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GENERAL SKELETON SEMANTICS LEARNING WITH
PROBABILISTIC MASKED CONTEXT RECONSTRUCTION
FOR SKELETON-BASED PERSON RE-IDENTIFICATION –
APPENDIX I EXPERIMENTS

Anonymous authors
Paper under double-blind review

APPENDIX OUTLINE

The overview for this appendix is presented as follows.

• In Sec. A, we provide details of experimental settings, including dataset description (Table
1), CASIA-B evaluation settings (Sec. A.1), dataset preprocessing strategy (Sec. A.2),
probe/gallery settings (Sec. A.3), experimental setup details (Sec. A.4), and utilized
computational resources (Sec. A.5)1.

• In Sec. B, we provide full experimental results for ablation study (Table 2), effects of
hyper-parameters (Sec. B.1), multi-shot performance with different sequence lengths f (Sec.
B.2), and pseudo codes of our method (Sec. B.3).

• In Sec. C, we provide additional visualization and analysis of training metrics (different
losses) (Sec. C.1), skeleton representations (Sec. C.2), and confusion metrics (Sec. C.3).

• In Sec. D, we further discuss the broader application and impacts of our method.

• In Sec. E of Appendix I, we provide additional experimental results and analyses based on
reviewers’ constructive comments and valuable suggestions, including:

– Table 9: We provide an additional comparison of key differences and similarity between
our method (i.e., skeleton-based person re-ID) and skeleton-based gait recognition
methods (for Reviewer iRXh).

– Table 10: We evaluate the performance of different state-of-the-art gait recognition
methods (SkeletonGait, GaitTR, GPGait) on all datasets and compare them with our
method (for Reviewer iRXh).

– Table 11: We provide an additional performance comparison of different SSL tasks
(DR, MIC, STPR, Prompter) under different skeleton levels (Joint-Level, Part-Level,
Body-Level) on different datasets (for Reviewer DvW6).

– Fig. 11, Fig. 12, and Fig. 13: We offer qualitative examples and analyses for the cross-
domain person re-ID performance, including confusion matrices and t-SNE feature
visualization (for Reviewer DvW6).

– Table 12: We provide an additional overview of state-of-the-art skeleton semantics
learning (SSL) tasks, their source method, and method types (for Reviewer v2zj).

– Sec. E.3.1: We offer a detailed comparison between our method and existing state-of-
the-art masking strategies (for Reviewers iRXh, BHkC, v2zj).

– Table 13: We integrate the proposed Prompter into the representative state-of-the-art
gait recognition method GPGait, and compare its performance with the original base
model on different datasets (for Reviwer DUn6).

– Table 14: We additionally evaluated the representative state-of-the-art gait recognition
method and action recognition method ST-GCN on our benchmark datasets, and
integrated the proposed Prompter into them to verify its general applicability (for
Reviewers BHkC, iRXh, DvW6).

1Our anonymized codes are publicly available at https://github.com/Anonymous-9273/Prompter.
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Table 1: Overview of datasets (K: thousand). Different testing splits are used to construct gallery sets
and probe sets (see Sec. A.3). “W”, “S”, “A”, and “B” denote BIWI-Walking, BIWI-Still, IAS-A,
and IAS-B testing sets, respectively. “N”, “C”, and “B” represent “Normal”, “Clothes”, and “Bags”
conditions of CASIA-B, respectively. Note: The 3D skeletons of CASIA-B are estimated from RGB
videos.

# Datasets KGBD BIWI KS20 IAS CASIA-B
# Train IDs 164 50 20 11 124
# Train

Skeletons 188.7K 205.8K 36.0K 89.0K 706.5K

# Probe IDs 164 28 20 11 62

# Probe
Skeletons 94.1K

W: 4.9K
S: 3.2K

3.3K
A: 7.0K
B: 7.8K

N: 162.1K
C: 54.4K
B: 53.9K

# Gallery IDs 164 28 20 11 62

# Gallery
Skeletons 188.7K

W: 4.9K
S: 3.2K

3.3K
A: 7.0K
B: 7.8K

N: 162.1K
C: 54.4K
B: 53.9K

A SUPPLEMENTARY EXPERIMENTAL SETTINGS

A.1 EVALUATION SETTINGS OF CASIA-B

In general, 3D skeleton data in existing skeleton-based person re-ID benchmarks are collected with
Kinect (Shotton et al., 2011). To evaluate the effectiveness of our approach when 3D skeleton data
are directly estimated from RGB videos rather than depth sensors such as Kinect, we use a large-scale
RGB video based dataset, CASIA-B (Yu et al., 2006), which contains walking sequences of 124
individuals under 11 different views and 3 conditions—pedestrians wearing a bag (“Bags”), wearing a
coat (“Clothes”), and without any coat or bag (“Normal”). We follow the evaluation setup in (Liu et al.,
2015), which is frequently used in the literature: First, we randomly choose half of the individuals
for training and use the rest for testing. Then, to evaluate our approach under single-condition and
cross-condition settings, we divide the testing sequences by the three conditions (“Bags”, “Clothes”,
“Normal”) to construct gallery and probe sets. Specifically, for the single-condition setting, both
gallery and probe sets use the testing sequences with the same condition (i.e., gallery and probe sets
are the same), and we match each sequence of the probe set with the most similar sequence from the
gallery set that excludes the original sequence. In the cross-condition setting, we adopt the testing
sequences under bags (“Bags”) or clothes condition (“Clothes”) as the probe set, and use the testing
sequences under normal condition (“Normal”) as the gallery set.

Following (Liao et al., 2020), we exploit pre-trained pose estimation models (Chen & Ramanan, 2017;
Cao et al., 2019) to extract 3D skeletons from RGB videos of CASIA-B. We first extract eighteen 2D
joints from each person in videos using the OpenPose model (Cao et al., 2019). Then, we follow the
same configuration of estimation in (Liao et al., 2020) and average the positions of “Nose”, “Reye”,
“LEye”, “Rear” and “Lear” as the position of “Head” to construct fourteen 2D joints, which are fed
into the pose estimation method (Chen & Ramanan, 2017) to estimate corresponding 3D body joints.
Thus, the number of body-joint nodes J is 14 for CASIA-B as shown in Fig. 1, and all joints in each
skeleton are normalized by subtracting the neck joint.

