N/A eclub safe
6 tar yl indiffe class
7 attn N/A ts represented
8 2 job cold attend
9 rollingstones built yeah vie
10 N/A brought band recognized
11 N/A or love old
12 bel j late stel
13 head ag industry awhile
14 artifact bad N/A ded
15 an chie across these
16 5 in actual visiting

inference speed and requires an extra 4.9% training time, which is acceptable given the performance45

improvement.46

E. The Interpretation of the Learned Prompts47

The learned prompts are difficult to be understood by humans since the parameters are optimized in48

the continuous space [19]. CoOp proposes to use the word which is nearest to learned prompts in49

the embedding space to visualize the prompts. Following this manner, we show the nearest words50

of our learned prompts in Table 4. Similar to CoOp, most words can not be directly understood by51

human logic. However, we still find the relations between the learned prompts and the corresponding52

optimal transport plan. As shown in Figure 4 in the main paper, we can observe that the optimal53

transport plan for Prompt 1 always focuses on the “head”, such as the head of “brambling”, the head54

of “rooster”, and even the head of “aircraft carrier”. It is because the word “head” is in Prompt 1.55

Similarly, we can find that Prompt 4 prefers the white part of images, such as the white environment56

in the image of “brambling” and the snow in the image of “dog sled”. It demonstrates that the learned57

multiple prompts focus on different characteristics of categories.58

F. Visualization of the Failure Cases59

To better understand the method and further discover the reason of the failure cases. we visualize60

the attention maps of some failure cases. As shown in Figure 1, we showed two failure examples61

with class "2000 AM General Hummer" in the StanfordCars dataset. During the training, we62

set the number of prompts as 4, but in these visualization results, we found that some of learned63

prompts remarkably coincide with each other. These prompts can be roughly divided into two classes:64

Foreground and Background. For example, in both images, prompt 2 (right top) and 3 (left down)65

focus on the foreground car, while the others focus on the background. It demonstrates that not66

all classes have multiple complementary attributes, which motivates us to go further to learn the67

dynamic local prompts numbers to reduce the computational load in the future.68
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2000 AM General 
Hummer SUV

2000 AM General 
Hummer SUV

Figure 1: Failure Visualization. We provide the heatmaps of transport plan T related to each prompt
on 2 failure examples in the StanfordCars dataset.

G. Code69

The code used in our experiments is provided in the supplementary material. We implement the70

method with Pytorch 1.7. Our implementation is based on the publicly released code of CoOp [19].71
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