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ABSTRACT

In this work, we study the optimization and the generalization performance of the
widely used FedAvg algorithm for solving Federated Learning (FL) problems. We
analyze the generalization performance of FedAvg by handling the optimization
error and the Rademacher complexity. Towards handling optimization error, we
propose novel constrained Polyak-t.ojasiewicz (PL)-type conditions on the objec-
tive function that ensure existence of a global optimal to which FedAvg converges
linearly after O(log(1/¢€)) rounds of communication, where € is the desired opti-
mality gap. Importantly, we demonstrate that a class of single hidden layer neural
networks satisfies the proposed constrained PL-type conditions required to estab-
lish the linear convergence of FedAvg as long as m > nK/d, where m is the
width of the neural network, K is the number of clients, n is the number of sam-
ples at each client, and d is the feature dimension. We then bound the Rademacher
complexity for this class of neural networks and establish that both Rademacher
complexity and the generalization error of FedAvg decrease at an optimal rate of
O(1/+/n). We further show that increasing the number of clients K decreases the

generalization error at the rate of O(1/y/n + 1/vnK).

1 INTRODUCTION

Federated learning (FL) is a distributed learning paradigm where multiple client devices collabo-
rate with the help of a server to solve a joint problem while keeping the data of each client private
(Kairouz et alJ, [2021). A typical FL problem aims to solve min,, Zszl D (w), where Oy (w) is
the loss at the k™ client and w refers to the joint model the clients aim to learn. A standard and most
widely adopted algorithm to solve the FL problem is the Federated Averaging (FedAvg) algorithm
first proposed in (McMabhan et al.| 2017)). Consequently, the study of the convergence performance
of FedAvg has received wide attention (Konecny et al., 20155 Stich, 2018; McMahan et al., 2017} |L1
et al. 2020; Zhou & Congl 2017b). However, when it comes to ensuring generalization guarantees
for FedAvg, the problem has not received significant attention, partially because of the challenging
nature of the problem (Mohri et al., 2019; |Sun et al., 2023; Hu et al.| [2022). To prove the gener-
alization guarantees for FedAvg, we need to bound (a) the optimization error (on empirical loss)
achieved by FedAvg, and (b) the complexity measure such as the Rademacher complexity of the
model (Arora et al., 2019; Mohri et al.| 2019; 2018). The major challenge in guaranteeing good
generalization performance is to bound both (a) and (b) above, which are often contradictory, i.e.,
proving optimization guarantees usually rely on restrictive assumptions on the loss landscape like
(strong)-convexity or Polyak-Lojasiewicz (PL) inequality to be satisfied over the entire parameter
space [Haddadpour et al.| (2019); Haddadpour & Mahdavi| (2019) while the Rademacher complex-
ity is large for an unbounded parameter space [see Theorem 5.10 (Mobhri et al.| 2018))]. Therefore,
bounding both (@) and (b) simultaneously is challenging, thereby making it difficult to provide sat-
isfactory generalization guarantees for FedAvg. To address these challenges in this work:

> We first analyze the convergence of FedAvg and establish linear convergence under a new set of
assumptions that are only required to be satisfied locally. Importantly, to highlight the practicality
of the assumptions, we establish that the proposed assumptions are naturally satisfied by a single
hidden-layer Neural Network (NN).

> We then study the generalization guarantees of FedAvg for the single hidden-layer NN and show
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that the proposed local assumptions lead to a Rademacher complexity that goes down with the
number of samples n as O(1/+/n). Specifically, our analysis captures the effects of local samples,
the number of clients, and model sizes on the performance of the FedAvg algorithm.

In the following, we discuss specific challenges and the drawbacks of the current state-of-the-art
with respect to challenges (a) and (b) discussed above.

Convergence of FedAvg. As discussed earlier, several works have analyzed the convergence perfor-
mance of FedAvg under various settings. In the non-convex regime, multiple works have established
the convergence of FedAvg to a stationary point (local optimal) (Konecny et al., |2015; |Stich} 2018;
McMahan et al., 2017; L1 et al.| 2020; |Zhou & Congl 2017b). However, the local optimal does not
guarantee a small empirical loss, and hence cannot be used to provide generalization guarantees.
Some works have shown convergence of FedAvg to global optimal but under restrictive assumptions
of (strong) convexity (Stichl|[2018;|Qu et al.|[2020). In Haddadpour et al.|(2019), the authors provide
convergence of FedAvg to the global optimal by imposing the PL condition on the objective func-
tion, which is unfortunately not satisfied by several loss functions (e.g., log-logistic loss) over the
whole parameter space. Importantly, assuming that the PL inequality is satisfied globally (without
any restriction on the parameter space Haddadpour & Mahdavi|(2019)) leads to a large Rademacher
complexity, thus leading to worse generalization guarantees. This leads to the following question:

Can we develop conditions that are satisfied locally (on a restricted parameter space)
rather than globally and provide convergence guarantees for FedAvg? Are there models that
satisfy such a condition?

To address 01, we provide new weaker conditions (a constrained variant of the PL-inequality) on
the global and local loss functions. Importantly, we prove that there exists a globally optimal point
within a ball of radius p around initialization to which FedAvg converges linearly. Moreover, we
also establish that there exist NN architectures that satisfy the conditions proposed in our work.

Generalization guarantees for FedAvg: The generalization performance of centralized machine
learning algorithms has been extensively studied (Mohri et al.l [2018; |Bousquet & Elisseett], 2002
Emami et al.| 2020). However, the study of generalization guarantees of FL algorithms is rather
limited (Mohri et al., 2019; [Hu et al., 2022; [Yuan et al., [2021a). Notably, these studies often
overlook the impact of the optimization algorithm Sun et al.| (2023)), and often rely on assumptions
like Binary loss |Hu et al.| (2022); Mohri et al.| (2019) and the Bernstein condition (Yuan et al.,
2021a). Additionally, generalization bounds for meta-learning and FL are established in |Fallah
et al. (2021); |Chen et al.[(2021) under stringent assumptions such as strong convexity and bounded
loss functions. Recently, Sun et al| (2023) has investigated the generalization of FedAvg via the
lens of uniform stability. We note that these analyses impose strong assumptions such as bounded
gradient and heterogeneity on the data, which are usually not satisfied by many problems of
practical interest. Moreover, the optimization guarantees provided in [Sun et al.| (2023)) are weaker
compared to the linear convergence established in our work. Based on the above observations, we
ask the following main question:

Can we provide generalization guarantees for FedAvg? If so, what is the impact of (a)
the number of samples per client, (b) the model size, and (c) the number of clients on the
generalization performance?

We address 02 by deriving Rademacher complexity when each client employs a single hidden-layer
NN for FedAvg implementation. We show that the local assumptions developed to address O1 play
an important role in bounding the Rademacher complexity for FedAvg. Importantly, our analysis
captures the effect of data samples and NN size, and the number of clients on the generalization
performance of FedAvg. It is worth mentioning that to address both and 02, we do not make
some standard assumptions that are typically used in many existing works |Li et al.| (2019); |Stich
(2018)); |Yu et al.| (2019); [Haddadpour et al.| (2019); |Qu et al.| (2020); |[Woodworth et al.| (2020aib);
Hu et al.| (2022); Mohri et al.| (2019) such as: () (strongly) convex loss, (i) bounded loss, (¢7%)
bounded gradients (iv) bounded heterogeneity, and (v) interpolation [ﬂ In this work, we have not
assumed the existence of a global optimal point; rather, it is part of our conclusion.

"Interpolation refers to the existence of a w* such that &y, ;(w*) = 0 forall k € [K] and i € [n].
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Contributions. The major contributions of our work include:

> Answer to : For the first time, we show that FedAvg converges linearly to the optimal
solution (see Corollary [3.2)) if the local loss functions at each client and the global loss function
satisfy a novel local PL-type assumption introduced in Assumption[2.4] It is important to note that
the existence of a global optimal in our analysis is a part of our conclusion, not an assumption. To
the best of our knowledge, both conditions introduced in Assumption [2.4] are new. It is also worth
noting that these conditions do not follow from any of the existing results, even in the special case of
centralized setting, i.e., for K = 1 (Chatterjee, 2022;|An & Lu,[2023)). In addition, we also establish
that a single hidden-layer NN satisfies the two conditions proposed in Assumption[2.4] Specifically,
we establish the conditions on the width of the NN as a function of the number of samples, number
of clients, and the feature dimension, and on the eigenvalues of the Jacobian of the loss functions
(or the scaling factor of the final output layer) such that the proposed conditions are satisfied. To our
knowledge, these results are novel (see Theorems @

> Answer to : To address 02, we derive an upper bound on the Rademacher complexity for
a class of single hidden layer NNs by utilizing the fact that the FedAvg iterates stay within a p-ball
around the initialization. We point out that this is made possible by the conditions provided in As-
sumption In particular, we show that the Rademacher complexity approaches zero if the radius
p = O(y/nf|and m = O(n?), where n is the number of samples at each client and m is the width
of the NN. We show that the generalization error regardless of the data heterogeneity diminishes as
O(1/+/n). We finally corroborate our theoretical findings through numerical experiments.

2 FEDAVG: ALGORITHM AND ASSUMPTIONS

As discussed in Section[I] FL aims to solve the following optimization problem:

1 K
ngn{@(w) = KZ%(w)}, (1)
k=1

where @y (w) = E(g ), lk(fw(®),y) is the loss function at client k¥ € [K]. Here, y € Y

is the true label, and fo,(x) is the output of model w € R? for an input feature € RY, and
Il : Y xY — Rt is the loss function at the client & € [K]. In the above, d’ is the dimension of
the parameter space. The following algorithm captures the main steps of FedAvg (McMahan et al.}
2017). In Algorithm m ®;,.;(w;") denotes the empirical loss function at client k& € [N] computed
using sample i € [n].

In this and the subsequent section, we answer O posed in Sec.[I} In particular, we provide a general
condition for the above algorithm to converge to a global optimum and for the model parameters to
stay within a closed ball of radius p. In the later sections, we show that this condition is, in fact,
satisfied for a single hidden layer NN. Specifically, this constraint imposes a natural regularization
of the NN which provides better generalization, as discussed later. To prove our claim, we make the
following standard assumptions on the loss functionJ1 & Telgarsky|(2018)).

Assumption 2.1 (L- Smoothness). The loss functions @y, and ® are assumed to be Ly-smooth and
L-smooth, respectively, i.e., ||[V®r(u) — VO (v)|| < Li|lu — v|| forall k € [K] and |[V®(u) —
Vo ()|l < L||lu — v|| for all w and v.