A.2 DATASET PREPROCSSING

To avoid ineffective skeleton recording, we discard the first and last 10 skeleton frames of each
original skeleton sequence. For KS20, KGBD, BIWI, and IAS datasets, all skeleton sequences are
normalized by subtracting the spine joint position from each joint of the same skeleton so that the
skeleton is translation invariant (Zhao et al., 2019). Then, we spilt all normalized skeleton sequences
in the training sets into multiple shorter skeleton sequences (i.e., S) with length f by a step of f

2 ,
which aims to obtain as many 3D skeleton sequences as possible to train our approach. We split all
skeleton sequences in the gallery and probe sets into shorter and non-overlapping sequences with
length f . Unless explicitly specified, the skeleton sequence S in our paper refers to those split and

2
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Figure 1: Indices of body joints
(nodes) in the estimated skeletons
from CASIA-B dataset. Note: All
3D skeletons are estimated from RGB
videos of CASIA-B with (Cao et al.,
2019) and (Chen & Ramanan, 2017)
(see Sec. A.1).
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Figure 2: Body-joint indices for joint-level (20 nodes), part-
level (10 nodes), and body-level (5 nodes) skeleton represen-
tations for IAS, BIWI and KGBD datasets. Our approach
only requires joint-level skeletons for training, while we eval-
uate its performance on different-level skeletons following
(Rao et al., 2021a; Rao & Miao, 2023) in the paper.
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Figure 3: Body-joint indices joint-level (25 nodes), part-level (10 nodes), and body-level (5 nodes)
skeleton representations for KS20 dataset. Our approach only requires joint-level skeletons for
training, while we evaluate its performance on different-level skeleton following (Rao et al., 2021a;
Rao & Miao, 2023) in the paper.

normalized sequences used in learning, rather than those original skeleton sequences provided by
datasets. We follow the data augmentation strategy used in (Rao et al., 2021b;c) to sample more
sequences for different identities in the training set, and train our approach with randomly shuffled
skeleton sequences of the training set. The details of all datasets are shown in Table 1.

A.3 PROBE AND GALLERY SETTINGS

We follow the commonly-used settings of probe and gallery in the literature (Rao & Miao, 2022;
Rao & Miao, 2023): For the BIWI and IAS datasets, as different testing sets are non-overlapped
and contain all pedestrians under different scenes, we evaluate our approach on each testing set by
setting it as the probe while the other one is adopted as the gallery. The KGBD dataset contains
different skeleton videos (i.e., long skeleton sequences) of each pedestrian with varying numbers
of walking rounds. Since no training/testing splits are given, we randomly choose one skeleton
video of each person to split skeleton sequences and construct the probe set, and equally divide the
remaining videos to build the training set and gallery set. The KS20 dataset collects skeleton data of
pedestrians from five different viewpoints, including 0◦, 30◦, 90◦, 130◦, and 180◦. We employ the
setting of Random View Evaluation (RVE): One sequence is randomly selected from each viewpoint
as the probe sequence and the remaining skeleton sequences are equally divided into gallery and
training sequences. We follow the person re-ID protocols in (Liu et al., 2015) to evaluate the proposed
skeleton-based approach on CASIA-B (detailed in Sec. A.1).

3
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Table 2: Ablation study with different configurations: Random spatial masking (SM) or temporal
masking (TM) with fixed mask numbers, probabilistic spatial context masking (PSCM) or probabilistic
temporal context masking (PTCM). “+” indicates employing the corresponding component, and “+
PSCM + PTCM” denotes the final configuration of Prompter.

ID Config. KS20 IAS-A IAS-B BIWI-S BIWI-W KGBD
mAP R1 mAP R1 mAP R1 mAP R1 mAP R1 mAP R1

1 Baseline 42.5 71.3 31.8 48.0 37.9 56.1 26.7 66.6 25.5 31.2 18.1 57.0
2 + SM 44.8 71.9 32.4 48.7 38.1 57.2 27.0 65.8 26.2 31.9 18.9 57.4
3 + PSCM 46.5 73.1 33.5 49.4 42.1 58.7 29.3 66.0 25.0 32.8 16.5 56.2
4 + TM 45.4 73.0 32.1 48.4 39.2 58.2 28.2 67.8 25.9 31.1 19.6 58.0
5 + PTCM 46.4 73.6 33.8 49.0 42.0 58.9 29.8 67.2 24.7 33.0 18.0 56.3
6 + SM + TM 46.2 73.6 32.8 49.2 39.4 59.1 30.1 68.7 26.9 32.7 20.2 59.0
7 + PSCM + PTCM 48.3 74.2 34.1 49.5 43.8 60.4 30.3 66.8 27.3 34.6 21.3 59.5

Table 3: Performance of our method applied to MG-SCR (Rao et al., 2021c), SPC-MGR (Rao &
Miao, 2022), and TranSG (Rao & Miao, 2023) on different datasets when setting different values for
the spatial context masking probability in PSCM (ps = 0.0, 0.2, 0.4, 0.5, 0.6, 0.8).

Applied Model ps
IAS-A IAS-B BIWI-S BIWI-W KS20

mAP R1 mAP R1 mAP R1 mAP R1 mAP R1

MG-SCR

0.0 18.7 51.4 17.7 48.6 10.6 37.9 12.3 31.9 12.2 52.9
0.2 19.7 51.0 22.8 51.9 12.3 34.5 12.7 36.4 11.6 53.3
0.4 18.7 51.2 18.7 50.8 13.3 37.2 13.2 38.0 11.8 54.7
0.5 20.1 52.7 20.5 51.7 13.4 37.6 13.5 39.5 13.2 56.3
0.6 19.5 51.9 18.8 49.1 12.9 36.9 13.4 38.1 13.0 55.5
0.8 19.2 48.9 20.6 49.8 11.9 35.1 13.4 39.0 11.1 52.1

SPC-MGR

0.0 25.4 49.2 29.5 51.2 13.5 33.6 17.1 38.1 25.1 65.8
0.2 26.0 50.1 24.2 48.5 13.7 37.7 17.4 38.5 23.6 64.5
0.4 25.8 48.0 28.6 50.1 14.5 38.5 17.3 38.0 22.3 64.3
0.5 27.1 49.8 28.1 51.0 15.0 37.7 18.9 37.0 23.7 65.0
0.6 26.5 49.5 28.8 51.4 17.8 39.1 17.8 37.5 24.6 66.6
0.8 27.5 50.5 27.0 49.5 17.3 38.5 15.5 37.1 24.3 65.8

TranSG

0.0 33.0 45.9 41.8 56.9 27.2 59.9 21.6 33.6 46.0 72.3
0.2 34.4 49.0 42.3 57.9 27.5 64.1 29.9 33.5 48.1 74.6
0.4 35.0 50.2 43.6 58.3 28.9 67.0 27.8 35.9 46.5 73.8
0.5 34.1 49.5 43.8 60.4 30.3 66.8 27.3 34.6 48.3 74.2
0.6 33.9 49.9 44.5 59.6 28.3 64.5 25.5 35.1 47.6 73.2
0.8 34.3 49.3 44.1 57.7 27.2 62.5 23.5 32.6 43.8 71.3

A.4 EXPERIMENTAL SETUP DETAILS

Skeleton Semantics Learning (SSL) Tasks. For generality assessment, we compare all existing SSL
tasks for skeleton-based person re-ID: DR, AR (Rao et al., 2020), AR + AC (Rao et al., 2021b), MSSP
(Rao et al., 2021c), MSR (Rao et al., 2021a), MIC (Rao & Miao, 2022), STPR (Rao & Miao, 2023),
and the proposed Prompter. For empirical evaluation on varying models and datasets (which requires
the SSL task possesses co-training compatibility (CTC)), We compare our method (Prompter) with
three state-of-the-art SSL tasks, including DR, MIC (Rao & Miao, 2022), STPR (Rao & Miao, 2023),
which can be co-trained with different models without requiring significant architecture modification.
For all compared SSL tasks, we adopt the optimal setting used in the original papers.

