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APPENDIX OUTLINE

The overview for this appendix is presented as follows.

• In Sec. A, we offer a general computing formula for occurrence probabilities of different
sub-tasks contained in Prompter.

• In Sec. B, we provide simplified theoretical assumptions and analyses of Prompter on
potential model regularization.

A SUB-TASK TRANSFORMATION OF PROMPTER

With IID masks sampled from the Bernoulli distribution, the probability of occurrence for spatially
retaining nS body-joint locations can be computed by

PS(nS) =
(
J
nS

)
(pS)

J−nS(1− pS)
nS , (1)

where
(
J
nS

)
= J!

nS!(J−nS)!
and PS(nS) denotes the probability of keeping spatial locations of arbitrary

nS joints. The spatial masked skeleton context representation ṽt (see Eq. (7) of the paper) is
essentially a random combination of different numbers (1 ≤ nS ≤ J) of body-joint representations
with the probability PS(nS), which keeps each joint with an independent probability (1− pS) and
leverages partial spatial context of skeletons to perform location reconstruction and inference.

Likewise, the masked temporal context representation wi (see Eq. (8) of the paper) can be viewed
as randomly sampling different sub-trajectories of the same joint, where each temporal position is
discarded with the same independent probability pT and the probability for keeping nT temporal
positions can be computed as

PT(nT) =
(
f
nT

)
(pT)

f−nT(1− pT)
nT . (2)

The proposed Prompter with task transformability (TT) can be viewed as a general probabilistic
form of existing reconstruction or masked reconstruction based SSL tasks (Rao et al., 2021; Rao
& Miao, 2023): (1) Prompter contains a sub-task, direct spatial reconstruction (i.e., all body-joint
locations are unmasked), and the probability of performing this sub-task is PS(J) = (1 − pS)

J

(see Eq. (1)); (2) The second contained sub-task is the masked spatial skeleton reconstruction, with
the performing probability of PS(nS) =

(
J
nS

)
(pS)

J−nS(1 − pS)
nS when nS locations of joints are

unmasked; (3) Prompter can also be transformed to the masked temporal skeleton reconstruction
under the probability of PT(nT) =

(
f
nT

)
(pT)

f−nt(1− pT)
nT in the case of nT trajectory positions of

a joint are unmasked. The task transformability enables Prompter to jointly optimize different SSL
sub-tasks and achieve better semantics learning performance (see Sec. 4.2 and 4.4 in the paper).

Intuitively, Prompter introduces more possible spatial-temporal reconstruction cases (i.e., under
varying partial spatial and temporal contexts) than both direct reconstruction and masked recon-
struction Rao & Miao (2023) that employs a fixed number of masks, thereby potentially improving
the reconstruction diversity and reducing model over-fitting. It can also be viewed as a special
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representation-level Dropout (Baldi & Sadowski, 2014) to randomly drop joint representations over
spatial and temporal dimensions. We provide a simplified case to show that both Prompter and
Dropout can introduce random perturbations and similar model regularization in Sec. B.

B MODEL REGULARIZATION VIA PROMPTER

The Prompter objective (LSSCR) can be modeled as an equivalent objective containing the model
regularization (i.e., ℓ2 weight regularization). We discuss and analyze the case of performing
probabilistic spatial skeleton context reconstruction with Prompter under single linear units (which
can be generalized to the probabilistic temporal skeleton context reconstruction and non-linear units).

Preliminaries. Different spatial context masking strategies (i.e., combinations of unmasked joints)
are assumed to correspond to different sub-model learning and error optimization. For example, only
masking the left hand body joint or only masking knee joints to construct the masked skeleton context
representation for training can lead to different learned models, which can be viewed as different
sub-models of the original model trained with all joints unmasked. For clarity and convenience, we
adopt a more general notation here, which is different from that used in the paper. We use ErrEns
to denote the error function of the ensemble of all possible sub-models corresponding to different
spatial context masking strategies, and use ErrPro to represent the error function of the model using
Prompter. With the mean square error (MSE) as the error metric for reconstruction, we can define
them as:

ErrEns =
1

2
(t−OEns)

2
=

1

2

(
t−

n∑
i=1

wiIi

)2

, (1)

where

Ii =

J∑
k=1

pkv
k
i . (2)

In Eq. (1) and Eq. (2), Ii denotes the ith element of the input vector I ∈ Rn, wi represents the
ith element of the learnable weight vector w ∈ Rn, t denotes the target value (i.e., single value
corresponding to a specific dimension of ground-truth joint positions), OEns is the expected output
value of all possible sub-models with the probability pk for masking the kth body-joint location
representation vk ∈ Rn, vki denotes the ith element of vk, and J is the total number of body joints.
In Eq. (1), we compute the single-position error using a single training input I , while the error of
each training example can be combined additively for sequence reconstruction. Likewise, the error
function for the model applying Prompter can be formulated as:

ErrPro =
1

2
(t−OPro)

2
=

1

2

(
t−

n∑
i=1

wiIi

)2

, (3)

where

Ii =

J∑
k=1

δkv
k
i . (4)

Here OPro denotes the output value of model when using Prompter, Ii denotes the ith element of the
input vector I ∈ Rn, which is generated by masking body-joint location representation vk with the
gating 0-1 Bernoulli variable δk and P (δk = 1) = pk in Eq. (4). The variable δk is assumed to be
independent of each other, independent of the weights, and independent of the model optimization.
By taking over all possible gating variables in different sub-models, the expectation (i.e., ensemble
average) of input vector can be computed by Ii =

∑J
k=1 pkv

k
i , as shown in Eq. (2).