Assumption 2.2 (Samplewise Smoothness). The loss functions @y, ; (w) are assumed to be ly, ;-
V., (v)]|> < 20.Pri (v) forall k € [K] and i € [n).

sample-wise smooth, i.e.,

To define the major assumptions required for the convergence of FedAvg Algorithm [I] we need the
following definition (Chatterjee, [2022).
Definition 2.3. Let f : RY — R be continuously differentiable function on closed ball B[w?, p]
with center at initialization w° € R? and radius p > 0. Define
\V4 2
a(w®,p) = inf IVF)I” )
weBlw’,p]  f(w)

Next, we state an important assumption that leads to linear convergence within a ball around initial-
ization.

2This is the radius over which our new condition should be satisfied.
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Algorithm 1 FedAvg McMahan et al.|(2017)

1: Initialize: {wg’o =w'}, w, eRifork=1,2,... K
2: forr=0,1,...,R—1do

3:  Broadcast w" to all the clients k € [K]

4. fort=0,1,..., T —1do
5
6

for each client k € [K] do
Sample a batch By of size |B}'| = b
SGD step on w;" for k € [K]:

wpt = wpt =V (wy")

VO (wp') =23, VO (w))
7: end for
8: end for
9:  Receive w), " from nodes k € [K]

10:  Aggregation step : w" ™ = L > ke(K] w;’T
11: end for

Assumption 2.4. For some initialization w® and radius p > 0, we make the following assumptions
on the local and global loss functions:

1. The loss function at each client is assumed to satisfy (see Theorem[E.1))
320, (w’) < pPak(w’, p). 3)
Here, o, (w°, p) is as defined in equation[2 but with f(-) replaced by ®y(-).

2. The global loss function is assumed to satisfy the following condition

V128ell,, K (wO) < (1 —(,)pay(w?, p), (4)

for some ¢, € (0,1). Here, ay(w®, p) is as defined in equationbut with f(-) replaced by

O(-).
Remark 1. In general, two very critical assumptions are made in the literature while proving linear
convergence: (i) interpolation, i.e., there exists w* such that ®;(w*) = 0 for all samples i € [n]
Liu et al.|(2022); |Li et al.|(2019), and (ii) strongly convex loss|Li et al.|(2019); |Karimireddy et al.
(2020) or loss function satisfying the PL-inequality [Fan et al|(2023)). Later, a relaxed version of
PL-inequality called local PL or PL*-inequality was proposed where the PL-inequality needs to be
satisfied over a small ball around the initialization (see|Liu et al.| (2022); |Oymak & Soltanolkotabi
(2019). Despite this relaxation, it makes a critical assumption on the existence of the optimal w*
such that the loss ®;(w*) = 0 for all samples i € [n]-the interpolation regime. In our work, we
argue that this assumption can be relaxed with our novel condition shown in Assumption It
is important to note that our condition is fundamentally different from the PL*-inequality in the
following way:

* There is a stark difference between our proposed condition and the the PL-condition (or PL*
condition), which is defined as [|[V®(w)|? > u(®(w) — ®(w*)) for all w € R? (and w €
IBB[QO, p] for PL* condition). In the PL-condition (and local PL), the constants do not depend on
the initialization and radius as the condition is universally satisfied. Another important assumption
made in the local/global PL-condition is the existence of a global optimal point w*. In contrast,
our proposed condition does not require this assumption; instead, we prove the existence of a
global optimal point under our novel condition.

* It is important to note that the PL-condition must be satisfied over the entire parameter space,
which can restrict its applicability to certain loss functions such as logistic loss [Karimi et al.
(2016)). On the other hand, our novel condition is assumed only over a small neighborhood around
the initialization, making it more broadly applicable. Later we show that parameters such as
initialization and the radius p can be chosen so that the condition is easily (compared to the PL
inequality) satisfied.

In this work, we have shown that the proposed condition is satisfied for at least a single hidden layer
neural network. In|Chatterjee (2022)), the authors have shown that the wide neural network satisfies
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the constrained PL inequality for a single client setting. Therefore, we strongly believe that the
proposed condition in our work will also be satisfied for wide neural networks.

3 CONVERGENCE ANALYSIS

In this section, we establish that the FedAvg Algorithm 1| achieves linear convergence to a global
optimum under the set of assumptions introduced in Sec. [2] Importantly, note that the existence of
this global optimum is established as a conclusion rather than an assumption. Moreover, unlike other
works, we do not explicitly assume interpolation to establish linear convergence of FedAvg (Had-
dadpour et al.| [2019; [Stich, [2018). In particular, we establish a proof that the sufficient conditions
stated in equation [2.4 not only guarantee the linear convergence of Algorithm [I]but also ensure the
existence of an optimal point denoted as w* within the closed ball B[w?, p]. The following theorem
is a precise statement whose proof can be found in Appendix [3.1]

Theorem 3.1. Assuming that there exists an initialization w® € RY, and a radius p > 0 such
that Assumptionsand are satisfied by loss functions © and @y, for k € [K|, then FedAvg
ensures that there exists a w* € Blw", p| such that limg_, o, ®(w?) = ®(w*) = 0 provided
the learning rate

n < mln{ 2 Qmin Qmin 1 8 Cpp U, U }
= ) ) ) ) ) sy X1y ¥2 ()
Omin 4Lmaxl;nax 2Lmaxl£nax T\/ \IJO agT T\/ \IIO
where I, = maxy lj = max;lp;; Lmax = maxy Ly ; Qmin = Mingeg) o ; Yo =

/! 0y . — 3 — : Qg ¥min 1
2ela KO(w) ; ¥y = \ ool and Wy = mm{4T(4L§mz;ﬂax+Ll;mxamm)> 3LmaxT}'
More precisely, after R > 0 communication rounds, the FedAvg Algorithm | satisfies

R
d(wh) < (1 — nTagiwo,p)> o(w). (5)

Essence of the Proof of Theorem [3.1]: Assumptions[2.I|and[2.4]lead to an exponen-
tial relation, specifically ®(w" ') < 4" ®(w"), where v € (0,1), (refer to Lemma|[F.4). To prove
the existence of global optima w* within the ball B[w?, p], we have used the method of induction
on two variables: global communication round r and local updates ¢. By doing so, we conclude that
the sequence {w,’" }, r>o remains confined within the ball Bw", p] (refer to Lemma , which
ensures that the sequence {w"}22, remains within the ball B[w?, p] for all . Further, we have
shown that the sequence {w"}°°; is Cauchy sequence in the closed subset Bw", p] of complete
space. Therefore, it guarantees the limit of the sequence {w"}5°,, denoted by w* belongs to the

ball. A complete proof is provided in Appendix O

Note that (Chatterjee| (2022) required one condition to be satisfied for the linear convergence since
their work considered a centralized setting. In contrast, our work requires two conditions for both
global and local loss functions as stated in Assumptions [2.4] to guarantee linear convergence of
FedAvg. Later we show that as the number of clients, K, increases, the requirement becomes more
stringent. The above theorem leads to the following corollary.

communication rounds.

Corollary 3.2. By choosing 1 as in Theorem[3.1] for any error € > 0, Algorithm|[l|achieves a loss
0
of ®(wh) < e after R > O ([Qlog (‘P(Q ))

€

Our next goal is to show that it is possible to initialize a NN such that it satisfies the conditions
provided in Assumption 2.4} However, note that this does not provide any guarantees on the gen-
eralization error. To fill this gap, in the following sections, we consider a single hidden-layer NN
and show that () there exist an initialization and radius p such that it results in a linear convergence
leading to zero training loss (i.e., assumptions stated in Sec. [2|are satisfied), and (b) prove that the
generalization error can be made small by choosing large enough training samples and performing
FedAvg for a sufficiently large number of communication rounds.



Under review as a conference paper at ICLR 2025

4  ASSUMPTION [2.4] FOR SINGLE HIDDEN LAYER NN WITH SQUARED
ERROR LOSS

In this section, we show that there exist NNs such that Assumption [2.4]is satisfied, and hence leads
to linear convergence of FedAvg (see Theorem [3.1). Towards this, we consider the following NN
with a single hidden layer. In particular, we assume that the first layer has m neurons followed by a
smooth activation function. The output of this NN is given by |Arora et al.| (2019)

m

Ful@) = 7= S vo(w] ). ©)
j=1

where € R? is the input feature vector. With a slight abuse of notation, we have used w =
vec([wy, ws, ..., wy]) € RI™X1 to denote the aggregated weight vectors in the first layer and

v = (v1,v9,...,0) " to denote the weight in the second layer, where vj - {—1,1}. Now, we
make the following assumption on the activation function.

Assumption 4.1. We assume that o0 : R — R is a smooth non-decreasing activation function such

that o(0) = 0. Further, first and second order derivatives of o are bounded i.e., |o'(z)| < D, and
1

lo"(x)] < A,.

Note that the above condition is satisfied by the tanh activation function, i.e., o(z) = tanh(x). The
condition o(0) = 0 is assumed for the sake of simplicity and ease of notation. It turns out that,
with random initialization, this can be relaxed without changing the main result of the paper. With
o(x) # 0, many activation functions such as Softmax, tanh to name a few (see Xu et al.| (2015))
satisfy the conditions mentioned in Assumption It is worth noting that the well-known ReLU
activation does not satisfy the smoothness condition, but it can be well approximated by a smooth
proxy function (see (Xu et al.,[2015))).

Assumption 4.2. Each node k € [K| samples n iid.  data points denoted X), =
{(®r1,Y6,1),- - (T ns Yk,n) } from a continuous and possibly different distributions py(x), k €
(K] with Yk ; < Ymag forall i € [n].