Base Models. We choose four state-of-the-art skeleton-based person re-ID models MG-SCR (Rao
et al., 2021c), SPC-MGR (Rao & Miao, 2022), SimMC (Rao & Miao, 2022), and TranSG (Rao &
Miao, 2023) as the base models to evaluate the effectiveness and generality of SSL tasks. For MG-
SCR, SimMC, and TranSG that contain SSL tasks, we replace the original SSL task with DR, MIC,
STPR or the proposed Prompter. For SPC-MGR that only possesses a downstream objective loss, we
add DR, MIC, STPR or Prompter as the SSL objective to co-train the model, and we apply DR, MIC,
STPR or Prompter to each level skeleton representation of SPC-MGR for reconstruction. As SimMC
directly learns skeleton representations instead of body-joint representations, we slightly modify
STPR and Prompter to randomly mask each skeleton representation to perform their reconstruction.
Since this reconstruction way is not a standard form of STPR and Prompter, and may not fully reflect
their actual effectiveness due to the integrated spatial-temporal skeleton reconstruction (i.e., without
separately reconstructing each motion trajectory), we only use their performance as a reference for
comparison with other SSL tasks. It is worth noting that under this same modification we are able to

4
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Table 4: Performance of our method applied to MG-SCR (Rao et al., 2021c), SPC-MGR (Rao &
Miao, 2022), and TranSG (Rao & Miao, 2023) on different datasets when setting different values for
the temporal context masking probability in PTCM (pt = 0.0, 0.2, 0.4, 0.5, 0.6, 0.8).

Applied Model pt
IAS-A IAS-B BIWI-S BIWI-W KS20

mAP R1 mAP R1 mAP R1 mAP R1 mAP R1

MG-SCR

0.0 19.0 49.4 16.7 47.7 13.1 37.3 13.0 37.7 11.4 51.4
0.2 22.5 52.4 18.7 48.4 12.7 36.8 12.9 37.1 12.2 53.3
0.4 22.3 52.9 20.2 50.2 14.4 39.2 13.3 39.5 11.5 53.3
0.5 22.1 53.1 20.5 51.7 13.4 37.6 13.5 39.5 13.2 56.3
0.6 22.5 52.6 18.4 49.4 13.2 37.8 13.0 37.2 12.4 54.7
0.8 19.1 48.9 18.2 47.8 13.8 38.6 14.4 38.2 13.0 55.0

SPC-MGR

0.0 26.7 50.5 24.0 46.6 13.8 37.5 14.7 36.4 22.6 61.7
0.2 29.1 50.8 26.5 51.2 13.8 36.0 19.0 38.3 24.7 66.0
0.4 28.7 50.2 28.7 52.2 16.7 38.1 16.7 37.7 24.9 66.2
0.5 27.1 49.8 28.1 51.0 15.0 37.7 18.9 37.0 23.7 65.0
0.6 24.4 47.2 26.0 49.9 14.6 38.5 17.2 35.9 23.8 64.3
0.8 25.2 47.5 27.3 50.6 16.5 37.5 16.9 37.1 22.8 62.9

TranSG

0.0 33.0 48.0 40.7 54.8 30.0 60.6 19.0 34.5 45.4 73.1
0.2 33.7 48.8 43.4 61.1 31.0 67.1 18.1 33.7 47.1 74.2
0.4 34.2 49.2 44.2 59.3 29.5 65.5 21.1 35.0 46.8 73.5
0.5 34.1 49.5 43.8 60.4 30.3 66.8 27.3 34.6 48.3 74.2
0.6 34.2 50.1 43.9 58.9 30.1 65.9 18.6 34.7 48.8 72.7
0.8 32.0 49.7 41.8 56.0 27.9 62.2 22.8 35.6 47.9 72.9

Table 5: Performance of our method applied to MG-SCR (Rao et al., 2021c), SPC-MGR (Rao &
Miao, 2022), and TranSG (Rao & Miao, 2023) on different datasets when setting different coefficients
(α = 0.0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0) to combine spatial and temporal context reconstruction.

Applied Model α
IAS-A IAS-B BIWI-S BIWI-W KS20

mAP R1 mAP R1 mAP R1 mAP R1 mAP R1

MG-SCR

0.0 20.6 52.0 17.9 50.5 13.9 38.0 13.7 38.3 14.9 56.5
0.2 18.8 51.2 18.2 49.5 14.2 38.1 13.1 37.6 12.6 55.7
0.4 19.6 52.0 19.7 50.9 12.9 36.7 13.8 38.9 12.5 56.4
0.5 22.1 53.1 20.5 51.7 13.4 37.6 13.5 39.5 13.2 56.3
0.6 22.5 54.3 19.3 49.7 13.4 38.5 12.9 37.8 12.6 54.1
0.8 22.2 54.2 18.8 48.1 12.5 36.2 12.8 36.8 12.1 51.6
1.0 22.4 55.4 18.8 49.4 13.8 36.5 13.5 36.6 11.5 50.4

SPC-MGR

0.0 27.1 50.6 28.3 52.5 12.8 33.4 15.1 36.7 23.8 63.5
0.2 27.7 50.2 25.0 49.7 15.5 36.5 15.3 35.6 23.5 63.1
0.4 27.2 49.3 29.4 50.9 17.5 38.0 17.5 38.5 24.2 64.5
0.5 27.1 49.8 28.1 51.0 15.0 37.7 18.9 37.0 23.7 65.0
0.6 25.0 48.7 28.8 49.9 14.8 36.6 15.8 37.4 23.6 66.2
0.8 25.4 48.1 28.5 50.9 15.8 38.9 15.1 37.7 22.3 63.1
1.0 27.1 48.2 28.1 49.5 16.3 38.5 14.5 34.5 24.2 63.9

TranSG

0.0 35.1 49.4 43.9 59.5 31.3 61.7 20.7 33.8 46.3 73.6
0.2 34.8 49.3 42.5 57.0 29.2 64.3 20.8 35.5 46.6 72.9
0.4 32.0 49.7 42.2 59.0 28.4 64.4 25.7 34.5 47.0 71.9
0.5 34.1 49.5 43.8 60.4 30.3 66.8 27.3 34.6 48.3 74.2
0.6 34.0 50.0 43.3 59.7 30.3 65.4 24.5 35.0 48.5 74.4
0.8 34.2 49.2 45.0 58.2 28.6 63.4 20.9 35.5 49.0 73.1
1.0 33.3 48.5 42.1 58.7 28.8 63.9 20.2 34.1 46.5 73.1

compare the effectiveness of the key component of Prompter, probabilistic random context masking,
with the direct random masking of the state-of-the-art SSL task STPR.

Implementation Details. All the important experimental details are presented in our paper. The
numbers of body joints are J = 20 (IAS, BIWI, KGBD) and J = 25 (KS20) in the original datasets.
To verify the generality of our method when applied to different-level skeleton representations, we
follow (Rao et al., 2021a; Rao & Miao, 2023) to construct another two levels, namely part-level (10
nodes) and body-level (5 nodes), by merging joints within different body partitions. The original
skeletons, part-level skeletons, and body-level skeletons are shown in Fig. 2 and 3. The skeleton
sequence length f on four skeleton-based datasets (IAS, KS20, BIWI, KGBD) is set to 6 following
(Rao & Miao, 2022) for a fair comparison with existing methods. As to CASIA-B, it is a large-scale
dataset with roughly estimated skeleton data from RGB frames, which is intrinsically different from
the previous datasets. We adopt a longer sequence length f = 40. We construct the reconstructing
and inferring models by using MLP networks with one hidden layer, and the embedding size is set

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 6: Performance of our method applied to MG-SCR (Rao et al., 2021c), SPC-MGR (Rao
& Miao, 2022), and TranSG (Rao & Miao, 2023) on different datasets when employing different
sequence length (f = 4, 6, 8, 10).