Based on Eq. (1) and Eq. (3), the learning gradient of the errors with regard to wi are computed as:
∂ErrEns

∂wi
= − (t−OEns)

∂OEns

∂wi
= − (t−OEns) Ii = −tIi + wiI

2
i +

∑
j ̸=i

wjIiIj

= −t

J∑
k=1

pkv
k
i + wi(

J∑
k=1

pkv
k
i )

2 +
∑
j ̸=i

wj(

J∑
k=1

vki v
k
j (pk)

2 +

J∑
a=1,b̸=a

2vai v
b
jpapb), (5)
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∂ErrPro

∂wi
= − (t−OPro)

∂OPro

∂wi
= − (t−OD) Ii = −tIi + wiI

2

i +
∑
j ̸=i

wjIiIj . (6)

As the gradient of model using Prompter is a random variable, we take its expectation with:

E

[
∂ErrPro

∂wi

]
=− tE

[
Ii
]
+ wi E

[
I
2

i

]
+
∑
j ̸=i

wj E
[
IiIj

]
, (7)

where

E
[
Ii
]
=

J∑
k=1

pkv
k
i , (8)

D
[
Ii
]
=

J∑
k=1

(vki )
2 Var(δk) =

J∑
k=1

(vki )
2pk(1− pk), (9)

E
[
(Ii)

2
]
= D

[
Ii
]
+
[
E(Ii)

]2
=

J∑
k=1

(vki )
2 Var(δk) + (

J∑
k=1

pkv
k
i )

2, (10)

E
[
IiIj

]
= E

[
(

J∑
k=1

δkv
k
i )(

J∑
k=1

δkv
k
j )

]
= E

 J∑
k=1

(δk)
2vki v

k
j +

J∑
a=1,b̸=a

2δaδbv
a
i v

b
j


=

J∑
k=1

vki v
k
j E
[
(δk)

2
]
+

J∑
a=1,b ̸=a

2vai v
b
j E [δaδb] =

J∑
k=1

vki v
k
j pk +

J∑
a=1,b̸=a

2vai v
b
jpapb.

(11)

By substituting Eq. (5), (8), (9), (10), (11) into Eq. (7), we have:

E

[
∂ErrPro

∂wi

]
=− t

J∑
k=1

pkv
k
i + wi

J∑
k=1

(vki )
2 Var(δk) + wi(

J∑
k=1

pkv
k
i )

2

+
∑
j ̸=i

wj(

J∑
k=1

vki v
k
j pk +

J∑
a=1,b ̸=a

2vai v
b
jpapb)

=
∂ErrEns

∂wi
+ wi

J∑
k=1

(vki )
2 Var(δk) +

∑
j ̸=i

wj

J∑
k=1

vki v
k
j Var(δk) (12)

Therefore, the gradient expectation E
[
∂ErrPro
∂wi

]
when using Prompter is the gradient of the ensemble

error ErrEns adding the ℓ2 regularization of weights and a cross-weight multiplication item as

E [ErrPro] = ErrEns +
1

2

n∑
i=1

(wi)
2

J∑
k=1

(vki )
2 Var(δk) +

n∑
i=1

n∑
j ̸=i

wiwj

J∑
k=1

vki v
k
j Var(δk). (13)

The magnitude of the ℓ2 regularization term 1
2

∑n
i=1(wi)

2
∑J

k=1(v
k
i )

2 Var(δk) is adaptively scaled
by both the input features of body joints and the variance of the Bernoulli variables which is controlled
by the context masking probability pk. When we set pk = 0.5, E [ErrPro] possesses the maximal
level of the ℓ2 regularization, and our empirical results also show that the probability value around
0.5 can achieve slightly better performance.

Relations to Dropout Algorithm Hinton et al. (2012); Baldi & Sadowski (2013; 2014): As
analyzed in our paper, the proposed Prompter can be viewed as a special representation-level Dropout

3
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algorithm performed on the body-joint representations over spatial and temporal dimensions. It
randomly and independently masks body-joint representations (can be viewed as randomly and
independently dropping joints) in each skeleton or in each trajectory to construct a new skeleton
representation for skeleton semantics learning (e.g., reconstruction in our work), which can (1)
introduce random perturbations into skeleton semantics learning tasks (shown in our paper) to
enhance model training (e.g., improve robustness against perturbations); (2) fully exploit different
random subsets of body-joint representations as more diverse contexts for semantics learning tasks
(e.g., reconstruction, prediction) to capture richer key semantic features; (3) may reduce the feature
co-adaptation (Hinton et al., 2012) of body joints (e.g., avoid only utilizing a few highly-correlated
joints for skeleton prediction) to force the model to learn more effective representations for each body
joint; (4) could provide a regularized error function (see Eq. (13)) to potentially reduce the model
over-fitting. These properties allows Prompter and the idea of probabilistic spatial-temporal context
masking to be broadly applied to more models and tasks (see Sec. D of Appendix I).
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