We consider the average loss function ®(w) = & "% | & (w), where &4 : R™ — R is the
squared loss function for each client k € [K| and is defined as @ (w) = Y, [fuw(Tk,i) — yril® =

Heng, where the i entry of the error vector ey, := [fu (ki) — yri]- Using e = [e1, €2, ..., e,],

the global loss can be written as ®(w) := + |le||>. Next, we discuss the conditions under which a

single hidden layer neural network satisfies Assumption It turns out that these conditions are
dependent on the following Jacobian matrix:
1

Telw) = x Hi(w) ™)

where each entry of Jj, (w) is a d-dimensional row vector, and H,(w) is defined as follows

v’ (W @ )w) | vao (wy pa)®L . Vol (W) Ty
Hy(w) = : : : : , (8
vla’(wf—wk}n)az;n vga’(w;—wk,n)wz’" . vmo’(w;wkm)az;n

where k € [K] and the size of the matrix Hy(w) is n x md, ie., Hj(w) € R"*md,

We define a global Jacobian matrix J(w) by stacking H,| (w) row-wise as J(w) = —= x

vm
[H (w), H) (w),...,Hg(w)] € R™*X" The following lemma provides a condition under
which Jj, (w®) and J(w®) " are full rank matrices. Note that the full rank requirement is only at the
initialization. The size of the NN scales as n/d as opposed to n in (Chatterjee, 2022)). This result is
similar to the results of Zhang et al.[(2021) but for an FL setting.
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Algorithm 2 FedAvg Algorithm for single hidden layer NN

1: Initialization: Initialize using w® ~ N(0, %Imdxmd) and v; Sy {-1,1} Vi € [m].
2: Broadcast w" to all the clients k € [K]
3: Run the FedAvg Algorithm[I]

Lemma 4.3. At the random initialization w® ~ N(0, %Imdxmd), and v; B {-1,1} for all
i € [m), the matrices Jy,(w®) and J(w®)" have full column ranks almost surely provided
m > n/d and m > nK/d, respectively.

Proof: The result follows by following the proof of Lemma E.1 of Zhang et al.| (2021) for the
matrices Hj,(w®) and H(w®)". One main difference is that [Zhang et al. (2021) uses mirrored
Le-cun. However, the proof does not change for our initialization. O

Towards stating the condition for neural network, we need the following definitions
ey Hy(w’)Hy(w’) ey

weB[w" ) lexl?

) 9

)\,;p(m) =

where ey, and Hj,(w) are as defined earlierE] The following is an extension of the above definition
to K clients

e Hw")"H(w’)e
A (m) = inf — = (10)
P ( ) weB[wO,p] H€||2
where e = [e1, es,...,e;]" € R and H(w?) is defined earlier. Similarly, 5\; (m) and 5\; (m)

are defined by replacing Hj,(w®) by Hy(w) and H (w”) by H (w) in equations[9]and equation[10]
respectively. In addition, Amax(p) = SUP4yeB(wq,p) Amax (H(w)H (w)"). These notations will be

used in Theorem Since we know from the above Lemma that the matrices H (w®) H (w®)
and Hj,(w®) " Hy,(w®), k € [K] are full rank, we next ask if the above terms scale with m. Recall
that we are looking at the Jacobian to state the condition under which Assumption [2.4]is satisfied.
Thus, the following assumption is important, whose analytical justification is provided in App.[G]

Assumption 4.4. We assume that both A ,(m) and A, (m) scale linearly with m.

Experimental Justification of Assumption
[d.4: An observation similar to the above as-
sumption was also made in (Telgarsky, 2021}
page 39). We verify the above assumption via | Client(K)
experiments in Fig. [I, where we have plotted T K=l

the minimum eigenvalue of the Jacobian versus _ Ejo
m for different numbers of clients K using the

MNIST data set (LeCun & Cortes, [2010). We
can observe from the figure that the variation is
almost linear, and the slope increases with de-
creasing K.

Minimum Eigenvalue

500 1000 1500 2000 2500 3000 3500 4000

4.1 CONDITION Number of neurons(m)

ON NEURAL NETWORK (NN)

To prove the linear convergence of Algorithm[I] Figure 1: Plot of Amin(m) versus m for K =
for single hidden layer NN, we need the defini- 1,5,10. Here, K = 1 corresponds to A1 min ().
tions stated in equations[T0]and [0} The follow- This shows that Assumption [4.4] is valid in the
ing theorem provides a condition under which real-world setting as well, i.e., the minimum
the Algorithm [T] converges linearly to a global eigenvalue scales linearly with m.

optimal point, and the proof can be found in the

Appendix [I}

3Helre, ey and e depend on w.
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max’

Theorem 4.5. Let V,, i p = \/bn (W + %) and b == w + 292

where AT (m) = su WE @ ell® - 7pp o functions for single hidden layer NN
P : PweBlw®,p] e 8 Y

satisfy equation |3|and equation | of Assumption with a probability of at least 1 — §/2, for
any 6 > 0 provided the following holds:

)\k_:,p(m) 0 + QdA(QTp

m (I=Cop m

where A p(m) and A, (m) are as defined in equation@and equation respectively.

> 2 X

2 2 AT
|:Agdp n 8b7’l:| : and p (m) SK\IIm,K,n (11)
m m

P2

To the best of our knowledge, these conditions are the first of their kind. First, note that the terms
A.p(m)/m and A (m)/m are less sensitive to p since they are sandwiched between the smallest

and the largest eigenvalues of H (w®) " H (w®) and Hy (w®) " Hy (w?), respectively. In particular,
these eigenvalues depend on the initialization w® while the original condition is in terms of the ball
around the initialization. Hence, using the eigenvalues in place of A, (m) and A, (m) in the new
conditions makes it easy to verify (see Fig.[I). Secondly, the larger values of p make the right-
hand sides in the equation large, and hence the conditions may not be satisfied, as expected.
On the other hand, the same can be observed for smaller values of p as well. Thus, a critical p is
necessary. By choosing p = ¢ x O(y/n) and m = O(n?) in Theorem ensures that the right
hand sides scale down with c. Thus, the right-hand side is small for a large enough c. However, by
Assumption , the left-hand sides, i.e., A; ,(m)/m and A, (m)/m are constants that depend only
on the initialization (not on p), and do not scale with m or n or c. Hence, the conditions are satisfied
for large enough c:

Corollary 4.6. Choosing p = cxO(y/n) and m = O(n?) in TheoremH.5|ensure that the conditions
in equation|l I\ are satisfied for sufficiently large c.

The above corollary shows that by choosing a large radius of p and a large number of nodes in the
second layer, linear convergence can be guaranteed. This brings in several challenges while proving
the generalization guarantee, especially while proving a bound on the Rademacher complexity.

5 GENERALIZATION PERFORMANCE: SINGLE HIDDEN LAYER NN

In this section, we show that single hidden layer NN architectures exhibit impressive generaliza-
tion guarantees. To state the generalization result, we need the following notion of Rademacher
complexity of the single hidden layer NN.

Definition 5.1 (See [Mohri et al. (2019)). The Rademacher complexity of a class of single hidden
layer NN constrained to a ball of radius p at client k € [K] is defined as

1 n
Rady(w’, p) = Ejpeg, | sup n > Gifww (@) |
PL =1

weBwO,
where the expectation is with respect to { = ((1,(2y.--,Cn) i {=1,41}", conditioned
onv = (v1,V2,...,0n) € Gy = {ve{=11}": |30 (fwol(®)] <A}, Here, A =

V2D, dy/ antm log 4 and x is any data point sampled from py.(x).

For a FL setting, the generalization guarantee is provided in Mohri et al| (2019), and the result
requires the loss to be bounded. However, in our case, the loss can potentially be unbounded. We
handle this by focusing on the class of “good” NN, i.e., v € G,, whose output is bounded. In
Appendix [H] using the fact that the weight vector lies within a ball of radius p around w", we show
that there exists such NNs with bounded output. Subsequently, we show that for such NNs, the
generalization is guaranteed. We use this result along with the result of Mohri et al.|(2019) to show
the following Theorem whose proof can be found in Appendix [J}
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Theorem 5.2. Let ¥ = ((p2 + Sm)w + y?mz) 2log(%). For the single hidden

layer NN with the initialization as in Algorithm [Z]satisfying Assumptions withm > nK/d,
and the conditions of Theorem{.53] with a probability of at least 1 — 6, the following inequality
holds

K
(IJ(w;v)gfl)S('w;v)Jr?ZRadk(wo,p)Jr\I/\/E. (12)

k=1

Recall that the loss function is defined as the sum of the loss on individual training samples. Thus,
defining L(w;v) = W and Lg(w;v) = w, and using this in the above theorem leads
to the following.

Corollary 5.3. For the single hidden layer NN with initialization as in Algorithm[2] with probability
at least 1 — 2§ over the draw of the samples X}, ~ D}, the following inequality holds

K

2 v
L(w;v) Sﬁg(w;v)+?;}2adk(go,p)+ﬁ. (13)

Next, we provide an upper bound on the Rademacher complexity.

Theorem 5.4. The Rademacher complexity of client k € [K| is bounded by

1 vD2d?(log4)log(No,,/61)
Rad 0 < \/ o P
a k:(@ ap) = Tl\/TT’l + ’

n

where v = (p* + 3m)/m, Ny , = 3d3/*\/pDynm and 6, = 2mn\}§ng ATy

Proof: See Appendix [K] O

5.1 DISCUSSION

To the best of our knowledge, the above is the first result of its kind for an FL setup. We make the
following remarks.

> The generalization error can be made small provided the right-hand side in the Corollary is
small. The first term, i.e., the empirical loss, depends on the communication rounds and the
conditions stated in Theorem The latter can be ensured by choosing p = O(y/n) and m =
O(n?), as shown in Corollary [4.6| In other words, the radius and the size of the NN scale with
n which is not desired in general. However, we believe that this cannot be eliminated unless we
make some structural assumptions about the data.

> Note that J; and Ny , scale with n and m. However, it appears as a logarithmic term, and hence,
the Rademacher complexity does not grow linearly with n. The above choices of p and m ensure
that the Rademacher complexity in Theorem [5.4| goes down as O(1/4/n). Also, the choice of p
cannot scale faster than y/m.

> The last term in the generalization result scales down with n as 1/y/n. Based on these observa-
tions, it is clear that the generalization error can be made small by choosing large enough commu-
nication rounds R and the number of training samples n.

> Here, we present our theoretical insights on the effect of K. From the generalization bound in
equation it is evident that the last term decreases with K as 1/v/ K. However, for larger

values of K, the learning rate is impacted by K through Tf;\%, which scales as 1/vK (see

Theorem [3.1). From equation [3| the loss goes down as exp{—O(R/vVK)} leading to slower
convergence. Thus, the overall effect of increasing K on the generalization is insignificant; this is
also demonstrated in our experimental results as well as several existing works.
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The above argument shows that the average loss can be made small by choosing sufficiently large
m, n, and communication rounds, as shown next[]

Corollary 5.5. With a probability of at least 1 — 6, there exists a single hidden layer NN employing
the FedAvg algorithm with sufficiently large m, n, and R that achieves a small generalization error.
More specifically, the generalization error goes down as O(1/+/n).