Applied Model f
IAS-A IAS-B BIWI-S BIWI-W KS20

mAP R1 mAP R1 mAP R1 mAP R1 mAP R1

MG-SCR

4 21.1 53.8 18.6 50.2 13.8 38.9 13.2 39.9 11.4 54.6
6 20.1 52.7 20.5 51.7 13.4 37.6 13.5 39.5 13.2 56.3
8 21.3 52.5 18.1 49.7 15.0 39.0 14.1 34.3 13.5 57.4

10 21.3 49.9 20.4 50.1 16.0 41.0 14.2 33.1 15.5 60.9

SPC-MGR

4 21.9 44.6 23.6 48.2 15.4 40.0 13.3 32.2 24.6 65.0
6 27.1 49.8 28.1 51.0 15.0 37.7 18.9 37.0 23.7 65.0
8 28.7 50.2 31.2 53.2 15.0 36.0 18.5 38.5 25.0 68.4

10 26.7 49.9 29.7 51.7 16.0 37.5 20.9 38.7 26.4 68.4

TranSG

4 35.4 46.8 40.3 55.0 29.0 62.9 22.9 37.7 49.6 72.8
6 34.1 49.5 43.8 60.4 30.3 66.8 27.3 34.6 48.3 74.2
8 40.2 51.4 43.2 61.1 34.0 69.7 21.1 37.2 53.7 74.2

10 40.4 48.6 46.0 57.9 47.6 62.1 35.1 39.8 43.9 77.3

Table 7: Performance of our method applied to TranSG (Rao & Miao, 2023) on different datasets when
setting different coefficients (λ = 0.00, 0.25, 0.50, 0.75, 1.00) to fuse downstream task objective loss
(GPC) and SSL objective loss (Prompter).

λ
IAS-A IAS-B BIWI-S BIWI-W KS20

mAP R1 mAP R1 mAP R1 mAP R1 mAP R1

0.00 22.0 35.0 23.0 34.5 12.8 31.8 13.1 26.2 16.4 47.3
0.25 33.8 49.7 40.9 58.3 29.9 66.0 20.6 35.7 47.3 72.7
0.50 34.1 49.5 43.8 60.4 30.3 66.8 27.3 34.6 48.3 74.2
0.75 34.3 49.5 43.4 57.5 29.7 65.7 28.0 34.8 47.6 73.8
1.00 31.8 48.0 37.9 56.1 26.7 66.6 25.5 31.2 42.5 71.3

to the same value as the skeleton feature size used in the original models. The probabilities for
spatial and temporal context masking are empirically set to ps = pt = 0.5, and we use α = 0.5 to
equally combine spatial and temporal skeleton context reconstruction. We empirically adopt λ = 0.5
to combine the SSL objective and the downstream objective to co-train the model, as this setting
achieves the best average performance on different datasets. It should be noted that the models
trained with RGB-estimated skeletons possess relatively large performance variations, possibly due
to the noise in roughly-estimated skeletons. We thus select the models with slightly stable overall
performance (i.e., higher mAP instead of higher Rank-1 accuracy) for the discussion in the paper.
We will provide a systematic analysis for the model initializations and performance variations in
our future works. An Adam optimizer with the learning rate of of 3.5× 10−4 is used for the model
optimization. For batch sizes, we follow the setting used in the original models: In TranSG (Rao &
Miao, 2023), batch size is 256 for all datasets; In SPC-MGR (Rao & Miao, 2022) and MG-SCR (Rao
et al., 2021c), batch size is set to 256 for KGBD and 128 for other datasets. To avoid over-fitting and
achieve better generalization performance, we adopt Early Stopping (Prechelt, 1998) with a patience
of 150 epochs (i.e., stop the training of model after no improvement in 150 continuous epochs). The
experiments are repeated for multiple time with random model parameter initialization for training,
and we report the average performance for a fair comparison with existing methods.

For all methods compared in our experiments, we select optimal model parameters for training, and
use their pre-defined skeleton descriptors or pre-trained skeleton representations for person re-ID.
It is worth noting that our re-implementations of some existing models get performance with slight
variations, and the results are basically the same as the original papers under different random model
initializations. For a fair comparison, we follow (Rao et al., 2021b; Rao & Miao, 2022) to report
the average performance of all methods. Note that our approach does not use any post-processing
technique, e.g., re-ranking (Zhong et al., 2017) or multi-query fusion (Zheng et al., 2015) in the
training or testing stage. To perform person re-ID, we encode each original skeleton sequence of
the probe set ΦP without using masking into corresponding sequence-level graph representations,
{V P

i }N2
i=1, and match it with representations, {V G

i }N3
i=1, of the same identity in the gallery set ΦG

using Euclidean distance.

Generality Assessment Details. For co-training compatibility (CTC) score (GC) computation,
we evaluate the qualified SSL tasks (DR, MIC, STPR, Prompter) on four state-of-the-art models
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Table 8: Performance of our method applied to SPC-MGR (Rao & Miao, 2022) on different datasets
when setting different coefficients (λ = 0.00, 0.25, 0.50, 0.75, 1.00) to fuse downstream task objec-
tive loss (SPC) and SSL objective loss (Prompter).

λ
IAS-A IAS-B BIWI-S BIWI-W KS20

mAP R1 mAP R1 mAP R1 mAP R1 mAP R1

0.00 16.8 34.6 19.8 45.6 11.3 36.1 17.8 17.8 14.4 47.5
0.25 26.1 47.3 27.3 52.6 14.2 38.0 16.7 36.6 23.9 64.8
0.50 27.1 49.8 28.1 51.0 15.0 37.7 18.9 37.0 23.7 65.0
0.75 23.5 43.8 28.4 51.6 14.1 38.2 16.6 .37.3 24.3 66.0
1.00 24.2 41.9 24.1 43.3 16.0 34.1 19.4 18.9 21.7 59.0
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Figure 4: The SSL loss (Prompter (SSCR) loss) curves on different training datasets when applying
Prompter to TranSG (Rao & Miao, 2023).

(MG-SCR, SPC-MGR, SimMC, TranSG) on all benchmark datasets (KS20, BIWI, IAS, KGBD)
following the empirical evaluation in the paper. For spatial-temporal effectiveness (STE) score (GST)
computation, we evaluate STPR and Prompter under the same setting of base model TranSG on all
benchmark datasets (KS20, BIWI, IAS, KGBD).

Ablation Study Details. In the ablation study, we adopt the state-of-the-art model TranSG (Rao &
Miao, 2023) without employing any SSL tasks as the baseline. For the configurations of “+ SM”
and “+ TM”, we follow (Rao & Miao, 2023) to set the optimal mask numbers for random spatial
masking or temporal masking. The “+ PSCM” or “+ PTCM” denotes only using the spatial (structural
locations) or temporal context (motion trajectories) reconstruction with the proposed probabilistic
masking in Prompter.