6 EXPERIMENTAL RESULTS

In this section, we verify our theoretical findings with experiments performed on an NVIDIA DGX
V100 machine. We have used an MNIST image data setLeCun & Cortes| (2010) distributed across
5 and 200 clients. We have used the single hidden layer network model with 1000 neurons in the
hidden layer and tanh activation function. In both cases, we have maintained around 50 data points
at each client, which is less than the dimension of input feature vectors, i.e., around 1200, which
satisfies the condition d > n and m > nK/d. We execute FedAvg for R = 500 communication
rounds along with T = 5 round of local updates at each client with i.i.d. data.

040 Client(K) 040 Client(K)
0.35 — 5 0.35 — 5
0.30 — 200 0.30 — 200
8 2
5025 8025
20.20 20.20
= b=
Zgo1s 2 0.15
0.10 0.10
0.05 0.05
oA Al oL sair W
0.00 othiobnsblhosbosl 0.00
0 100 200 300 400 500 0 100 200 300 400 500
# Communication Rounds # Communication Rounds
(@) (b)

Figure 2: The Figures in (a) and (b) show the effect of the number of clients K on the training and
the testing losses, respectively. The experiments are done using MNIST data set.

Figure [2| shows the effect of K on the testing and training errors. As suggested by our theory (see
Sec.[5.1), increasing or decreasing K has no effect on the performance (generalization and training
loss).

7 CONCLUSIONS

In this work, we addressed the problem of generalization along with convergence guarantees of
the widely used FedAvg algorithm for solving Federated Learning (FL) problems. We proved the
generalization bound by handling the optimization error and the Rademacher complexity. The opti-
mization error was handled by proposing a novel and new constrained Polyak-FLojasiewicz (PL) type
conditions on the (local) loss functions. Under these new conditions, we showed that there exists
a global optimum to which the FedAvg converges linearly after O(log(1/¢)) rounds of communi-
cation, where € is the desired optimality gap. Importantly, we demonstrated that a class of single
hidden layer NNs satisfy the proposed conditions that are required to establish the linear conver-
gence of FedAvg as long as m > % where m is the number of neurons in the hidden layer, n is
the number of samples at each client, K is the number of clients, and d is the feature dimension.
Finally, we showed that the generalization error of FedAvg decreases at the rate of O(1/y/n) by
proving a bound on the Rademacher Complexity using the fact that the neural network parameters
are constrained to a neighbourhood around the initialization.

*While stating this result, we have ignored log factors.
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A APPENDIX

B RELATED WORK

Convergence of FedAvg Algorithm: [McMahan et al.| (2017) first introduced federated learning
(FL) to learn a global model from distributed data without sharing it with a central server. Majority
of the research on FL focuses on communication-efficiency [Kone¢ny et al.|(2016)); McMahan et al.
(2017); L1 et al.| (2020); |[Smith et al.| (2017)) and data-privacy Bagdasaryan et al.| (2020); Bonawitz
et al.[(2016)); |Geyer et al.| (2017). FedAvg algorithm has been studied extensively under some key
assumptions on loss functions such as convex, strongly convex, and non-convex loss functions with
an overparametrized NN setting |Stich| (2018)); 'Wang & Joshi| (2021); |Khaled et al.| (2019); Yu et al.
(2019). (Stich| (2018)) has substantiated that FedAvg (LocalSGD) exhibits a provable achievement
of linear speedup with significantly reduced communication requirements, specifically in the realm
of strongly convex stochastic optimization. Several notable studies contribute to a comprehensive
understanding of FedAvg in different optimization settings. [Zhou & Cong| (2017a); Wang & Joshi
(2021) have delved into the non-convex setting, establishing crucial convergence results. A flurry of
research articles has been published so far on the convergence analysis of the FedAvg algorithm |Qu
et al.| (2021); L1 et al.| (2022)); |[Song et al.| (2023). The key assumption, in all the above analyses, is
the existence of global minimum and Polyak-Lojasiewicz(PL) condition Karimi et al.| (2016)), which
is assumed to be satisfied by loss function over whole parameter space that restrict the class of loss
function. |Liu et al.|(2022) relaxed the above assumption to a small neighbourhood around initial-
ization, and called it modified PL inequality, i.e, loss function satisfies the modified PL inequality
within a small neighbourhood around initialization under over-parameterized regime but for central-
ized data setting. Further, Chatterjee| (2022) has derived a sufficient condition that depends on the
initialization and radius of the ball for the convergence of the gradient descent (GD) to the global
optimum, and the same is extended for SGD by |An & Lu|(2023) for single client setting. In this
paper, we have come up with a sufficient condition on the loss function that guarantees the linear
convergence of the FedAvg algorithm to a global minimum where the existence of a global mini-
mum is not an assumption, and it is a part of our conclusion.

Generalization of FedAvg Algorithm: The concept of generalization in centralized learning has
been a focal point for researchers for several decades. To assess generalization error, the com-
monly employed approaches involve utilizing uniform convergence, often tied to VC dimension or
Rademacher complexity [Shalev-Shwartz et al.| (2010); |Y1in et al.| (2018)); |Attias et al.| (2018)). How-
ever, there is a limitation in cases where uniform convergence yields an excessively loose bound,
diminishing its meaningfulness Zhang et al.[(2016). This limitation arises because uniform conver-
gence examines the hypothesis class while disregarding the impact of training algorithms responsi-
ble for generating these hypotheses. Mohri et al.| (2019)) establishes a uniform convergence bound
of O(1/4/n), where n represents the cumulative number of samples collected by all participating
clients, for agnostic federated learning problems using Rademacher complexity under binary losses.
However, we have not assumed any bound on the assumed loss function. Hence, our result is more
general. Recent work by [Yuan et al.| (2021b); [Sun et al.| (2023)) has explored the meaning of gen-
eralization in federated learning, and [Sun et al.| (2023) has also proved an upper bound on the true
and empirical risk of the model obtained by FedAvg, FedProx, and SCAFFOLD. To prove a better
generalization of the model, we must achieve low optimization error, preferably linear, which is
missing in [Sun et al.[(2023). In this paper, we have shown that the optimization error of the model
obtained by FedAvg converges linearly to 0. Also, we have proved that the Rademacher Complexity
tends to O for a sufficiently large sample.

C NOTATION

We denote the global round of communication as w", and wZ’T represents 7' local rounds of SGD
performed by client k after r global rounds of communication. Additionally, we assume that the
input space is R%, and ®;, : R™(¢+1) — R represents the loss function associated with each client
k € [K], where [K] denotes the set {1,2,...,N}. Let us assume that each client has n € N
training examples, denoted by {x ;, ym}?:l, where k represents the k-th client. Moreover, X, €
R™*4 represents the input data matrix at client k. We use B[w, p] to denote closed Euclidean balls,
respectively, centred at w with a radius of p. We use vec[w;,ws,...,w,] € R™" to denote a
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vector obtained by stacking each of the vectors w; € R™, i € [n]. We use E to denote the expected
value and E(XY’) or Ejy (X) to denote the conditional expectation.

D USEFUL LEMMA: CONCENTRATION BOUND

In this subsection, we state the following useful lemmas for use in later proofs.

Lemma D.1. (See Wainwright (2019)) Let X; ~ N(0,1), i = 1,2,...,M, then
Pr{zfil X2 > M(1 +t)} < e ME/18 \here t € [0,3]. Specifically, if wy ~ N(0,% x T),
we have

P [J]]? > ¢m] < exp {—

dm(glg— 1)2 } 7

where ¢ € [1,4].
Lemma D.2. Let the local loss function @y, for all k € [K] satisfy Assumption Then

1os

where B"7 is random sample-batch of size |B""| = b and l; = max; Iy, ;.

< QZLQDk(wZ’T),

2
1 T
3 E Vo i(w,")

E [H%k(u}Z’T)
EB™T

Proof. We can re-write the above expression as

2

1 T 1 TT 2
E |l > VO (w)T) = SE > IV (w), )||]
i€eBnT ieBmT
1 T T
+ g D EUVeki(wy ), Vo (wy )]
i#i!
1 T 2 1 TT 2
< 5 2 E[IVer@p)I] + 5 Y IE Ve wp
iEB™T i£i

2 T 2 T
< 2 Z Iy B[ i (w); )]+bjzlk,iE[‘Pk,z‘(wk i
i€BrT i

where the above inequality follows from the Assumption [2.2] and Jensen’s inequality. Using the

above, we have
2 2(b-1 e
< (G+ 20 i)

= 2l;€©k(wz7‘r>,

2

E

1 r,T
: > VO (w))

i€EB™T

where we used the unbiased estimate of the local loss function, i.e., E [®) ;(w,")] = ®(w, ") and
I}, = max; Iy ;. O

E NEW CONDITION FOR LINEAR CONVERGENCE: SINGLE CLIENT SETTING

In this subsection, we show that the local SGD iterates for any client k € [K] stays within the ball
B[w", p]. This result will be used to prove new conditions for the linear convergence of FedAvg.

Theorem E.1. Let Oy, : Rd/ — [0, 00) be a non-negative Ly-smooth function. Take any w? € Rd/
and p > 0. Let B[w?, p] denote the closed Euclidean ball of radius p, centered at w®. Assume that

fore € (0,1) and n < min {22‘—;%, \ /%l,k, &, a%} the following holds:

320, (w’) < p*ay, (14)
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where «y, is defined inbut with f(-) replaced by ®y(-). Consider the SGD update rule defined in
Algorithm Then 'wz’ € B[wY, p| forall T > O.

Proof. If @) (w®) = 0, then V&, (w®) = 0, for all k£ > 0. So, let @4 (w") > 0. The proof is by the
method of induction on 7" € N. By definition of euclidean ball, we have w° = wg’o € Blw’, pl.
Let the induction hypothesis be w2’17 w2’27 cry wZ’Tfl € B[w?, p] for some T' > 1. We need to

show that w,g"T € Blw", p] using induction hypothesis. Toward this, we need the following lemmas:
Lemma E.2. For each 7 > 0, define
Ar = Dp(wy ™) = By (w)T) + || VO (w72
Then forall 0 < 7 < T — 1, we have
IE[A]] < 7? Linaxlhax s (w7,

where Lyax = maxy, Ly and I}, = maxy [}.