Cross-Domain Person Re-ID Details. The model applying a certain SSL task (STPR, MIC, DR,
Prompter) is trained on the training set of source dataset, and tested on the testing sets (i.e., probe
set and gallery set) of target dataset without model fine-tuning, following the cross-domain (also
termed domain-generalized) person re-ID protocol in (Rao et al., 2021b; Rao & Miao, 2022). As both
BIWI and IAS datasets possess the same structure of input skeleton data, the pre-trained model can
be directly transferred to other datasets. For example, “IAS→W” denotes training the model on the
IAS training set and evaluating it on the probe set BIWI-W (corresponding to the gallery set BIWI-S).
We adopt the state-of-the-art model TranSG with the original SSL task (STPR) as the base model for
comparison in the paper.

Other Details. In the experiments of Transferring Prompter to Different Skeleton Modeling, we
follow (Rao et al., 2021a; Rao & Miao, 2023) to construct different level skeleton representations,
namely joint-level (corresponding to joint-scale in (Rao et al., 2021a)), part-level (corresponding to
part-scale), body-level (corresponding to body-scale) representations, as visualized in Fig. 2 and Fig.
3. We train the base model TranSG on each individual skeleton level by applying MIC, DR, STPR or
Prompter to compare their performance. For the loss curves provided in the last part, we visualize the
average loss of each continuous training batch when applying only Prompter to TranSG on KS20.
The DR and STPR losses are directly computed under the training of Prompter, instead of using
them as optimization objectives. We repeat experiments for multiple time to report their average loss
changes. It is worth noting that for a more comprehensive and intuitive comparison, we follow the
STPR and Prompter (SSCR) losses to equally combine spatial and temporal skeleton reconstruction
losses as the final DR loss.
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Figure 5: The downstream loss (GPC loss) curves on different training datasets when applying
Prompter to TranSG (Rao & Miao, 2023).
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Figure 6: The mean intra-class tightness (mACT) of skeleton representations on different training
datasets when applying Prompter to TranSG (Rao & Miao, 2023) .

A.5 UTILIZED COMPUTATIONAL RESOURCES

Our experiments are run on 1× NVIDIA Tesla V100 (32GB) or P100 (16GB) GPUs with the
2× Intel(R) Xeon(R) Gold 6148 CPU @2.40GHz. In practice, co-training existing skeleton-based
person re-ID models with our method does not require the whole above resources, and the utilized
computational resources mainly depend on the original model, as our method only introduces a small
number of extra parameters (see our paper). Multiple experiments with the same or different models
can be parallelly conducted on our device.

B SUPPLEMENTARY EXPERIMENTAL RESULTS

B.1 EFFECTS OF DIFFERENT HYPER-PARAMETERS

Effects of spatial context masking probability ps and temporal context masking probability pt:
As shown in Table 3 and Table 4, Prompter achieves slightly better average performance on different
datasets when setting the masking spatial or temporal context masking probability to 0.5. According
to this observation, we empirically set ps = pt = 0.5 in all models. However, in practice, it is
observed that two different masking probabilities (not close ones) can achieve similar performance in
some cases, and training with the same masking probability could yield slightly different results in
multiple experiments. This is because of the randomness nature of Prompter that it introduces more
random combinations of positions into training (demonstrated in our paper). As the convergence of
the model may simultaneously be influenced by the random parameter initialization and the masking
probability used in Prompter, we repeat experiments with the same setting for multiple times and
report the average performance.

Effects of weight coefficient α: As presented in Table 5, using only temporal masked reconstruction
(i.e., α = 0.0) can achieves slightly better performance than using only spatial masked reconstruction
(i.e., α = 1.0) in most cases, which suggests that solely using temporal masked reconstruction is
more effective than solely employing the spatial masked reconstruction on learn useful discriminative
skeleton semantics for person re-ID. Notably, combining both of them with α values around 0.5 can
achieve higher performance in average. This is also consistent with our analysis in our paper that
spatial and temporal masked reconstruction are compatible and can facilitate each other to learn better
skeleton representations (i.e., STE property) for person re-ID. Based on this reason, we empirically
set α = 0.5 in our experiments. Nevertheless, as the skeleton data of different domains (e.g., datasets)
are collected under different conditions, the context of skeletal spatial structure or temporal trajectory
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Figure 7: The mean inter-class looseness (mRCL) of skeleton representations on different training
datasets when applying Prompter to TranSG (Rao & Miao, 2023).

may have different contributions on the reconstruction and skeleton semantics learning, thus α can be
further selected to facilitate the model training.

Effects of weight coefficient λ: The results in Table 7 and 8 show that combining the proposed SSL
task Prompter and the original downstream objective with an appropriate λ can facilitate the model to
learn more effective representations and achieve higher performance in terms of Rank-1 accuracy
and mAP. In our experiments, we follow existing works to equally fuse them. Interestingly, only
applying the SSL task to perform probabilistic masked spatial-temporal reconstruction without using
downstream objective can still learn useful skeleton features for person re-ID despite with significantly
lower accuracy. This may suggest the enhanced effectiveness of Prompter when being combined
with different downstream objectives to learn more general class-agnostic skeleton semantics and
discriminative skeleton features. It also shows the higher contribution of downstream tasks since they
typically utilize more discriminative supervision with ground-truth labels (Rao & Miao, 2023).

B.2 MULTI-SHOT PERFORMANCE WITH DIFFERENT LENGTHS

We evaluate the multi-shot performance of our method when applied to different models with different
settings of sequence lengths f (i.e., f -shot person re-ID). Since skeleton sequences contain more
pattern features as f increases, the model is capable of learning more effective skeleton representations
to achieve larger performance improvement in most cases as shown in Table 6. Nevertheless, it
is interesting to note that using shorter sequences performs better than longer sequences on some
datasets such as BIWI-S and BIWI-W in some cases, implying that a larger size of available training
sequences under smaller f settings may help learn better representations on those datasets. It should
be noted that in our paper, we evaluate all compared methods under the same sequence length (f = 6)
following the literature (Rao & Miao, 2022; Rao & Miao, 2022; Rao & Miao, 2023).

B.3 PSEUDO CODES OF PROMPTER

In this section, we provide python-style pseudo codes of our method, which is structural, concise
and can be flexibly integrated into different models. The formal codes, data, and models are publicly
released in https://github.com/Anonymous-9273/Prompter.

# Independently and randomly sample J spatial masks from Bernoulli(1 -
prob_s), prob_s is the probability for spatial context masking of
skeletal structural locations

def PSCM(prob_s):
s_mask = np.zeros([J, ])
# number of zero masks is from 0 to J-1
while np.mean(s_mask) == 0:

prob = np.random.uniform(0, 1, [J, ])
s_mask = prob >= prob_s

return s_mask

# Independently and randomly sample f temporal masks from Bernoulli(1 -
prob_t), prob_t is the probability for temporal context masking of
skeletal motion trajectories

def PTCM(prob_t):
t_mask = np.zeros([f, ])
# number of zero masks is from 0 to f-1

9
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(a) t-SNE Visualization
on IAS training set

(b) t-SNE Visualization
on KS20 training set

(c) t-SNE Visualization
on KGBD training set

(d) t-SNE Visualization
on BIWI training set

Figure 8: t-SNE visualization for for the first ten classes of training sets: IAS (a), KS20 (b), KGBD
(d), and BIWI (d). Different colors indicates representations of different classes.

while np.mean(t_mask) == 0:
prob = np.random.uniform(0, 1, [f, ])
t_mask = prob >= prob_t

return t_mask

# Spatial skeleton sequence reconstruction and inference based on PSCM
# h with shape [batch_size, f, J, H]
# spatial_mask with shape [batch_size, J], generated by PSCM(prob_s)
# gt_pos with shape [batch_size, f, J, 3]
def skeleton_recon_loss(h, spatial_mask, gt_pos):

# Apply masks to structural locations of joints in the skeleton and
average unmasked representations

mask_h = apply_mask_and_ave(h, spatial_mask)
# Use MLP to predict ground-truth structural locations of joints

[batch_size, f, J, 3]
pred_pos = MLP(mask_h)
# Compute MSE loss between predicted structural locations and

ground-truth structural locations of skeleton sequences
s_recon_loss = MSE_loss(pred_pos, gt_pos) / batch_size
return s_recon_loss

# Temporal skeleton sequence reconstruction and inference based on PTCM
# traj_h with shape [batch_size, J, f, H]
# temporal_mask with shape [batch_size, f], generated by PTCM(prob_t)
# gt_pos with shape [batch_size, f, J, 3]
def trajectory_recon_loss(traj_h, temporal_mask, gt_pos):

# Apply masks to motion trajectories of joints and average unmasked
representations

mask_traj_h = apply_mask_and_ave(traj_h, temporal_mask)
# Use MLP to predict ground-truth motion trajectories of joints

[batch_size, J, f, 3]
pred_pos = MLP(mask_traj_h)
# Transpose shape [batch_size, J, f, 3] to shape [batch_size, f, J,

3] to match the original skeleton sequence shape
pred_pos = transpose(pred_pos, [0, 2, 1, 3])
# Compute MSE loss between predicted motion trajectories and

ground-truth motion trajectories of skeleton sequences
t_recon_loss = MSE_loss(pred_pos, gt_pos) / batch_size
return t_recon_loss

# Spatial-temporal Skeleton Context Reconstruction (SSCR) loss for
Prompter learning

def Prompt_loss():
return alpha * skeleton_recon_loss(h, spatial_mask, gt_pos) + (1 -

alpha) * trajectory_recon_loss(traj_h, temporal_mask, gt_pos)

10
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(a) t-SNE Visualization
on KS20

(b) t-SNE Visualization
on KGBD

(c) t-SNE Visualization
on BIWI-S

(d) t-SNE Visualization
on BIWI-W

Figure 9: t-SNE visualization for for the first ten classes of testing sets (probe sets): KS20 (a), KGBD
(b), BIWI-S (c), and BIWI-W (d). Different colors indicates representations of different classes.

C SUPPLEMENTARY VISUALIZATION AND ANALYSIS

C.1 VISUALIZATION OF TRAINING PROCESS

In Fig. 4, we visualize the Prompter loss LSSCR when applying it to the TranSG model. The results
suggest that the Prompter learning can converge very fast in the first 50 optimization epochs, while
the downstream loss (LGPC (Rao & Miao, 2023)) curve show similar learning effects with LSSCR, as
presented in Fig. 5. This validates our intuition that the skeleton semantics learning of Prompter
and the discriminative feature learning of downstream objective GPC are compatible and they can
be combined to facilitate the model training. To provide a further analysis of the learned skeleton
representations, we follow (Rao & Miao, 2022) to estimate the mean intra-class tightness (mACT) and
mean inter-class looseness (mRCL) of the learned skeleton representations w.r.t. the ground-truth
classes. The mACT and mRCL can serve as effective evaluation metrics of the skeleton representation
learning and identity-associated semantics learning2. As shown in Fig. 6 and 7, the training of our
approach progressively and significantly improves both mACT and mRCL of the learned skeleton
representations on different datasets, which demonstrates that co-training TranSG with Prompter
can encourage the model to capture effective class-related semantics (e.g., inter-class differences) to
learn more discriminative skeleton representations for person re-ID.

C.2 SKELETON REPRESENTATION VISUALIZATION

We conduct the t-SNE visualization (Van der Maaten & Hinton, 2008) of skeleton representations
learned from TranSG using Prompter on different datasets. The results in Fig. 8 shows that the
learned skeleton representations on the training sets can achieve similar inter-class separation on IAS
and BIWI datasets and higher inter-class distance on KS20 and KGBD datasets compared with the
original TranSG model. This suggests that applying the proposed Prompter may help capture more
discriminative features for person re-ID. We also visualize the skeleton representations on different
testing sets (see Fig. 9). It is observed that the representations of different classes on BIWI-W have
more confusion (i.e., vaguer class margins) than other testing sets, which is consistent with the
performance results shown in our paper.

C.3 CONFUSION MATRIX VISUALIZATION

As shown in Fig. 10, we visualize the confusion matrices of the TranSG model using Prompter
when performing person re-ID with the Rank-1 matching (i.e., predicting the identity of each probe
sequence using the Rank-1 gallery sequence that has the smallest Euclidean distance) on all testing
sets (probe sets). Fig. 10 (a)-(f) show that each confusion matrix possesses an evident alignment
between the predicted identities and the ground-truth identities on the diagonal line. This suggests
that skeleton sequences in most classes can be correctly matched between the probe set and gallery
set in each dataset. The larger numbers of white and red grids diffused around the diagonal lines,
which represent the higher proportions of false matches, on the matrices of IAS-A (see Fig. 10 (c))

2According to the assumption and criterion in (Rao & Miao, 2022), good skeleton representations should
satisfy: The same-class representations are gathered closer (higher mACT) while different-class representations
possess larger distances (higher mRCL).
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(a) Confusion Matrix on KS20
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(b) Confusion Matrix on KGBD
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(c) Confusion Matrix on IAS-A
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(d) Confusion Matrix on IAS-B
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(e) Confusion Matrix on BIWI-S
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(f) Confusion Matrix on BIWI-W

Figure 10: Visualization of confusion matrices on KS20 (a), KGBD (b), IAS-A (c), IAS-B (d),
BIWI-S (e), and BIWI-W (f) when using the Rank-1 matching. Note that abscissa and ordinate
denote the predicted and ground-truth identities, respectively. The position in the ath row and bth

column indicates that the testing samples belonging to the ath identity is predicted as the bth identity,
while the corresponding value is the proportion of such samples to the same-identity samples in the
probe set.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

and BIWI-Walking (see Fig. 10 (f)) imply that the TranSG model using Prompter tends to confuse
skeleton sequences of more different identities on these datasets. These results are consistent with the
performance results shown in the paper.