Proof. By Lj-smoothness Assumption [2.1] of local loss function ®;, and local iterates of SGD , for
1<7<T -1, wehave

A = 0 (W) = VBT ) = De(w) + [ VO(w) )|
ST 0,7 0,7 Ly o= 0,7y)12 0,712
= = (VO T), VO (w)7)) + T [V (w72 + 0l Ve (w) ),

where V@, is an unbiased estimate of true gradient over mini-batch B%7 of samples. Next, we take
the expectation over randomness in mini-batch of samples. We get

2
e T T L =S T T
ElA] = —n(EV®k(w) )], VOu(w)T)) + TEE [T (w)M)I2] + 0l V() ),

2
< n° Ly
- 2

E[IV@x(wp )] -
Further, we reduce the above inequality as follows

n*Ly,

B[]l < E[20; & (w}")]

= nszaxl:nax‘I)k (wlg’T ),

where the first inequality follows from the Lemma [D.2] and the last equality is due to true estimate

assumption, i.e., E [%k(ng)} = &y (wyT) and, Ly, < Lyax and lj, <11, forallk € [K]. O
Lemma E.3. By choosing n < min { aim , Miﬁ} and forany 0 < 17 < T — 1, we have

pwp”) < (1- a“;“”)fqbk(yo). (15)
Further, we have =1 < 1 where ayiy = ming{aq, oo, ..., ap}

Proof. Since wZ’T € Blw", p] for 7 < T — 1. By rearranging the terms in the definition of A from
Lemma [E-2] under expectation,

Op(w)™) = @p(wd”) — || Vek(wp )| + E[A,]
(a) 0,7 0,7 2 ’ 0,7
< (I)k(wk ) — nakq)k(wk ) +n Lmaxlmax@k(wk )

= (1 —nag + nszaxl;nax)(I)k (wg’T)

= (1= n(@min — NLmaxlmax)) T @5 (),

5Note that we are not assuming that the gradient is bounded throughout but due to smoothness, it is indeed
bounded over a closed ball. This only impacts the learning rate 7, which we are free to choose.
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where (a) follows from the definition of a; equation 2]and Lemma|[E.2] The last inequality follows
from iteration over 7 and aumin < oy, for all k € [K]. By choosing ) < 57==i—, we have

l
max®max

T Qmin T+l
O (™) < (1— 2”) oy, (w”). (16)

Now, since ®;(w") > 0 and @k(wg’l) > 0. Choose 7 = 0 and dividing equationby Oy (w),
we get

Dy (wp)

Qmin’]
0< —=2= 1-—
T Op(wV)  — 2
OminT) < 1
D) =
which completes the proof. O

Lemma EA4. Foreach <T — 1,
n“v(bk(wg)T)HQ <@+ 772Lmaxl;nax)q>k(w2)T) - (I)k(wgﬁ—i_l)'
Further, we have
(bk(wg’ﬂ_l) < (1 + nszaxl:nax)q)k(w%T)~

Proof. By rearranging the terms in the definition of A, under expectation and using Lemma|[E.7] for
7 <T — 1, we have

Ci(wy ™) = Su(wy”) — nll V(w1 +E[A]
i (w)") = 0l V81 (w)|* + 7* Linaslinax @i (w) 7).

Next, we again rearrange the above inequality to upper-bound the norm of gradient square, i.e.,
0,7y112
Ve (w,”)

s

IN

MIVEL@ETIE < Byl — Bl ™) b 7 Lol ()
< (1 + nQLmaxl;nax)ék(wg’T) _ (I)k(wlgn'-i-l).

This completes the proof of the first part.

To prove the second part, we observe that n||V<I)k('w2’T) | > 0. Using this in the first part of this
lemma proves the second part, i.e.,

O (w1 < (14 0% Linaxllas ) Pr (w27).

O
Lemma E.5. Forall T <T — 1, we have
T-1
32®; (wO)n
V()| < (1= (ain — )7/ L2200 %
gnl\ ()| < (= (i — )7/ =S, am

H : 3 Qmin
provided 1 < min {, / Tl 2o } .

Proof. From Lemmal[E.4] we have
0,7
=\ JPIVeLw)T)?

< [0+ 7 Ll (] 7) = (07|

n|[venwp?)

1/2

!
max?

Let us denote 1 + 1% Lipax!/yx BY 75 1.6, ¥ = 1 + 1% Linaxl in the above, we get

i 1/2
[V @u () ]

< Vi [ren)”) - o)™

17



Under review as a conference paper at ICLR 2025

We can rewrite the above inequality as

nI Vel < Vi K\/wbk w)™) 4/ Be(w) ) ) <\/v<1>k )~ ol ‘”“)T/Q.

Taking summation on both sides of the above inequality from [ = 7 to 7' — 1. Then, the above
inequality is reduced to

T-1

;va%(wg’l)H < 2 K\/@k +\/¢ 01+ ) (\/7% \/q) i )]1/2
2 [ (Vi ol ) 3 (Vo ¢¢omﬂl

/2

T—1 T—1 1/2
< v [Z (2\/7<1>k(w2’l>> > (\/( + 12 Linaclyax ) @i (w)) %D ot )] ,
=71 =7

where (a) follows from Cauchy-Schwarz inequality and (b) follows from the second part of Lemma
- In the last inequality above, we have substituted the v = 1 + 7 Lmaxlm ax- Further, we can
write the above inequality as

T271n HVCID;C(wg’l)H < n (TZI (2\/W>> [TZ (\/@k(wg’l) — \/‘I)k(w%lﬂ)
=7 =7 1=
1, 1/2
+ 3 e l>]
l:;ﬂ 1/2 I _ 1/2
< [ ()] [yt s S o))
=7

where the first inequality follows from the result (14 x)% < 1+ 5 whereas in the second inequality,
we have reduced the telescopic sum and ignored the positive quantity 4/ ® k('wg’T). We can further
reduce the above inequality using distributive law as follows

1/2
T— 271/

iﬂHV@k(wgﬁl)H < Vi 2\/7<I>k(w \/@k +2anLmax max <Z B (w )

=1

T-1

zmmMCWfip%%

=7

|~

IN

Vv + WWQLmaxl;naxq)k(Qo)

o7 1/2

T—1 QminT\ &
Eo)]

=1

where the above 1nequa11ty follows from the LemmaE E.3| Next, for z € [0, 1], we have the inequality
l—z<(1- 2) We use this inequality to upper bound the last term of the above inequality as

follows
! r 00 q
aminn) 2 ( aminn) 2 ( aminn) 2
1-— 1— 1-—
( 2 2 q;o 2

T

|
A

IN

l

IN
N
—
Q
E
=]
3
N—
MR
gk
/~
[
2
NE
5
N—

Omin)
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Next, we use the above upper-bound to equation [I8] which will reduce the upper bound to

T-1

S nf[vantut] < v [ (1= M) A i)

min
=1

11/2

-

((1 . O‘minﬁ 2 >
2 amlnn

Qmin T 4
|:277\/7q)k( ( n) X + ﬁn?)LmaXl;naxq)k (MO)

OminT)
((1 N O‘minn % >
2 ammn

11/2
1+ 772Lmaxl;naxq)k (QO) + 1677Lmaxl;nax 1+ 772Lmaxl;nax(bk(wo)

Qmin Oé?nin
« (1 o aminn)%
2
If we choose 1 < 31 , the above inequality reduces to

= 16 320 Loasxlny \ 2 Qninn)\ 5
i 2

> n|vewd)| < ( 4 S maX) Brlwg) x (1- 2)

= Qmin Qlin

1 1 Qmin
Again choosing 1 < menir o W€ get

T—1 1
16 16 2 min 3
e I ) INZETA (s )

= Qmin Omin 2

[NE

< 320 (wy) (1 B an;nn)

Qmin

Now, we are ready to complete the proof of Theorem

Proof. (Proof of Theorem [EZI): Applying the Lemma [E.5| with 7 = 0 and assumed condition, we
have

T-1
0,T 0,0 0,7
Jwy” —w || < ZW||V‘I>k(wk )|
7=0
0,0
< 20w

Omin

The last inequality follows from equation This shows that wg’T € B(w,, p), which by induction
is true for all 7' € N. This completes the proof. [

O

F PROOF OF THEOREM [3.1]
To prove the Theorem|[3.1] the foremost requirement is to show that the local and the global updates

of FedAvg Algorithm |1|at each local round 7" and the global rounds R stay within a closed ball of
radius p > 0 and centre at initialization w?, ie., w,lj’T S B[QO, p]forall R > 0and T > 0. We use
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the method of induction for two variables to prove this. By our initial hypothesis, the initialization
wp’ = w’ € Blw’, p, and hence the hypothesis is true for R = 0 and T = 0. First we show

that the sequence {wg’T} stays within the ball for all 7" and & € [K] under the Assumption
T>0

2] and Assumption 2.4 [see Theorem [E-I]]. Towards this, assume the induction hypothesis that
wyt wh? L w T e IB%[ 0. p] for all k € [K], then we need to prove that w}"" € Bw?, p].
This is shown in Theorem Next, we assume that 'uJ1 r w,z T 'w,? LT ¢ Blw", p] as the
induction hypothesm on the first variable, and prove that wk T e IB%[i ,p]- This is equivalent to
saying ||wf:" — wk 9| < pforall k € [K]. This requires the following set of lemmas.
LemmaF.l. For0<r < R—1land 7t < T, we have for all k € [K],

T Omin T,
p(wp) < (1= 100 o (w)”),

where ouyin = min{a(w?, p), aa(w’, p),...,ax (W’ p)} provided 1 < F=R— where

maxl;,,ax
— /
Liax = maxy Ly and I}, = maxy [}.

Proof. For brevity, in this proof, we will use oy, in place of ak(yo, p). Since,r < R—1land7 < T,
we have w;’" € Blw", p] by induction hypothesis and Assumption[2.1|on ®, we have

2L
QulwpT) < Oplwp ™)+ W —wp T Ve () + T o - wp
T — TT— T — L T —
< Ou(w] ) = (VB ), Ve ) + L [V

Next, we take expectation over mini-batch of samples at client £ € [K ]. The above inequality
reduces to

r,T r,T— r,T— r,T— L r,T—
QuwpT) < ) = n(VO(w]T ), Vo (wp ) + LRV (w1
(a) TT—
< Bp(wyT) = nap®y(wy ) + 207 Ll O (w) T
S (1 7]Otmm+2772Lklk)(I’k( o 1)
< (1*nam1n+2772Lmaxlmax)(I)k( K 1)’

where (a) follows from the Definition [2.3]and Lemma[D.2] Last inequality follows as Lj, < Lyax
and [;, <1, forallk € [K]. Usingn < j7o=is—, w" = 'wz’o, and recursively iterating over 7,

we have the desired upper bound
Dp(wl7) < (1 - WT”) Oy, (w").
O

The above lemma gives an upper bound on the loss function at each client & € [K] for which
w," € Blw", p] for r < R —1and 7 < T. In the next Lemma, we prove an upper bound for the
same whenr > R — 1.