D BROADER IMPACTS

Prompter could be applied to more tasks (e.g., skeleton-based action recognition) and be potentially
generalized to semantics learning of different fields (e.g., masked context reconstruction of 3D
point clouds). Moreover, as shown in (Rao & Miao, 2022) that masked contrastive representation
learning could encourage learning more intra-sequence features and high-level motion semantics,
the idea of probabilistic spatial-temporal context masking can be further applied into (i.e., instead
of combining) different downstream objectives (e.g., GPC (Rao & Miao, 2023), SPC (Rao & Miao,
2022), MPC (Rao & Miao, 2022), PoseGait (Liao et al., 2020)) to sample more random subsequences
to enhance skeleton representation learning. It can also serve as an effective representation-level
augmentation strategy to combine with model-level augmentations such as Dropout algorithms (Baldi
& Sadowski, 2014; 2013) to help reduce model over-fitting and improve their robustness against
random perturbations. On the other hand, we hope the proposed first SSL generality assessment
framework SUCT can inspire researchers to explore more useful SSL tasks and its broader application
for different pattern recognition tasks including the emerging skeleton-based person re-ID and the
aforementioned areas.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 SUPPLEMENTARY RESULTS FOR REVIEWER # IRXH

Please see Table 9 and Table 10: (1) We provide an additional comparison of key differences
and similarity between our method (i.e., skeleton-based person re-ID) and skeleton-based gait
recognition methods; (2) We compare the performance of our method with different state-of-the-art
gait recognition methods (SkeletonGait, GaitTR, GPGait) on all datasets.

Table 9: Comparison of key differences and similarity between our approach and gait recognition
methods (e.g., (Fan et al., 2024; Fu et al., 2023; Huang et al., 2023)).

Method Prompter (Ours) Skeleton-Based Gait Recognition Methods
Task 3D Skeleton Based Person Re-Identification 2D/3D Skeleton Based Gait Recognition
Focused Problem Generally Matching and Retrieving; Classification Generally Matching and Retrieving; Classification
Input Skeleton Type Generally 3D Skeletons Generally 2D Skeletons

Application Scenarios
Generally Sensor-based skeletons;

Can be applied to Model-estimated skeletons (Explored)
Generally Model-estimated skeletons:

Can be applied to Sensor-based skeletons (Unexplored)

Base Architectures
Can be flexibly applied to different models

(e.g., Transformer, GAT, MLP)
Generally a specific model

(e.g., GCN, CNN, Transformer)

Datasets
Generally 3D skeleton datasets (sensor-based);

Datasets with estimated skeletons
22 non-skeleton datasets;

2 datasets with estimated skeletons
Learning Scenarios Support supervised and unsupervised Only Supervised

Input Skeletal Topology
Support different-level/type input skeleton data

with varying nodes/topologies
(e.g., 25, 20, or 14 joints, 10 (part-level) or 5 nodes (body-level))

Generally unified input skeleton data
with same topology (e.g., COCO2017 format)

E.2 SUPPLEMENTARY RESULTS FOR REVIEWER # DVW6

Please see Table 11, Fig. 11, Fig. 12, and Fig. 13: (1) We provide a performance comparison of
different SSL tasks (DR, MIC, STPR, Prompter) under different skeleton levels (Joint-Level, Part-
Level, Body-Level) on different datasets; (2) We offer qualitative examples and analyses for the cross-
domain person re-ID performance, including confusion matrices and t-SNE feature visualization.

E.3 SUPPLEMENTARY RESULTS FOR REVIEWER # V2ZJ
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Table 10: Performance and efficiency comparison between our approach (best setting with TranSG),
and SkeletonGait Fan et al. (2024) (skeletons used), GPGait Fu et al. (2023), and GaitTR Zhang et al.
(2023) with optimal parameter settings. We adopt the same evaluation protocol (i.e., same datasets,
skeletal topology, joint number, limb/bone partition, etc.) used in our work for a fair comparison.
Considering that the inherent gaps (please refer to our responses) between these methods and our
method might influence their performance on a different task to cause unfair comparison, the provided
additional experimental results under default optimal parameter settings are only for a performance
reference.

Method # Paras GFLOPs KS20 BIWI-W BIWI-S IAS-A IAS-B KGBD
mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1

SkeletonGait (Skeleton) 11.11M 1592.60 14.5 22.2 11.2 10.8 9.3 15.1 25.0 31.4 21.5 31.5 1.1 1.7
GaitTR 0.49M 18.20 25.5 52.4 19.8 21.9 18.8 46.3 31.1 44.2 34.2 49.4 13.5 51.6
GPGait 1.30M 49.62 41.1 71.4 25.5 29.0 23.5 54.1 34.6 50.9 43.1 60.1 17.8 53.9
Prompter (Ours) 0.41M 20.20 48.3 74.2 27.3 34.6 30.3 66.8 34.1 49.5 43.8 60.4 21.3 59.5

Table 11: Performance comparison of different SSL tasks using different skeleton levels. Each level
is trained under the same base model TranSG, and we follow (Rao et al., 2021a; Rao & Miao, 2023)
to construct part-level and body-level skeleton representations. The original skeletons, part-level
skeletons, and body-level skeletons are shown in Fig. 2 and 3.

Method BIWI-W KS20
Joint-Level Part-Level Body-Level Joint-Level Part-Level Body-Level

DR 33.8 17.6 13.2 73.2 48.4 39.3
MIC 34.5 19.1 12.2 72.3 48.4 40.8
STPR 32.7 20.0 17.0 73.6 48.1 40.8
Prompter (Ours) 34.6 20.1 16.3 74.2 49.4 41.9

Please see Table 12 and Sec. E.3.1: We provide an overview for state-of-the-art skeleton semantcis
learning (SSL) tasks and their source methods; We offer a detailed comparison between our masking
method and existing state-of-the-art masking strategies.

Table 12: Overview of existing state-of-the-art skeleton semantics learning (SSL) tasks and their
source methods, learning types.

ID SSL Task Source Method Method Type
1 DR — —
2 AR AGE (Rao et al., 2020) Self-Supervised
3 AR + AC SGELA (Rao et al., 2021b) Self-Supervised
4 MSSP MG-SCR (Rao et al., 2021c) Supervised

5 MSR SM-SGE (Rao et al., 2021a)
Supervised /

Self-Supervised
6 MIC SimMC (Rao & Miao, 2022) Unsupervised
7 STPR TranSG (Rao & Miao, 2023) Supervised
8 Prompter (Ours) — —

E.3.1 COMPARISON WITH EXISTING STATE-OF-THE-ART MASKING STRATEGIES

Firstly, compared with existing spatial-temporal masking strategies such as SkeletonMAE Wu et al.
(2023) and MS2L Lin et al. (2020), we hope to clarify that the key novelty of the proposed Probabilistic
Spatial Context Masking (PSCM) and Probabilistic Temporal Context Masking (PTCM) is that they
are devised at an independent level of body structural locations and motion trajectory positions
based on independent and identically distributed (IID) Bernoulli random masks. It possesses higher
generality than previous methods (detailed in Sec. 3.2 of our paper) and can be probabilistically
generalized to different existing masking mechanisms for more effective skeleton semantics learning
(please see TT property and Line 367-377 of our paper). By contrast, existing masking strategies
such as MS2L Lin et al. (2020) directly masks the later consecutive skeletons (i.e., 150 frames) for
temporal predictions while failing to learn effective spatial relations (i.e., performance degrades)
under the used spatial masking. In Wu et al. (2023), the structural positions are masked conditioned on
the temporally-masked frames. Such direct frame-level or conditioned masking has several limitations,
such as they cannot explicitly and individually model effective spatial semantics, nor can it feasibly
evaluate the performance contribution of spatial masking (please refer to STE property defined in our
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(a) Confusion Matrix on IAS-A
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(b) Confusion Matrix on IAS-A Trained on BIWI
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(c) Confusion Matrix on IAS-B
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(d) Confusion Matrix on IAS-B Trained on BIWI

Figure 11: Visualization of confusion matrices on IAS-A and IAS-B when training on original dataset
((a) and (c)) and training on BIWI dataset ((b) and (d)) (i.e., generalized performance across datasets)
using the Rank-1 matching. Note that abscissa and ordinate denote the predicted and ground-truth
identities, respectively. The position in the ath row and bth column indicates that the testing samples
belonging to the ath identity is predicted as the bth identity, while the corresponding value is the
proportion of such samples to the same-identity samples in the probe set. Note that here ID = i
corresponds class = i-1 in Fig. 12 and Fig. 13.

work), while our method has solved these challenges with a focus of more generalizable skeleton
context reconstruction. Secondly, in our experiments, we also systematically compare our method
with state-of-the-art SSL tasks using different masking strategies: Direct temporal masking (MIC),
random masking with fixed-number masks (STPR), and the baseline without masking (DR). The
experimental results demonstrate the higher effectiveness of our approach that adopts independent and
finer-grained spatial-temporal masking. Moreover, we hope to highlight another novel contribution of
our work is to propose a systematic SSL generality assessment framework (SCUT) to explore the
multi-faceted performance and bottlenecks of existing SSL tasks under varying models and scenarios
(please see Line 58-76 of our paper). Motivated by the identified key properties of SCUT, we focus
on devising a general solution (Prompter) that can be flexibly applied to different state-of-the-art
skeleton-based person re-ID models (e.g., graph transformer, GAT, Siamese encoders). This is
fundamentally different from MS2L Wu et al. (2023) and Lin et al. (2020) that rely on a certain action
recognition backbone or model (i.e., GRU or STTFormer) to design effective masking strategies.
Therefore, our method could be more general and scalable than these methods. Prompter can also be
flexibly applied to RGB-estimated skeletons, unsupervised scenarios, different graph modeling, and
cross-domain person re-ID tasks (see Further Analyses in our paper).
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(a) t-SNE Visualization on IAS training set
(Trained on IAS)

(b) t-SNE Visualization on IAS training set
(Trained on BIWI)

Figure 12: t-SNE feature visualization for for all classes of IAS training sets when training our
method on the original IAS dataset (a) and BIWI dataset (b) (i.e., generalized performance across
datasets). Different colors indicates representations of different classes. Note that here class = i
corresponds ID = i+1 in Fig. 11.

Apart from the key differences (i.e., independent masking of body structural locations and motion
trajectory positions based on independent and identically distributed (IID) Bernoulli random masks)
from existing masking mechanisms, the main novelty of Prompter include (1) Explicit effective
temporal and spatial modeling (i.e., implement spatial-temporal effectvienss (STE)) in terms of body
structure and motion trajectory (we have verfiies the effectiveness of each part in Abalation study),
unlike previous SSL tasks used in skeleton-based person re-ID that do not distinguish these two parts
for reconstruction (see Sec. 3.3 of our paper); (2) Fully exploit varying valuable context information
(e.g., temporal context of trajectory) of fine-grained skeleton representations to capture richer skeleton
semantics (please see Line 299-309 of our paper), which is achieved by combining multiple skeleton
context based learning sub-objectives (i.e., establish Task Transformability (TT)), while existing
SSL tasks typically utilize a fixed reconstruction objective (e.g., direct reconstruction or with fixed
masks). Moreover, it is also a general SSL task that does not rely on any specific model architectures
or feature representations, which is inspired and designed by the crucial properties/principles of SSL
identified by SCUT (please see Line 302-309 of our paper). This also suggests the potential value
of the proposed SCUT framework to devise more general SSL tasks for different scenarios. It can
also be potentially modeled as a model regularization method like Dropout (please see theoretical
assumptions and analyses in Appendix II).

E.4 SUPPLEMENTARY RESULTS FOR REVIEWER # DUN6

Please see Table 13: We provide an additional evaluation of the proposed Prompter on the represen-
tative state-of-the-art gait recognition method GPGait Fu et al. (2023), and the results demonstrate
the effectiveness of Prompter (i.e., the proposed spatial-temporal skeleton semantics learning) to
improve the performance of gait recognition method GPGait on all datasets.

Table 13: Performance (mAP) evaluation of our method when applied to the representative state-of-
the-art gait recognition method GPGati (Fu et al., 2023) on different datasets. The bold numbers
indicate higher performance than the base model without using SSL.

Method KS20 BIWI-W BIWI-S IAS-A IAS-B KGBD
GPGait 41.1 25.5 23.5 34.6 43.1 17.8
+ Prompter (Ours) 43.3 27.2 24.7 37.5 45.6 18.6

E.5 SUPPLEMENTARY RESULTS FOR REVIEWER # BHKC

Please see Table 14: We provide an additional evaluation of the proposed Prompter when applied
to the representative state-of-the-art skeleton-based person re-ID method TranSG (Rao & Miao,
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(a) t-SNE Visualization on IAS-A (Trained on
IAS)

(b) t-SNE Visualization on IAS-A (Trained on
BIWI)

(c) t-SNE Visualization on IAS-B (Trained on
IAS)

(d) t-SNE Visualization on IAS-B (Trained on
BIWI)

Figure 13: t-SNE feature visualization for for all classes of IAS-A and IAS-B testing sets (probe sets)
when training our method on the original IAS dataset ((a) and (c)) and BIWI dataset ((b) and (d))
(i.e., generalized performance across datasets). Different colors indicates representations of different
classes. Note that here class = i corresponds ID = i+1 in Fig. 11.

2023), gait recognition method GPGait (Fu et al., 2023), and action recognition method ST-GCN
(Yan et al., 2018). The results demonstrate the effectiveness and generality of Prompter (i.e., the
proposed spatial-temporal skeleton semantics learning) when applied to different archiectures from
varying research communties (e.g., gait recognition method and action recognition) to improve their
performance (Rank-1 accuracy) in most cases under the same evaluation setting.

Table 14: Performance (Rank-1 accuracy) evaluation of our method when applied to the representative
state-of-the-art skeleton-based person re-ID method TranSG (Rao & Miao, 2023), gait recognition
method GPGait (Fu et al., 2023) and action recognition method ST-GCN (Yan et al., 2018) on
different datasets. The bold numbers indicate higher performance than the base model without using
SSL.

Method Source
(Research Community)

Method KS20 IAS-A IAS-B KGBD

Person Re-Identification TranSG 71.3 48.0 56.1 57.0
+ Prompter (Ours) 74.2 49.5 60.4 59.5

Gait Recognition GPGait 71.4 50.9 60.1 53.6
+ Prompter (Ours) 72.7 55.3 61.7 53.4

Action Recognition ST-GCN 60.4 43.6 49.1 57.7
+ Prompter (Ours) 65.6 53.4 58.8 59.0
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