Lemma F.2. Forr > R, we have for all k € [K]
Ox(wy ) < (1+30Li)" r(wy”),

provided n < 21/

Proof. For r > R, the induction hypothesis is not valid. Therefore, by the Assumption2.T]i.e., @y,
is Ly —Smooth, we can write

2
T, T T — T r,T— T — Lk T, T r,T—
Pp(w,”) < Pp(wy 1) +(w, " —wy lavq)k(wk 1> + 2 2 Hwk —wy 1”2

< @u(wp ) 0 (VB(wp ), VO (wp ) + TV (T
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Taking expectation over mini-batch of samples reduces the above inequality to

D (wy,")

IN

i (wy ") = 0| V(w1 + EIIV‘Pk( Al

< (14 20Ly + 202 Lill) g (w) ™)
< (1 + 277Lk: + 2772Lklmax)q>k(w£‘r 1)’

where we have used the unbiased gradient assumption and the fact that —n||V®(w," ™~ 1)H2
2L @ (w)," 1) which can be easily derived from smoothness assumptlonu Also, the last term
is upper-bounded by using Lemma Using n < 21, in the above results and iterating over 7
results in

p(wy”) < (14 3nLy) @p(w)”).

Next, we define the error of linear approximation of global loss function as I';. and show that it is
bounded above.

Lemma F.3. Define the error as T, = ®(w™1) — ®(w") + 0| V®(w")||%. Then forr < R —1,
7T <TandT > 3, we have

T
I.<n (ag — ai) D(w")

Qg Qmin

3meT’ AT (AL, o UaxH L ax Omin)
/ “—
maxXge(x] lj, and qumin = minge (g Q.

provided n < min{ }, where L.y = maxpe(g] Lk, .y =

Proof. Since, forr < R—1and 7 < T, we have w;,”” € B[w", p]. By using FedAvg update rule in
Algorithm [T} we can write the linear approximation error I',. as

<w - —ZZ > — ®(w") + )| Ve(w)|
7), Vo (w" > 2K2 kz::z:: Vo, (wy7)

where the above inequality follows from L—smoothness Assumption[2.1]for the global loss function
®. Further, we can take the expectation over a mini-batch of samples and write the above inequality

Ly

IN

2
+n[|[ V(")

ﬁq.
qu

as
-1/, K K T-1 2
T r V|2
L, < —nZ<KZv<I>k<wk ), Vo(w >> B | |D D Ve )| | +nlvew)|
7=0 k=1 k=1 7=0
n Tl 1 &
e P P A CTH Z IV®(w")|* + 0l Vo (w")|?
7=0 k=1
K T-1 T-1 2
LT]2T n 1 T r
+ Y E[IVE ] + 1Y | Zwk(wk’ ) — Vo) |
k=1 7=0 7=0 k=1
where the above inequality follows from the identity |ja — b||?> = ||a||* + ||b]|* — 2(a,b) and

inequality | >0, a;]|* < n> i, |la;||*. The above inequality can be further simplified with the
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help of smoothness as

(a) . n K T-1
r, < —g(=—1)|ve@)|?+-L i eI
L« 77<2 )IIV 2 + 2K;T:0Hv r(w,") = Vo, (w")
/ K T-1
+ ma"n PIPILACH
k=1 7=0
(b) T L N~ N "
< —nag<2_1>@( Mines ZZH“’ -
k=1 T1=0
/ oy K T-1
n maxn ZZ 1+ 3nLy) ‘I’k('wk)
k=1 71=0
T 77 1?nax S
) _mg<2_1)q>< D3 e~
k=1 17=0
/ K T-1
I maxn ZZ 1—|—3T]Lmax (I)k( )7
k=17=0

where the last term of inequality (a) follows from sample-wise smoothness Assumptio and
unbiased estimate assumption of loss function @y, here I, . := maxy, [},. The first term of the above
inequality (b) is a direct consequence of the Assumption as T" > 3. The second term follows
from the L —smoothness Assumption@] for loss function ®;, whereas the third term follows from
Lemma@ Here, Ly,ax = maxy, Li. Note that we have ignored the first term as it is negative. We
can further reduce the above inequality I',. as follows,

2

(a) T K T-1 7'—1/\
P2 ey (G 1) w) ¢ 53 0 Y TR | ¢ LT )
k=1 71=0 =
(b) T D) L K T-1 7-1
< —nay <2 o 1) (I)(Qr) 4 24 “max'max 1" Lmax max Z Z TZ (I)k + Ll;naxn2T2e<I>(QT)7

=17=0 t=0

where the second term of inequality (a) follows from the telescopic sum for the SGD update rule,
and in the last term, we have assumed the 77 < 57— The second term of inequality (b) follows
from sample-wise smoothness Assumption2.2] Next We use Lemma [F.1]in the above inequality to
get the second term in the global loss function .

K T-1 7-1

I, < -—nag (Z - 1) D) + 2L L‘“a" max YN - N (1 - 770‘“““) oy, (w}°)

k=171=0 t=0

+ LU T ed(w")

2T2L2 !
< —nay, < _ 1> r - max’max (I)( ) 4 Ll;naxn2T26<D(Mr)
T 412 1+ LI min
S (77049 _ no 29 + 772T26 ( max ma); : max® )) q)(ﬂr)’

where the second inequality follows from the infinite geometric sum and the sum of the first T’
natural numbers. Using n < 7Lz Solmin the above inequality boils down to desired

max max

+ Ll

—,
InaxQmin)

result,

O

In the next lemma, we will use the above error bound to show the linear convergence relation of .
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Lemma F4. For eachr < Ri.e, forw" € B[w, p], we have
7\
B(w") < (1 - 77‘“49) B(w?).

Proof. From the definition of I';. for » < R, we have
P(w'th) = (") —n|Ve(w")|* + T,

< () e+ (o - 9 ) o)

4
(1 - nCZJT> d(w"),

where the second inequality follows from the definition for global loss function ¢ and Lemma
Next, we iterate over r and this proves the claim of the Lemmal[F4]i.e,

P(w") < (1 - WZTY‘P(wO)

IN

O

The above Lemma [F.4{is valid as long as w” € B[w", p] for r < R. Therefore, we need to show
that w"™ € B[w?, p| for all 7. Towards this, we need the following drift to be bounded. Especially,

for the case, when r = R as wf:”’T may lie outside of the ball B[w", p].

Lemma F.5. Forr < R and min L L , we have
< frandn < {3meT’ T\/2ely, KO ()
r,T 7,0
‘ w; — Wy ‘ < Gpp

for some (, € (0,1).

Proof. Writing the drift term as telescoping sum, we have

T-1
sz,T _ w]:,O — Z (w]:,T+1 _ wz,r)
7=0

IN

T-1
LAY 21;@ Z P (U’Z’T)a
=0

where the above inequality follows from the local SGD update rule and Lemma which is a
consequence of sample-wise smoothness Assumption of @, for all k& € [K]. Next, we use

Lemma [F.2|as w,lj‘ T may lie outside of the ball B[w", p], which reduces the above inequality to,

T-1
lwp ™ —wi®l < my/20 Y (14 3nLy) 2k (w)?)
t=0
3nLe\"
< nT\J2LK (1+ ’72’“) B(w)
Linax | T\’
< gTy/21, Kd(wO) (1 i 3"2a> (1 _ m;g)
LinaxT "
< nT4\/2U, K®(wP)exp (?)?72) (1—%) ,

where the second inequality follows from the result /1 4+ z < (1+5) forz € (0,1) and &5 (w") <
Zszl @y (w"). Since, w" € B[w?, p] for all < R by the induction hypothesis. Therefore, by
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Lemmal|F.1] we get the third inequality. Last inequality follows from (1+2) < exp(x) forallz > 0.
Note that Ly, < Ly for all & € [K]. Further,

T
lwp” —w®|| < nTy/2el), K®(wP) exp (_T]TC;Q )
< nT\/2el Kd(w),

(19)

where we have used the inequality (1 + ) < e” forall z € R and n < ﬁ in the first

inequality. The last inequality follows from the fact exp(—z) < 1 forall 2 > O and [}, < [

max*
CoP

T\/2ell,, K®(w)’
T ,0
Jwy,” —wi || < Cop-

Next, by choosing 1 < we have

O

Next, we upper bound the global drift for » < R, especially for r = R, to get the desired result of
Theorem[3.1]

Lemma F.6. Forr < R, we have

128el’ . K ®(w?
w —w S ‘ . ’
w” 0 \/ maax ( ) (20)
g

provided n < 3L 7, Where Loy = maxyc(x) Lk and ll,. = maxy, l§€.
Proof. Consider the following

Jw” — w’||

IN

b w\\
HMN
HFﬂ}q

3

77K
< 2

where the first equality follows from the telescoplng sum whereas the second inequality follows
from triangle inequality and FedAvg update rule in Algorithm [I} The last inequality follows from
the triangle inequality. The above can be further bounded as follows,

K r—1T-1

fu —w'| < Vs SOSS S

k=1s=0 7=0

where we have used the samples-smoothness Assumption[2.2]Next, we take expectation over a mini-
batch of samples and apply Jensen’s inequality. We get

oY K r—1T-1

' —w) < DRSNS e (wy)

k=1s5=0 7=0
K r—1T-1

< n\/2lmax ZZZ 1+377L 7'/2 D, ( )
k=1s=0 7=0
K r—1T7T-1

< n\/Ql;ndx;ZOZ% 30 Lma) /% /Br ()
K r—1T-1

S 77\/ 2lmax ZZ Zexp <377LmaxT) (I)k(ws),
k=1s=0 7=0
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where the second inequality follows from Lemmaﬂand w,‘?o = w?. Also, L;, < L .x. Next, we

choose 1 < 3L — and use the fact that /@ (w*) Zszl O (w?) and the Lemmain the
above 1nequa11ty

Jw” — w|

N
3
N
%
5(\\‘
&
] =
M \
iy
5

V128ell, . KO (w

/\
O
~—

max

Qg

where the final inequality is due to the result (1 — :c)r/2 < (1—%)" forz € (0,1) and the infinite
geometric sum. O

F.1 PROOF OF THEOREM[3.1]

Proof. From the Lemma[F5]and Lemma[F.6] for r = R, we have

R
128el! . K P (wO)
S C'[)p \/ a
Qg
< p

where the last inequality follows from the assumed new condition[2.4[b) on oy, assumed in Theorem

Therefore, by induction 'wk T e Blw", p]for R > 0and T > 0. Consequently, w w? € Blw?, p]
for all R > 0 and lemma [F.4] holds for R > 0. Taking R — oo, results in ®(w*) = 0, where
w* € B(w") is the optimal point. O

G ANALYTICAL AND EXPERIMENTAL JUSTIFICATION OF ASSUMPTION [4.4]

By definition of A min(m) defined in equation@], we have
Eyoe;, Hy(w’) Hy,(w’) ey

SN T
= E g g R Gy (K, i, § )y 1Tk

2
el
= Zu;”uijG k ]a:,”:ckj
.
= mZEwo[ w :I:k l) (wg wk,j)} uk,mhjmkti:ck,j,
where Gy (k, 4, j) = Eqypo [J'(ngwk,i)a’(ng:ckJ)] is independent of p, uy; = HC;TH and w)

is the p'™ vector of size d in the w® vector. In the above, ey ; is the i™ entry of e, and the last
inequality follows from the fact that G, (i, j, k) is independent of p since the w” is sampled in an
i.i.d. fashion from a Gaussian distribution (see the discussion above Lemma [4.3] or Algorithm [2).
Based on the above, it seems reasonable to expect that both A, p(m) and A (m) scale with m

provided the matrices H (w®)H (w®) " and H(w")H (w")" are of full ranks respectively, which
is shown in Lemma 4.3

H BOUND ON THE OUTPUT OF THE NN2

In this section, we state and prove a bound on the output of the NN. The following lemma will come
in handy while proving the generalization result for unbounded loss.
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Lemma H.1. There exists a NNg—1 with some weights v € {—1,1}™ in the output layer such that
| fwo(T)] <A :=+2D,d ‘M% log (4) for any random data point x € Xy, = {x); : i € [n]},
k € [K], sampled i.i.d. from py(x), and w € Blw?, p).

Proof: Recall that the weights in the final layer of the NNg—y, i.e., v is sampled randomly. We will
show that in the ensemble of NNg—, there exists at least one NN whose output is bounded by A

regardless of the input, i.e., Pr{3v € {—1,1}" : | fy»(x)| < A} > %ﬂ This probability can be
written as

Pr{3v e {~1,1}": |fwo(x) < A} 1—Pr (| fwe(@) <A
ve{-1,1}m
> 1—=Pr{|fws(z)] < A}. 21

Thus, we need to upper bound Pr {| fo » ()| < A}. Let us start with the complement of the event

for any x ~ pg(x), i.e.,
1 m
P >A :EXNk(m)PH‘ vla(wT:r;)>A}|x]. (22)

Since o (-) is a smooth function, it follows from the remainder form of Taylor’s expansion around
w = 0 that/]

1 m
\/7% Z le('wlT:E)
=1

o(w/z) = 0(0)+w/ Vo(w, . x)

= w, Vo(w.z),

where w;, lies between the line joining the points 0 € RY, w; € R?, and & € X},. Using the above
approximation, we get the following upper bound over the ball B[w?, p] for all [ € [m)]

vo(w )| _ |lwlldD,
g | S Jm

where we have used the assumed upper-bound on the activation function, i.e., o’ (wl—rw) < D,. As
the random variable of interest is bounded, we get the following upper bound using Hoeffding’s
inequality in equation [22]

1 ™ 2A2
P RN Vo me > A < E x) [€XP § — x
e R e |
=1 Jm
< Ejle mA”
x _
- P\ 2@2D2 (JJw — w02 + [w0]?)
<

B mA?
expq —
P 2a202D2 + 282 D2 [ud|2 [ |
where the expectation is with respect to the random initialization. Next, we upper-bound the right-
hand side of the above inequality using the total expectation law as follows,

mA2 mA2
E _ E _ 012
{QXP{ 2d2D3<p2+||w°||2>H {eXp{ 2d2D3<p2+||w0||2>H'w ” <C]
mA?2
E _ 012
* {e’q’{ 2d2D3<p2+||w0||2>H"" ” >C]
< Plw’? > ¢

mA?
< exp {MQD?;(M} +Plw’* > ¢ (23)

We just need to show that this quantity is non-zero. However, without loss of optimality, we choose 1/2.
"Note that the expansion around the origin does not contradict the previous argument that the ball should
not contain the origin.
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where the last inequality, we have used E [exp émz,(%w } ‘ P2 > 4 < 1. Using the
23]

Lemma in Appendix [D]and ¢ = 4m, equation[23|reduces to

E mA?2 mA?2 N dm
P\ 222 (07 1wl ?) PV 2022 +am) [ TP 2

m A2 d
P in (2 24
“p{ 2mm(ﬂDaﬁ+4mrz>} ey

ensures that the first term, i.e.

IN

D2 (o> +m)

5 is the mini-

Note that by choosing A < ) WQM

mum. Further, by choosing A > v/2D,d ’ﬂ*% log (4) ensures that the above is less than 1/2,

as desired. This completes the proof. O
Lemma H.2. With a probability of at least 1 — § /2, the loss function satisfies
2D2p*dlog(2n/6
P(w’) <nxbi= [ o dlog(2n/0) | 2yfn] : (25)
m

Proof. Consider the squared loss for the 2-layer NN defined in equation [6]

Op(w) = Y [fuww(@ri) = yril

i=1

< QZ [(fw,v(wk,i))z + (ykﬂ')Q]

=1
2D2 p*dlog(2n/5
. { >p°dlog(2n/9)
m

+ 20|

IN

where the last inequality follows from Lemma with §; = g and 2, = max;e ] y,% ;» and

hence satisfies with a probability of at least (1 — 5). O
I PROOF OF THEOREM [£.3]
We consider the following average loss function:
1 X
d(w) = % ]; By (w), (26)

where @, : R™? — R is squared loss function for each client k € [K] and is defined as
Pp(w) = Z [fw,v(wk,i) - yk,i]2 .
i=1
In the following, we show that the above NN with initialization provided in Algorithm[2]satisfies the
conditions provided in Assumption 1) and (2) provided the number of neurons in the first layer
scales as O(%) Note that Algorithm |2uses the following matrix

Iy T T gy T T
vio (W) T )Ty oo Um0 (wmwk,l)wa
Jy(w,v) = —— x Hy(w,v) ' ' '
r(w,v) = — X Hi(w,v) = —— X . : :
’ vm ’ vm ) ’
Iy T T apy T T
v’ (w, mkn)azkn cer VO (wmmkm,)mkm
where k = 1,2,..., K. The size of the above matrix is R"*™%, Note that the neural coefficients

v;’s for the second layer are sampled from a uniform distribution as shown in Algorithm[2] and are
the same across clients.

Consider a single hidden layer NN defined in Sec.[4] For clarity, with a slight abuse of notation, we
use w to represent the weights of the first layer while we use v to denote the weights of the second
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layer. Note that the conditions in Assumption [2.4] amount to finding a lower bound on the norm
squared of the gradient in terms of the average loss function inside a ball of radius p centred at w°
Therefore, we consider the gradient of the average loss function in 26|

Ved(w) = Ve (foo(®r,i) = yai)”

M-

N
Il
-

=[ =

Vo (fu(@r0) " (fo(@r) — Yrs)

M-

Il
-

=

5 11 I

K3

2

= % 2 J,;r(w)(fw(Xk) - Yk),

where Jy,(w) € R™ ™4 is the Jacobian matrix with the weight of the output layer scaled by j3,
defined in Algorithm[2] of the loss function at each client k € [K], and is given by

waw(wk,l)-r
Vs fuw(®r2) " )

Jp(w) = = N x Hj(w)
vwfw(wk,n)—r

and is explicitly defined in Sec. 4} and [fw (X)) — yr] € R™ be the column vector of error on each
of n input data available at client k¥ € [K]. For simplicity, we denote error vector for client k € [K]
by ey, and is given by

Juw (k1) = Yo

fw(Tr2) — k2

er = [fuw(Xk) —yr] = e R

f'w (wk,n) — Yk,
Using the above notations, we can re-write the gradient of the average loss in a more compact matrix
form as

K
2 T
Vo(w) = - > (w)ex
k=1
= 3J( )le (27)
= K w 5
where J(w) = [Ji(w), Jo(w), ..., Jx(w)] € RMXmd and the column vector formed by con-
catenating the error vectors ej, and is given by e = [e;, ez, ...,e;]T € R"®. Now, using equa-
tion 27} the norm squared of the gradient can be written as
4
IVo@)? = = (e [J(w)I(w) ]e)
4
= ﬁ||J(w)TeH2- (28)

Next, we approximate the matrix Hy, (w) around the origin w®. Note that (7, j)*" entry of the matrix
H.(w) is given by [Hy(w)];,; = vjo’ (w] @y )z ;. Therefore,

H(H’I(w)_H’I(QO))e’sz - ZZ‘% W] )Ty~ U0 ((w?)ka,i)ek,ﬂZ,i’Q
=1 j=1
m
= ZZ|0 w] @) — o (w') a)|” R
1= 1] 1

) (30)

= E |O’ w cr:;” —O’ 'wO CCkL
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where the above inequality follows from the fact that ||z} ;|| = 1, and ey, ; is the i-th component of
the vector e,. By Taylor’s expansion around w®, we can write

o’(w;mkﬂ;) =o' (w’) + (w; — Q?)TVU'(w;r*wk,i) 3D
for some wj, in the line joining w; and w®. Now, using the above equation, we have

|(H (w) - H (w)er]s = S o' (@) + (w; - w?) Vo' (w] @) — o' (w”)|” g

i=1 j—l

- ZZ| - TVJ (ch’Bk z)‘2\€k,z‘

=1 j=1

< ZZH w; —w))[*IVo' (w]ari)|*eril?
=1 j=1
n
< AALY lenal? ZII w))[f?
i=1
< dA%p? e,

where we have used the assumption (see Assumption4.1) ||Vo' (w k)| < dA,. Summing the
above for all k£ € [K], the following holds

|(H(w) — Hw)e|? < dA2p%|e|?, (32)

where we have used the definition of ||e||? = E w1 llex]|?. Next, we can write
IH(w’)e — H(w)e + H(w)e|* < 2|H(w’)e— H(we|* + 2| H(w)e|*.

The above equation can be re-written as

1
[H (w)el* > 3 |H(w")e|* - ||(H(w’) - H(w))el|%. (33)
Using the equation equation [33]in equation 28]
4 1
2 0y o |2 0 2
Vol > i [l ~ ()~ Hw)el?]
4
>

1
s [prwner - aszler’]

4 [|Hw’)el? le]?
mk | 2[e|? K

- dﬁipz}

where in the second inequality, We have used the upper bound from equation equation[32} Now, we
take infimum over the ball B(w", p) on both side of the above equation

[Ve@)? _ 2 e Hu')H@")'e 4dA2;
i —
weB[w?,p] (I)(’LU) —  mK weBw°,p| ||€||2 mK

The above equation can be written as

2 4dA2 p?
ag(w’, p) 2 ==, (m) = ——F—, (34)
where A (m) = infy,cpwo,p) m(”e# Similarly, for the single-client setting, we have
App(m)  4dA2p?
ar(w’, p) > 2 ko) ol (35)

m
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for all k € [K]. Now, we need a bound on I/, ... However, we will find a bound on L instead, which

may be of independent interest. Later, we find a bound on I/, .. as a special case. Consider

IVe(w)? = | H(w)el
< %{an(mm—ﬂ( %)) el + 2 H (w)el*}
< o0’ llel* + 2 H (w")e|*} ,

where the second inequality from the result ||a+b||? < 2||a||*+2(|b]|? and the last inequality follows
2
from equation Further we divide both side by ®(w) = llell” "we get

K 9
[Vo(w)|* _ 8 [ H(w’)el®  dAZp?
< sup + 36)
(b(w) mK weB[w?,p] ||6||2 mK

By comparing the above inequality with ||V®(w)||? < 2L®(w), we get

4 dA2 p2
L=—2X . 37
0] 2
where A*(m) = SUDyeBlwo ) %

Bound on /. (Special Case: K = 1,n = 1): For single client (K = 1) and single data point

(n = 1), from equation equation we have,

[V ®s,i(w)]|? <8 | Hy.(w")ey ] +dA3P2

38
Pri(w) T M weBwo ) ei,i m .

By comparing the above inequality with || V@ (w)||* < 21!

!/ .
raxP(w), where I == maxy ; li ;.

we get
dA2 p2
U = )\+ z 39
max P, max( ) 2m b ( )
eri||?
where A (m) = maX;c[n) ke[| {Supwemmg,p] %}

To satisfy the condition mentioned in Assumption equation the NN should be designed such
that the following two properties are satisfied:

 Condition (1) of Assumption The first condition is oy > %gﬂo) for k € [K].
Using equation[35] the condition is satisfied if

m m 0% |’

where we have used the fact that with a probability of at least 1 — §/2, & (w’) < n x b

(see Lemma|H.2).
« Condition (2) of Assumption 2.4t The second condition is a4(w’ p) >
1283‘“? o), Using equation |34] and substituting for L equation , and rearrang-

ing, we get the following condition

A + 2 12 2
5 (m) 4K | \/ean (Ap,max(m) n 4A2dp ) . 2Agdp’

>
m (I1—=C¢p)p m m m

where again we have used the fact that ®;(w”) < n x b with a probability of at least 1 — §/2 from
Lemma[H.2] This completes the proof. O
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J  GENERALIZATION BOUND: PROOF OF THEOREM [5.2]

Overview of the proof: Note that the weights of the last layer of the neural network is sampled i.i.d.
from {—1, 1}. Hence, there are 2™ possible neural networks (equal probability). In order to prove
generalization bound, we invoke McDiarmids inequality, which requires the output to be bounded.
First, we prove that there exists NN, i.e., v € {—1, 1}™ such that the output is bounded; see Lemma
in Appendix [Hl We denote such realizations of v by the set G,,. Once the existence is proved,
we select the NN for which the output is bounded, and prove generalization for the chosen neural
network. This is done by conditioning on the event v € G,,. One can notice that such conditioning
appears in the Rademacher complexity expression as well. In the following, we provide the details.

First, consider the following empirical loss function conditioned on v € g
2

— 1 < T
D(w,v) = 7 ; lzl ﬁ j;vjo(wj Tii) —Yki| - (40)
Proving a typical PAC-style result requires one to apply McDiarmid’s inequality. Towards this,
consider two sample data points S = (S1,52,...,5k) and S’ = (S1,5%,...,S5%) differing only
by points zy, ; in Sy and x}_; in S}, and define
U(51,852,...,5k) = sup (P(w,v)— Pg(w,v)).
weB[w", p]

Since the difference of the suprema is upper bounded by the supremum of the difference over the
same set, we have

U(S")-w(S) =  sup (P(w,v) - Ps(w,v))— sup (P(w,v)— Ps(w,v))
weB[wO, p| weB[wO, p]
< sup  (Ps(w,v) — Ps(w,v))
weB[wO, p]
1
- K. oW {(feww(@ri) = Uri)? = (froo(®h i) = ¥3.0)° }
weB[wO, p]
2
< K[ sup fi,v(mk7i)+y72nafc ) @1
weB[wO, p]

where in the first inequality above, all the terms cancel each other except for different data points xy, ;
and 7/ k.i- Now, we use Lemma in Appendix [H|to show that the output is bounded conditioned
on v € G,; this allows us to apply Mcdlarmld s inequality. It is important to note that the data and
v are independent of each other. The proof of Mcdiarmid’s inequality depends on the randomness
in the data and hence, does not change even after conditioning on v € G,,, which is equivalent to the
output being bounded (see Lemma[H.T). Invoking Lemma [H.T] the following bound holds
9 9 2D2d? log 4
SUp - fop o (@ki) < (p7 +3m) ———.
weB[w?, p] m
Using the above in equation [#1] we get the following bound
2 72
w() - 0(5) < o (2 3m) P20z )

Now, applying McDiarmid’s inequality to W(S) — g, [¥(S)], the following inequality holds with
a probability of at least 1 — § for any w € B[w?, p] conditioned on G,

2D2d2log 4 2nlog(:
¥(S) < B, [U()] + (2 4+ 3m) 2200 Ly ) [ 2ela),

The expectation term appearing in the above inequality can be upper bounded in terms of the
Rademacher Complexity using a standard approach as in Mohri et al.|(2019) to get

K 1
2n 0 2D2d?*(log4)(p® +3m) 2nlog(5)
(I)(w7v) < @S(’LU,’U) + ?;Radk(w 7p> + ( +yma:1: K ’

m
where the Rademacher complexity is as in Definition[I2] This completes the proof. O

8For the ease of exposition, we do not show the conditioning explicitly.
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K PROOF OF THEOREM [5.4] (BOUND ON THE RADEMACHER COMPLEXITY)

By the definition of Rademacher complexity of client k € [K], we have

weB[wo pZ 1

= Ejyeq, [ sup ZQZW (w] x}, ] . (42)
i=1 =

n- Radk(ﬂov P) = E|vegv [ sup Z szw v wk i ]

weB[wO,p

Consider P [supweg[yo_’ o) 2oiy Gifw(x) > €elv € gv} . Now we use the standard procedure of us-

ing covering to reduce the above supremum to countable union. In particular, it turns out that there
exist balls of radius 6 centred at points wy;, j = 1,2,..., Ny , which covers B(w?, p). Here,

. d
Ny, = (M) (see|Shalev-Shwartz & Ben-David (2014))). Using this, we get

6
Ny,
= P U{ sup Zlew }’

j=1 wG]EE(wLW i=1

e, B )

welﬂ%(wl] 0) i1

P l sup ngw,v(a:) > €|G

weB(0,p) ;7

IN

, (43)

where the above inequality follows from the union bound. As a part of the covering principle, we
approximate the NN function around the centre of the covering balls B(wy;, , #) using the remainder
form of Taylor series:

fun(®) = — > uo(w] )

Z vy {J(wl—;w) + (wy; — wl)TVa(wl—_:*w)

1 « T
S uy (@) + gj lwi, —wi] - [[Vo(w),.a)|

< fwlj ,v(m) + adDo\/Ev

where the first inequality is due to the well-known result of the Cauchy-Schwarz Inequality, and
the last follows from the assumed upper bound on the activation function o(-). Using the above
approximation around the centre of the covering ball, we have

sup Zczfm chfwl ) + nfDydy/m.
weB(w; 0) =1

Note that the event due to the above inequality is bigger than that of in equation Therefore, by
the monotonic property of probability measure, we have

vegv]

No No,p
> P| sup chfw,, >ev€gv] < ZP[ZQ]“W (@) > e —nbDydyv/m
j=1 we]E%(wsz i=1 i
R m(e —nfD,d\/m)?
< Zex —
(p2 + 3m) D242 log( )
m(e —nbD,d/m)
< N, -
= e’peXp{ (p2+3m)ng2log4}

where the second inequality follows from the well-known Hoeffding’s Inequality. Note that the
above is less than §; when € = nfD,d\/m + \/(”2+3m)D3d2 log 4log(No p/61) Ny, choosing

m
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0= m leads to the fOHOWing
1 (p% + 3m)D2d?log4log(Ng,,/01)
P § iJw 'u \/ z L v P > 1— 6.
{w;ﬁ?& Gf - 2\/5 + m vEGy = !

Now, we are ready to prove a bound on the Rademacher Complexity using the above inequalities.
Let Radg(w’, p) = SUPyyenjwo 5 Die1 Gifw.o (). By the total expectation law, we have

EC¢€{71,+1} [P{a-\dk(yo>p)|/u € g’v:| < E[E?a'\dk(ﬂo7p)|fa\d'k(ﬂo>p) > €,V € g’U]
x P {E@k(mo,p) > elv € Qv}

+ E[Radi(w’, p)|Rads(w?, p) < elv € Gy).

We bound the first term of the above inequality using the upper bound on the output of the NN (see
Lemma [H.T) function as follows

p*+m

Egeio1 41 [0 Radu(@®, plv € G| < nvaD,d
We are free to choose d; as it appears in the log term. Choosing 6; = an\%Dod N 10g4(7:2+m) and

dividing by n leads to

+3m)D2d?(log 4) log(Ny, p/51)
Radk( 7p) Tl\/> \/ mn

(log4)d; + e.

Note that the first term above converges fast. However, the overall complexity is of the order 1/1/n
for any p < O(y/m). This completes the proof. O
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